首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transparent adult zebrafish as a tool for in vivo transplantation analysis   总被引:1,自引:0,他引:1  
The zebrafish is a useful model for understanding normal and cancer stem cells, but analysis has been limited to embryogenesis due to the opacity of the adult fish. To address this, we have created a transparent adult zebrafish in which we transplanted either hematopoietic stem/progenitor cells or tumor cells. In a hematopoiesis radiation recovery assay, transplantation of GFP-labeled marrow cells allowed for striking in vivo visual assessment of engraftment from 2 hr-5 weeks posttransplant. Using FACS analysis, both transparent and wild-type fish had equal engraftment, but this could only be visualized in the transparent recipient. In a tumor engraftment model, transplantation of RAS-melanoma cells allowed for visualization of tumor engraftment, proliferation, and distant metastases in as little as 5 days, which is not seen in wild-type recipients until 3 to 4 weeks. This transparent adult zebrafish serves as the ideal combination of both sensitivity and resolution for in vivo stem cell analyses.  相似文献   

2.
Zebrafish are a valuable vertebrate model to study carcinogenesis, but noninvasive imaging is challenging because adult fish are not transparent. Here we show that tumors could be readily detected in vivo using high-resolution microscopic ultrasound in zebrafish. We successfully obtained tissue perfusion calculations and cellular aspirates, and analyzed tumor progression and response to treatment. Ultrasound biomicroscopy allows longitudinal studies of tumor development and real-time assessment of therapeutic effects in zebrafish.  相似文献   

3.
Over the last 20 years, the zebrafish has become an important model organism for research on retinal function and development. Many retinal diseases do not become apparent until the later stages of life. This means that it is important to be able to analyze (gene) function in the mature retina. To meet this need, we have established an organotypic culture system of mature wild-type zebrafish retinas in order to observe changes in retinal morphology. Furthermore, cell survival during culture has been monitored by determining apoptosis in the tissue. The viability and excitability of ganglion cells have been tested at various time points in vitro by patch-clamp recordings, and retinal functionality has been assessed by measuring light-triggered potentials at the ganglion cell site. Since neurogenesis is persistent in adult zebrafish retinas, we have also monitored proliferating cells during culture by tracking their bromodeoxyuridine uptake. Reverse genetic approaches for probing the function of adult zebrafish retinas are not yet available. We have therefore established a rapid and convenient protocol for delivering plasmid DNA or oligonucleotides by electroporation to the retinal tissue in vitro. The organotypic culture of adult zebrafish retinas presented here provides a reproducible and convenient method for investigating the function of drugs and genes in the retina under well-defined conditions in vitro.  相似文献   

4.
Zebrafish (Danio rerio) and their transparent embryos are becoming an increasingly popular tool for studying processes involved in tumor progression and in the search for novel tumor treatment approaches. The xenotransplantation of fluorescently labeled mammalian cancer cells into zebrafish embryos is an approach enabling relatively high-throughput in vivo analyses. The small size of the embryos as well as the relative simplicity of their manipulation and maintenance allow for large numbers of embryos to be processed efficiently in a short time and at low cost. Furthermore, the possibility of fluorescence microscopic imaging of tumor progression within zebrafish embryos and larvae holds unprecedented potential for the real-time visualization of these processes in vivo. This review presents the methodologies of xenotransplantation studies on zebrafish involving research on tumor invasion, proliferation, tumor-induced angiogenesis and screening for antitumor therapeutics. We further focus on the application of these zebrafish to the study of glioma; in particular, its most common and malignant form, glioblastoma.  相似文献   

