首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The DNL-type zinc-finger protein DNLZ regulates the activity and solubility of the human mitochondrial chaperone HSPA9. To identify DNLZ residues that are critical for chaperone regulation, we carried out an alanine mutagenesis scan of charged residues in a W115I mutant of human DNLZ and assessed the effect of each mutation on interactions with HSPA9. All mutants analyzed promote the solubility of HSPA9 upon expression in Escherichia coli. However, binding studies examining the effect of DNLZ mutants on chaperone tryptophan fluorescence identified three mutations (R81A, H107A, and D111A) that decrease DNLZ binding affinity for nucleotide-free chaperone. In addition, ATPase measurements revealed that DNLZ–R81A and DNLZ–D111A both stimulate the catalytic activity HSPA9, whereas DNLZ–H107A does not elicit an increase in activity even when present at a concentration that is 10-fold higher than the level required for half-maximal stimulation by DNLZ. These findings implicate a conserved histidine as critical for DNLZ regulation of mitochondrial HSPA9 catalytic activity.  相似文献   

2.
Although hsp70 antagonizes apoptosis-inducing factor (AIF)-mediated cell death, the relative importance of preventing its release from mitochondria versus sequestering leaked AIF in the cytosol remains controversial. To dissect these two protective mechanisms, hsp70 deletion mutants lacking either the chaperone function (hsp70-deltaEEVD) or ATPase function (hsp70-deltaATPase) were selectively overexpressed before exposing cells to a metabolic inhibitor, an insult sufficient to cause mitochondrial AIF release, nuclear AIF accumulation, and apoptosis. Compared with empty vector, overexpression of wild type human hsp70 inhibited bax activation and reduced mitochondrial AIF release after injury. In contrast, mutants lacking either the chaperone function (hsp70-deltaEEVD) or the ATP hydrolytic domain (hsp70-deltaATPase) failed to prevent mitochondrial AIF release. Although hsp70-deltaEEVD did not inhibit bax activation or mitochondrial membrane injury after cell stress, this hsp70 mutant co-immunoprecipitated with leaked AIF in injured cells and decreased nuclear AIF accumulation. In contrast, hsp70-deltaATPase did not interact with AIF either in intact cells or in a cell-free system and furthermore, failed to prevent nuclear AIF accumulation. These results demonstrate that mitochondrial protection against bax-mediated injury requires both intact chaperone and ATPase functions, whereas the ATPase domain is critical for sequestering AIF in the cytosol.  相似文献   

3.
Cellular stress can trigger a process of self-destruction known as apoptosis. Cells can also respond to stress by adaptive changes that increase their ability to tolerate normally lethal conditions. Expression of the major heat-inducible protein hsp70 protects cells from heat-induced apoptosis. hsp70 has been reported to act in some situations upstream or downstream of caspase activation, and its protective effects have been said to be either dependent on or independent of its ability to inhibit JNK activation. Purified hsp70 has been shown to block procaspase processing in vitro but is unable to inhibit the activity of active caspase 3. Since some aspects of hsp70 function can occur in the absence of its chaperone activity, we examined whether hsp70 lacking its ATPase domain or the C-terminal EEVD sequence that is essential for peptide binding was required for the prevention of apoptosis. We generated stable cell lines with tetracycline-regulated expression of hsp70, hsc70, and chaperone-defective hsp70 mutants lacking the ATPase domain or the C-terminal EEVD sequence or containing AAAA in place of EEVD. Overexpression of hsp70 or hsc70 protected cells from heat shock-induced cell death by preventing the processing of procaspases 9 and 3. This required the chaperone function of hsp70 since hsp70 mutant proteins did not prevent procaspase processing or provide protection from apoptosis. JNK activation was inhibited by both hsp70 and hsc70 and by each of the hsp70 domain mutant proteins. The chaperoning activity of hsp70 is therefore not required for inhibition of JNK activation, and JNK inhibition was not sufficient for the prevention of apoptosis. Release of cytochrome c from mitochondria was inhibited in cells expressing full-length hsp70 but not in cells expressing the protein with ATPase deleted. Together with the recently identified ability of hsp70 to inhibit cytochrome c-mediated procaspase 9 processing in vitro, these data demonstrate that hsp70 can affect the apoptotic pathway at the levels of both cytochrome c release and initiator caspase activation and that the chaperone function of hsp70 is required for these effects.  相似文献   