5.
Mammalian intestinal fatty acid-binding protein (I-FABP) is a small cytosolic protein and is thought to play a crucial role of intracellular fatty acid trafficking and metabolism in gut. To establish an in vivo system for investigating its tissue-specific regulation during zebrafish intestinal development, we isolated 5'-flanking sequences of the zebrafish L-FABP gene and used a transgenic strategy to generate gut-specific transgenic zebrafish with green/red fluorescent intestine. The 4.5-kb 5'-flanking sequence of zebrafish I-FABP gene was sufficient to direct fluorescent expression in intestinal tube, first observed in 3 dpf embryos and then continuously to the adult stage. This pattern of transgenic expression is consistent with the expression pattern of the endogenous gene. In all five transgenic lines 45-52% of the F2 inheritance rates were consistent with the ratio of Mendelian segregation. These fish can also provide a valuable resource of labeled adult intestinal cells for in vivo or in vitro studies. Finally, it is possible to establish an in vivo system using these fish for screening genes required for gut development. genesis 38:26-31, 2004.  相似文献   

6.
Candida albicans is a human commensal and a clinically important fungal pathogen that grows in both yeast and hyphal forms during human infection. Although Candida can cause cutaneous and mucosal disease, systemic infections cause the greatest mortality in hospitals. Candidemia occurs primarily in immunocompromised patients, for whom the innate immune system plays a paramount role in immunity. We have developed a novel transparent vertebrate model of candidemia to probe the molecular nature of Candida-innate immune system interactions in an intact host. Our zebrafish infection model results in a lethal disseminated disease that shares important traits with disseminated candidiasis in mammals, including dimorphic fungal growth, dependence on hyphal growth for virulence, and dependence on the phagocyte NADPH oxidase for immunity. Dual imaging of fluorescently marked immune cells and fungi revealed that phagocytosed yeast cells can remain viable and even divide within macrophages without germinating. Similarly, although we observed apparently killed yeast cells within neutrophils, most yeast cells within these innate immune cells were viable. Exploiting this model, we combined intravital imaging with gene knockdown to show for the first time that NADPH oxidase is required for regulation of C. albicans filamentation in vivo. The transparent and easily manipulated larval zebrafish model promises to provide a unique tool for dissecting the molecular basis of phagocyte NADPH oxidase-mediated limitation of filamentous growth in vivo.  相似文献   

7.
8.
Kizil C  Brand M 《PloS one》2011,6(11):e27395
The teleost fish Danio rerio (zebrafish) has a remarkable ability to generate newborn neurons in its brain at adult stages of its lifespan-a process called adult neurogenesis. This ability relies on proliferating ventricular progenitors and is in striking contrast to mammalian brains that have rather restricted capacity for adult neurogenesis. Therefore, investigating the zebrafish brain can help not only to elucidate the molecular mechanisms of widespread adult neurogenesis in a vertebrate species, but also to design therapies in humans with what we learn from this teleost. Yet, understanding the cellular behavior and molecular programs underlying different biological processes in the adult zebrafish brain requires techniques that allow manipulation of gene function. As a complementary method to the currently used misexpression techniques in zebrafish, such as transgenic approaches or electroporation-based delivery of DNA, we devised a cerebroventricular microinjection (CVMI)-assisted knockdown protocol that relies on vivo morpholino oligonucleotides, which do not require electroporation for cellular uptake. This rapid method allows uniform and efficient knockdown of genes in the ventricular cells of the zebrafish brain, which contain the neurogenic progenitors. We also provide data on the use of CVMI for growth factor administration to the brain--in our case FGF8, which modulates the proliferation rate of the ventricular cells. In this paper, we describe the CVMI method and discuss its potential uses in zebrafish.  相似文献   