4.
Hsp70 escort proteins (Hep) have been implicated as essential for maintaining the function of yeast mitochondrial hsp70 molecular chaperones (mtHsp70), but the role that escort proteins play in regulating mammalian chaperone folding and function has not been established. We present evidence that human mtHsp70 exhibits limited solubility due to aggregation mediated by its ATPase domain and show that human Hep directly enhances chaperone solubility through interactions with this domain. In the absence of Hep, mtHsp70 was insoluble when expressed in Escherichia coli, as was its isolated ATPase domain and a chimera having this domain fused to the peptide-binding domain of HscA, a soluble monomeric chaperone. In contrast, these proteins all exhibited increased solubility when expressed in the presence of Hep. In vitro studies further revealed that purified Hep regulates the interaction of mtHsp70 with nucleotides. Full-length mtHsp70 exhibited slow intrinsic ATP hydrolysis activity (6.8+/-0.2 x 10(-4) s(-1)) at 25 degrees C, which was stimulated up to 49-fold by Hep. Hep also stimulated the activity of the isolated ATPase domain, albeit to a lower maximal extent (11.5-fold). In addition, gel-filtration studies showed that formation of chaperone-escort protein complexes inhibited mtHsp70 self-association, and they revealed that Hep binding to full-length mtHsp70 and its isolated ATPase domain is strongest in the absence of nucleotides. These findings provide evidence that metazoan escort proteins regulate the catalytic activity and solubility of their cognate chaperones, and they indicate that both forms of regulation arise from interactions with the mtHsp70 ATPase domain.  相似文献   

5.
6.
The molecular co-chaperone BAG1 and other members of the BAG family bind to Hsp70/Hsc70 heat shock proteins through a conserved BAG domain that interacts with the ATPase domain of the chaperone. BAG1 and other accessory proteins stimulate ATP hydrolysis and regulate the ATP-driven activity of the chaperone complexes. Contacts are made through residues in helices alpha2 and alpha3 of the BAG domain and predominantly residues in the C-terminal lobe of the bi-lobed Hsc70 ATPase domain. Within the C-terminal lobe, a subdomain exists that contains all the contacts shown by mutagenesis to be required for BAG1 recognition. In this study, the subdomain, representing Hsc70 residues 229-309, was cloned and expressed as a separately folded unit. The results of in vitro binding assays demonstrate that this subdomain is sufficient for binding to BAG1. Binding analyses with surface plasmon resonance indicated that the subdomain binds to BAG1 with a 10-fold decrease in equilibrium dissociation constant (K(D) = 22 nM) relative to the intact ATPase domain. This result suggests that the stabilizing contacts for docking of BAG1 to Hsc70 are located in the C-terminal lobe of the ATPase domain. These findings provide new insights into the role of co-chaperones as nucleotide exchange factors.  相似文献   

7.
8.
IscU, a NifU-like Fe/S-escort protein, binds to and stimulates the ATPase activity of Hsc66, a hsp70-type molecular chaperone. We present evidence that stimulation arises from interactions of IscU with the substrate-binding site of Hsc66. IscU inhibited the ability of Hsc66 to suppress the aggregation of the denatured model substrate proteins rhodanese and citrate synthase, and calorimetric and surface plasmon resonance measurements showed that ATP destabilizes Hsc66.IscU complexes in a manner expected for hsp70-substrate complexes. Studies on the interaction of IscU with Hsc66 truncation mutants further showed that IscU does not bind the isolated ATPase domain of Hsc66 but does bind and stimulate a mutant containing the ATPase domain and substrate binding beta-sandwich subdomain. These results support a role for IscU as a substrate for Hsc66 and suggest a specialized function for Hsc66 in the assembly, stabilization, or transfer of Fe/S clusters formed on IscU.  相似文献   

9.
Translocation of precursor proteins across the mitochondrial membranes requires the coordinated action of multisubunit translocases in the outer and inner membrane, and the driving force for translocation across the inner membrane is provided by the matrix-located heat shock protein 70 (mtHsp70). The central components of the protein import machinery are essential. Here we describe Zim17, an essential protein with a zinc finger motif involved in protein import into mitochondria. Comparative genomics suggested a correction to the open reading frame of YNL310c, the gene encoding Zim17 in Saccharomyces cerevisiae. The revised open reading frame codes for a classic mitochondrial targeting signal, which is processed from Zim17 in the mitochondrial matrix. Loss of Zim17 selectively diminishes import of proteins into the matrix of mitochondria, but this loss of Zim17 is partially suppressed by overexpression of the J-protein Pam18/Tim14. We propose that Zim17 functions as an example of a "fractured" J-protein, where a protein like Zim17 contributes a zinc finger domain to Type III J-proteins, in toto providing for substrate loading onto Hsp70.  相似文献   

10.
The 70-kDa heat shock proteins (Hsp70), including the cognates (Hsc70), are molecular chaperones that prevent misfolding and aggregation of polypeptides in cells under both normal and stressed conditions. They are composed of two major structural domains: an N-terminal 44-kDa ATPase domain and a C-terminal 30-kDa substrate binding domain. The 30-kDa domain can be divided into an 18-kDa subdomain and a 10-kDa subdomain. Here we report the crystal structure of the 10-kDa subdomain of rat Hsc70 at 3.45 A. Its helical region adopted a helix-loop-helix fold. This conformation is different from the equivalent subdomain of DnaK, the bacterial homologue of Hsc70. Moreover, in the crystalline state, the 10-kDa subdomain formed dimers. The results of gel filtration chromatography further supported the view that this subdomain was self-associated. Upon gel filtration, Hsc70 was found to exist as a mixture of monomers, dimers, and oligomers, but the 60-kDa fragment was predominantly found to exist as monomers. These findings suggest that the alpha-helical region of the 10-kDa subdomain dictates the chaperone self-association.  相似文献   

11.
The yeast protein Zim17 belongs to a unique class of co-chaperones that maintain the solubility of Hsp70 proteins in mitochondria and plastids of eukaryotic cells. However, little is known about the functional cooperation between Zim17 and mitochondrial Hsp70 proteins in vivo. To analyze the effects of a loss of Zim17 function in the authentic environment, we introduced novel conditional mutations within the ZIM17 gene of the model organism Saccharomyces cerevisiae that allowed a recovery of temperature-sensitive but respiratory competent zim17 mutant cells. On fermentable growth medium, the mutant cells were prone to acquire respiratory deficits and showed a strong aggregation of the mitochondrial Hsp70 Ssq1 together with a concomitant defect in Fe/S protein biogenesis. In contrast, under respiring conditions, the mitochondrial Hsp70s Ssc1 and Ssq1 exhibited only a partial aggregation. We show that the induction of the zim17 mutant phenotype leads to strong import defects for Ssc1-dependent matrix-targeted precursor proteins that correlate with a significantly reduced binding of newly imported substrate proteins to Ssc1. We conclude that Zim17 is not only required for the maintenance of mtHsp70 solubility but also directly assists the functional interaction of mtHsp70 with substrate proteins in a J-type co-chaperone-dependent manner.  相似文献   