9.
Mauthner cells (M-cells) are large reticulospinal neurons located in the hindbrain of teleost fish. They are key neurons involved in a characteristic behavior known as the C-start or escape response that occurs when the organism perceives a threat. The M-cell has been extensively studied in adult goldfish where it has been shown to receive a wide range of excitatory, inhibitory and neuromodulatory signals1. We have been examining M-cell activity in embryonic zebrafish in order to study aspects of synaptic development in a vertebrate preparation. In the late 1990s Ali and colleagues developed a preparation for patch clamp recording from M-cells in zebrafish embryos, in which the CNS was largely intact2,3,4. The objective at that time was to record synaptic activity from hindbrain neurons, spinal cord neurons and trunk skeletal muscle while maintaining functional synaptic connections within an intact brain-spinal cord preparation. This preparation is still used in our laboratory today. To examine the mechanisms underlying developmental synaptic plasticity, we record excitatory (AMPA and NMDA-mediated)5,6 and inhibitory (GABA and glycine) synaptic currents from developing M-cells. Importantly, this unique preparation allows us to return to the same cell (M-cell) from preparation to preparation to carefully examine synaptic plasticity and neuro-development in an embryonic organism. The benefits provided by this preparation include 1) intact, functional synaptic connections onto the M-cell, 2) relatively inexpensive preparations, 3) a large supply of readily available embryos 4) the ability to return to the same cell type (i.e. M-cell) in every preparation, so that synaptic development at the level of an individual cell can be examined from fish to fish, and 5) imaging of whole preparations due to the transparent nature of the embryos.  相似文献   

10.
11.
Controlling the initiation of cell migration plays a fundamental role in shaping the tissue during embryonic development. During gastrulation in zebrafish, some mesendoderm cells migrate inward to form the endoderm as the innermost germ layer along the yolk syncytial layer. However, how the initiation of inward migration is regulated is poorly understood. In this study, we performed light-sheet microscopy-based 3D single-cell tracking consisting of (a) whole-embryo time-lapse imaging with light-sheet microscopy and (b) three-dimensional single cell tracking in the zebrafish gastrula in which cells are marked with histone H2A-mCherry (nuclei) and the sox17:EGFP transgene (expressed in endoderm cells). We analyzed the correlation between the timing of cell internalization and cell division. Most cells that differentiated into endoderm cells began to internalize during the first half of the cell cycle, where the length of a cell cycle was defined by the period between two successive cell divisions. By contrast, the timing of other internalized cells was not correlated with a certain phase of the cell cycle. These results suggest the possibility that cell differentiation is associated with the relationship between cell cycle progression and the start of internalization. Moreover, the 3D single-cell tracking approach is useful for further investigating how cell migration is integrated with cell proliferation to shape tissues in zebrafish embryos.  相似文献   

12.
The zebrafish has become a powerful vertebrate model for genetic studies of embryonic development and organogenesis and increasingly for studies in cancer biology. Zebrafish facilitate the performance of reverse and forward genetic approaches, including mutagenesis and small molecule screens. Moreover, several studies report the feasibility of xenotransplanting human cells into zebrafish embryos and adult fish. This model provides a unique opportunity to monitor tumor-induced angiogenesis, invasiveness, and response to a range of treatments in vivo and in real time. Despite the high conservation of gene function between fish and humans, concern remains that potential differences in zebrafish tissue niches and/or missing microenvironmental cues could limit the relevance and translational utility of data obtained from zebrafish human cancer cell xenograft models. Here, we summarize current data on xenotransplantation of human cells into zebrafish, highlighting the advantages and limitations of this model in comparison to classical murine models of xenotransplantation.  相似文献   

13.
Adult zebrafish have an amazing capacity to regenerate their central nervous system after injury. To investigate the cellular response and the molecular mechanisms involved in zebrafish adult central nervous system (CNS) regeneration and repair, we developed a zebrafish model of adult telencephalic injury.In this approach, we manually generate an injury by pushing an insulin syringe needle into the zebrafish adult telencephalon. At different post injury days, fish are sacrificed, their brains are dissected out and stained by immunohistochemistry and/or in situ hybridization (ISH) with appropriate markers to observe cell proliferation, gliogenesis, and neurogenesis. The contralateral unlesioned hemisphere serves as an internal control. This method combined for example with RNA deep sequencing can help to screen for new genes with a role in zebrafish adult telencephalon neurogenesis, regeneration, and repair.  相似文献   