12.
The mitochondrial import and assembly of the F1ATPase subunits requires, respectively, the participation of the molecular chaperones hsp70SSA1 and hsp70SSC1 and other components operating on opposite sides of the mitochondrial membrane. In previous studies, both the homology and the assembly properties of the F1ATPase alpha-subunit (ATP1p) compared to the groEL homologue, hsp60, have led to the proposal that this subunit could exhibit chaperone-like activity. In this report the extent to which this subunit participates in protein transport has been determined by comparing import into mitochondria that lack the F1ATPase alpha-subunit (delta ATP1) versus mitochondria that lack the other major catalytic subunit, the F1ATPase beta-subunit (delta ATP2). Yeast mutants lacking the alpha-subunit but not the beta-subunit grow much more slowly than expected on fermentable carbon sources and exhibit delayed kinetics of protein import for several mitochondrial precursors such as the F1 beta subunit, hsp60MIF4 and subunits 4 and 5 of the cytochrome oxidase. In vitro and in vivo the F1 beta-subunit precursor accumulates as a translocation intermediate in absence of the F1 alpha-subunit. In the absence of both the ATPase subunits yeast grows at the same rate as a strain lacking only the beta-subunit, and import of mitochondrial precursors is restored to that of wild type. These data indicate that the F1 alpha-subunit likely functions as an "assembly partner" to influence protein import rather than functioning directly as a chaperone. These data are discussed in light of the relationship between the import and assembly of proteins in mitochondria.  相似文献   

13.
The biogenesis of mitochondrial matrix proteins involves the translocase of the outer membrane, the presequence translocase of the inner membrane and the presequence translocase-associated motor. The mitochondrial heat shock protein 70 (mtHsp70) forms the central core of the motor. Recent studies led to the identification of Zim17, a mitochondrial zinc finger motif protein that interacts with mtHsp70. Different views have been reported on the localization of Zim17 in the mitochondrial inner membrane or matrix. Depletion of Zim17 impairs several critical mitochondrial processes, leading to inhibition of protein import, defects of Fe/S protein biogenesis and aggregation of Hsp70s in the matrix. Additionally, we found that inactivation of Zim17 altered the morphology of mitochondria. These pleiotropic effects raise the question of the specific function of Zim17 in mitochondria. Here, we report that Zim17 is a heat shock protein of the mitochondrial matrix that is loosely associated with the inner membrane. To address the function of Zim17 in organello, we generated a temperature-sensitive mutant allele of the ZIM17 gene in yeast. Upon a short-term shift of the yeast mutant cells to a non-permissive temperature, matrix Hsp70s aggregated while protein import, Fe/S protein activity and mitochondrial morphology were not, or only mildly, affected. Only after a long-term shift to non-permissive temperature, were strong defects in protein import, Fe/S protein activity and mitochondrial morphology observed. These findings suggest that the heat shock protein Zim17 plays a specific role in preventing protein aggregation in the mitochondrial matrix, and that aggregation of Hsp70s causes pleiotropic effects on protein biogenesis and mitochondrial morphology.  相似文献   

14.
Here, we report the identification of yeast 15-kD Tim15/Zim17, a new member of mitochondrial Hsp70 (mtHsp70)-associated motor and chaperone (MMC) proteins. The 15-kD MMC protein is a peripheral inner membrane protein with a zinc-finger motif. Depletion of the 15-kD protein led to impaired import of presequence-containing proteins into the matrix in vivo and in vitro. Overexpression of the 15-kD protein rescued the functional defects of mtHsp70 in ssc1-3 cells, and a fusion protein containing the 15-kD protein physically interacts with purified mtHsp70. Tim15/Zim17 therefore cooperates with mtHsp70 to facilitate import of presequence-containing proteins into the matrix.  相似文献   

15.
DnaK is a molecular chaperone that promotes cell survival during stress by preventing protein misfolding. The chaperone activity is regulated by nucleotide binding and hydrolysis events in the N-terminal ATPase domain, which in turn mediate substrate binding and release in the C-terminal substrate binding domain. In this study we determined that ATP hydrolysis was the rate limiting step in the ATPase cycle of Agrobacterium tumefaciens DnaK (Agt DnaK); however the data suggested that Agt DnaK had a significantly lower affinity for ATP than Escherichia coli DnaK. We show for the first time that Agt DnaK was very effective at preventing thermal aggregation of malate dehydrogenase (MDH) in a concentration dependent manner. This is in contrast to E. coli DnaK which was ineffective at preventing thermal aggregation of MDH. A mutant Agt DnaK-V431F, with a blocked hydrophobic pocket in the substrate binding domain, was unable to suppress the thermosensitivty of an E. coli dnaK103 deletion strain. However the mutation did not inhibit Agt DnaK-V431F from preventing the thermal aggregation of MDH. The oligomeric state of Agt DnaK was studied using size exclusion chromatography. We demonstrated that dilution of the Agt DnaK protein, the addition of ATP and the removal of the 10kDa C-terminal alpha-helical subdomain reduced higher order associations but did not abrogate dimerisation. Our research implies that the C-terminal alpha-helical subdomain is involved in higher order associations, while the substrate binding domain is possibly involved in dimerisation.  相似文献   

16.
Mutational analysis of the hsp70-interacting protein Hip.   总被引:4,自引:1,他引:3       下载免费PDF全文
The hsp70-interacting protein Hip participates in the assembly pathway for progesterone receptor complexes. During assembly, Hip appears at early assembly stages in a transient manner that parallels hsp70 interactions. In this study, a cDNA for human Hip was used to develop various mutant Hip forms in the initial mapping of functions to particular Hip structural elements. Hip regions targeted for deletion and/or truncation included the C-terminal region (which has some limited homology with Saccharomyces cerevisiae Sti1 and its vertebrate homolog p60), a glycine-glycine-methionine-proline (GGMP) tandem repeat, and a tetratricopeptide repeat (TPR). Binding of Hip to hsp70's ATPase domain was lost with deletions from the TPR and from an adjoining highly charged region; correspondingly, these Hip mutant forms were not recovered in receptor complexes. Truncation of Hip's Sti1-related C terminus resulted in Hip binding to hsp70 in a manner suggestive of a misfolded peptide substrate; this hsp70 binding was localized to the GGMP tandem repeat. Mutants lacking either the C terminus or the GGMP tandem repeat were still recovered in receptor complexes. Truncations from Hip's N terminus resulted in an apparent loss of Hip homo-oligomerization, but these mutants retained association with hsp70 and were recovered in receptor complexes. This mutational analysis indicates that Hip's TPR is required for binding of Hip with hsp70's ATPase domain. In addition, some data suggest that hsp70's peptide-binding domain may alternately or concomitantly bind to Hip's GGMP repeat in a manner regulated by Sti1-related sequences.  相似文献   

17.
Several unrelated proteins are known that specifically interact with members of the mammalian hsp70 chaperone protein family independent of the hsp70 substrate-binding site. One of these is Hap46, also called BAG-1, which binds to the ATP-binding domain of hsp70 and its constitutively expressed, highly homologous counterpart hsc70, thereby affecting nucleotide binding, as well as protein folding properties, of these molecular chaperones. In an attempt to delineate the potential contact sites on hsp70/hsc70 involved in this interaction we made use of the following two independent approaches: (i) screening of membrane-bound peptide libraries based on the sequence of the ATP-binding domain and (ii) the phage-display technique with random dodecapeptides. These approaches yielded partially overlapping results and identified several possible contact regions. On the space-filling model of hsc70, the two major contact areas for Hap46 delineated in the present study are located on the same side of the molecule on either subdomain that border the central cleft harboring the nucleotide-binding site. We suggest that this bridging affects the conformation of the ATP-binding domain in a way similar to the opening of the nucleotide-binding cleft produced in the bacterial hsp70 homologue DnaK upon binding its regulatory protein GrpE.  相似文献   