14.
Adult neurogenesis is a widespread trait of vertebrates; however, the degree of this ability and the underlying activity of the adult neural stem cells differ vastly among species. In contrast to mammals that have limited neurogenesis in their adult brains,zebrafish can constitutively produce new neurons along the whole rostrocaudal brain axis throughout its life.This feature of adult zebrafish brain relies on the presence of stem/progenitor cells that continuously proliferate,and the permissive environment of zebrafish brain for neurogenesis. Zebrafish has also an extensive regenerative capacity, which manifests itself in responding to central nervous system injuries by producing new neurons to replenish the lost ones. This ability makes zebrafish a useful model organism for understanding the stem cell activity in the brain, and the molecular programs required for central nervous system regeneration.In this review, we will discuss the current knowledge on the stem cell niches, the characteristics of the stem/progenitor cells, how they are regulated and their involvement in the regeneration response of the adult zebrafish brain. We will also emphasize the open questions that may help guide the future research.  相似文献   

15.
We studied the development and maturation of the visual system by determining when zebrafish begin to see and to move their eyes. This information was correlated with the time courses of the development of the retina, the retinofugal projection, the retinal image, and the extraocular muscles, to obtain an integrated picture of early visual development. Two visual behaviors were monitored over 48–96 hr postfertilization (hpf). The startle response (body twitch) was evoked by an abrupt decrease in light intensity. The optokinetic response (tracking eye movements) was evoked by rotation of a striped drum. Visually evoked startle developed over 68–79 hpf, more than 20 hr after the onset of a touch-evoked startle. It was not seen in eyeless fish, excluding a role for nonretinal light senses. Tracking eye movements developed over 73–80 hpf. They were always in the direction of drum rotation, even when the fish had been light deprived from blastula stage, ruling out a “trial and error” period of learning to track the drum. The image formed by the ocular lens was examined in intact fish made transparent by suppressing the formation of melanin. The eye was initially far sighted and gradually improved, so that by 72 hpf the image plane coincided with the photoreceptor layer. The extraocular muscles assumed their adult configuration between 66 and 72 hpf. Thus, the retinal image and functional extraocular muscles appeared nearly simultaneously with the onset of tracking eye movements and probably represent the last events in the construction of this behavior.  相似文献   

16.
Researchers working in the burgeoning field of adult stem cell biology seek to understand the signals that regulate the behavior and function of stem cells during normal homeostasis and disease states. The understanding of adult stem cells has broad reaching implications for the future of regenerative medicine1. For example, better knowledge about adult stem cell biology can facilitate the design of therapeutic strategies in which organs are triggered to heal themselves or even the creation of methods for growing organs in vitro that can be transplanted into humans1. The zebrafish has become a powerful animal model for the study of vertebrate cell biology2. There has been extensive documentation and analysis of embryonic development in the zebrafish3. Only recently have scientists sought to document adult anatomy and surgical dissection techniques4, as there has been a progressive movement within the zebrafish community to broaden the applications of this research organism to adult studies. For example, there are expanding interests in using zebrafish to investigate the biology of adult stem cell populations and make sophisticated adult models of diseases such as cancer5. Historically, isolation of the zebrafish adult kidney has been instrumental for studying hematopoiesis, as the kidney is the anatomical location of blood cell production in fish6,7. The kidney is composed of nephron functional units found in arborized arrangements, surrounded by hematopoietic tissue that is dispersed throughout the intervening spaces. The hematopoietic component consists of hematopoietic stem cells (HSCs) and their progeny that inhabit the kidney until they terminally differentiate8. In addition, it is now appreciated that a group of renal stem/progenitor cells (RPCs) also inhabit the zebrafish kidney organ and enable both kidney regeneration and growth, as observed in other fish species9-11. In light of this new discovery, the zebrafish kidney is one organ that houses the location of two exciting opportunities for adult stem cell biology studies. It is clear that many outstanding questions could be well served with this experimental system. To encourage expansion of this field, it is beneficial to document detailed methods of visualizing and then isolating the adult zebrafish kidney organ. This protocol details our procedure for dissection of the adult kidney from both unfixed and fixed animals. Dissection of the kidney organ can be used to isolate and characterize hematopoietic and renal stem cells and their offspring using established techniques such as histology, fluorescence activated cell sorting (FACS)11,12, expression profiling13,14, and transplantation11,15. We hope that dissemination of this protocol will provide researchers with the knowledge to implement broader use of zebrafish studies that ultimately can be translated for human application.  相似文献   