18.
Hsc70's expected binding site on helix II of the J domain of T antigens appears to be blocked in its structure bound to tumor suppressor pRb. We used NMR to map where mammalian Hsc70 binds the J domain of murine polyomavirus T antigens (PyJ). The ATPase domain of Hsc70 unexpectedly has its biggest effects on the NMR peak positions of the C-terminal end of helix III of PyJ. The Hsc70 ATPase domain protects the C-terminal end of helix III of PyJ from an uncharged paramagnetic probe of chelated Gd(III), clearly suggesting the interface. Effects on the conserved HPD loop and helix II of PyJ are smaller. The NMR results are supported by a novel assay of Hsc70's ATP hydrolysis showing that mutations of surface residues in PyJ helix III impair PyJ-dependent stimulation of Hsc70 activity. Evolutionary trace analysis of J domains suggests that helix III usually may join helix II in contributing specificities for cognate hsp70s. Our novel evidence implicating helix III differs from evidence that Escherichia coli DnaK primarily affects helix II and the HPD loop of DnaJ. We find the pRb-binding fragment of E2F1 to be intrinsically unfolded and a good substrate for Hsc70 in vitro. This suggests that E2F1 could be a substrate for Hsc70 recruited by T antigen to an Rb family member. Importantly, our results strengthen the chaperone hypothesis for E2F release from an Rb family member by Hsc70 recruited by large T antigen. That is, it now appears that Hsc70 can freely access helix III and the HPD motif of large T antigen bound to an Rb family member.  相似文献   

19.
The heat shock protein hsp70/hsc70 is a required component of a five-protein (hsp90, hsp70, Hop, hsp40, and p23) minimal chaperone system reconstituted from reticulocyte lysate that forms glucocorticoid receptor (GR).hsp90 heterocomplexes. BAG-1 is a cofactor that binds to the ATPase domain of hsp70/hsc70 and that modulates its chaperone activity. Inasmuch as BAG-1 has been found in association with several members of the steroid receptor family, we have examined the effect of BAG-1 on GR folding and GR.hsp90 heterocomplex assembly. BAG-1 was present in reticulocyte lysate at a BAG-1:hsp70/hsc70 molar ratio of approximately 0.03, and its elimination by immunoadsorption did not affect GR folding and GR. hsp90 heterocomplex assembly. At low BAG-1:hsp70/hsc70 ratios, BAG-1 promoted the release of Hop from the hsp90-based chaperone system without inhibiting GR.hsp90 heterocomplex assembly. However, at molar ratios approaching stoichiometry with hsp70, BAG-1 produced a concentration-dependent inhibition of GR folding to the steroid-binding form with corresponding inhibition of GR.hsp90 heterocomplex assembly by the minimal five-protein chaperone system. Also, there was decreased steroid-binding activity in cells that were transiently or stably transfected with BAG-1. These observations suggest that, at physiological concentrations, BAG-1 modulates assembly by promoting Hop release from the assembly complex; but, at concentrations closer to those in transfected cells and some transformed cell lines, hsp70 is continuously bound by BAG-1, and heterocomplex assembly is blocked.  相似文献   

20.
The cysteine string protein (csp) is a synaptic vesicle protein found to be essential for normal neurotransmitter release. The precise function of csp in the synaptic vesicle cycle is still enigmatic. By interacting with the heat-shock cognate hsc70, a cochaperone-chaperone complex with an unknown function is formed. We report here that the formation of this complex is mediated by two distinct domains in hsc70. The ATPase domain and the substrate-binding domain must cooperate to create a binding site for csp. The C-terminal domain of hsc70 seems to function as a regulator for the formation of the cochaperone-chaperone complex. We also show that the interaction of csp with heat-shock proteins is confined to hsc70 and hsp70. Other heat-shock proteins, like hsp60 and hsp90, do not interact with csp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号