17.
The zebrafish embryo is especially valuable for cell biological studies because of its optical clarity. In this system, use of an in vivo fluorescent reporter has been limited to green fluorescent protein (GFP). We have examined other fluorescent proteins alone or in conjunction with GFP to investigate their efficacy as markers for multi-labeling purposes in live zebrafish. By injecting plasmid DNA containing fluorescent protein expression cassettes, we generated single-, double-, or triple-labeled embryos using GFP, blue fluorescent protein (BFP, a color-shifted GFP), and red fluorescent protein (DsRed, a wild-type protein structurally related to GFP). Fluorescent imaging demonstrates that GFP and DsRed are highly stable proteins, exhibiting no detectable photoinstability, and a high signal-to-noise ratio. BFP demonstrated detectable photoinstability and a lower signal-to-noise ratio than either GFP or DsRed. Using appropriate filter sets, these fluorescent proteins can be independently detected even when simultaneously expressed in the same cells. Multiple labels in individual zebrafish cells open the door to a number of biological avenues of investigation, including multiple, independent tags of transgenic fish lines, lineage studies of wild-type proteins expressed using polycistronic messages, and the detection of protein-protein interactions at the subcellular level using fluorescent protein fusions.  相似文献   

18.
Observation of immune and stem cells in their native microenvironments requires the development of imaging agents to allow their in vivo tracking. We describe here the synthesis of magnetofluorescent nanoparticles for cell labeling in vitro and for multimodality imaging of administered cells in vivo. MION-47, a prototype monocrystalline iron oxide nanoparticle, was first converted to an intermediate bearing a fluorochrome and amine groups, then reacted with either HIV-Tat peptide or protamine to yield a nanoparticle with membrane-translocating properties. We describe how to assess optimal cell labeling with tests of cell phenotype and function. Synthesis of magnetofluorescent nanoparticles and cell-labeling optimization can be realized in 48 h, whereas nanoparticle uptakes and retention studies may generally take up to 120 h. Labeled cells can be detected by magnetic resonance imaging, fluorescence reflectance imaging, fluorescence-mediated tomography, confocal microscopy and flow cytometry, and can be purified based on their fluorescent or magnetic properties. The present protocol focuses on T-cell labeling but can be used for labeling a variety of circulating cells.  相似文献   

19.
We provide an overview of the methods used to label circulating cells for fluorescence detection by in vivo flow cytometry. These methods are useful for cell tracking in small animals without the need to draw blood samples and are particularly useful for the detection of circulating cancer cells and quantification of circulating immune cells.  相似文献   

20.
Ashworth R 《Cell calcium》2004,35(5):393-402
Calcium ions are known to act as important cellular signals during nervous system development. In vitro studies have provided significant information on the role of calcium signals during neuronal development; however, the function of this messenger in nervous system maturation in vivo remains to be established. The zebrafish has emerged as a valuable model for the study of vertebrate embryogenesis. Fertilisation is external and the rapid growth of the transparent embryo, including development of internal organs, can be observed easily making it well suited for imaging studies. The developing nervous system is relatively simple and has been well characterised, allowing individual neurons to be identified. Using the zebrafish model, both intracellular and intercellular calcium signals throughout embryonic development have been characterised. This review summarises technical approaches to measure calcium signals in developing embryonic and larval zebrafish, and includes recent developments that will facilitate the study of calcium signalling in vivo. The application of calcium imaging techniques to investigate the action of this messenger during embryogenesis in intact zebrafish is illustrated by discussion of their contribution to our understanding of neuronal development in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号