首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Sphingolipids play critical roles in many physiologically important events in yeast Saccharomyces cerevisiae. In this study, we screened for yeast mutants showing high sensitivity to Aureobasidin A, an inhibitor of inositol phosphorylceramide synthase, and found that a lack of SAC1 encoding phosphoinositides phosphatase causes high sensitivity to the inhibitor. Double mutation analysis involving the SAC1 and non-essential sphingolipid-metabolizing enzyme genes revealed that csg1Δ, csg2Δ, ipt1Δ or scs7Δ causes synthetic lethality with deletion of SAC1. As previously reported, SAC1-repressed cells exhibited a reduced cellular phosphatidylserine (PS) level, and overexpression of PSS1 encoding PS synthase complemented the growth defects of scs7Δ, csg1Δ and ipt1Δ cells under SAC1-repressive conditions. Furthermore, repression of PSS1 expression resulted in synthetic growth defect with the deletion of CSG1, IPT1 or SCS7. The growth defects of scs7Δ, csg1Δ and ipt1Δ cells under SAC1- or PSS1-repressive conditions were also complemented by overexpression of Arf-GAP AGE1, which encodes a protein related to membrane trafficking. Under SAC1-repressive conditions, scs7Δ, csg1Δ and ipt1Δ cells showed defects in vacuolar morphology, which were complemented by overexpression of each of PSS1 and AGE1. These results suggested that a specific group of sphingolipid-metabolizing enzyme is required for yeast cell growth under impaired metabolism of glycerophospholipids.  相似文献   

3.
We had previously isolated the temperature-sensitive erg26-1 mutant and characterized the sterol defects in erg26-1 cells (Baudry, K., Swain, E., Rahier, A., Germann, M., Batta, A., Rondet, S., Mandala, S., Henry, K., Tint, G. S., Edlind, T., Kurtz, M., and Nickels, J. T., Jr. (2001) J. Biol. Chem. 276, 12702-12711). We have now determined the defects in sphingolipid metabolism in erg26-1 cells, examined their effects on cell growth, and initiated studies designed to elucidate how might changes in sterol levels coordinately regulate sphingolipid metabolism in Saccharomyces cerevisiae. Using [(3)H]inositol radiolabeling studies, we found that the biosynthetic rate and steady-state levels of specific hydroxylated forms of inositolphosphorylceramides were decreased in erg26-1 cells when compared with wild type cells. [(3)H]Dihydrosphingosine radiolabeling studies demonstrated that erg26-1 cells had decreased levels of the phytosphingosine-derived ceramides that are the direct precursors of the specific hydroxylated inositol phosphorylceramides found to be lower in these cells. Gene dosage experiments using the sphingolipid long chain sphingoid base (LCB) hydroxylase gene, SUR2, suggest that erg26-1 cells may accumulate LCB, thus placing one point of sterol regulation of sphingolipid synthesis possibly at the level of ceramide metabolism. The results from additional genetic studies using the sphingolipid hydroxylase and copper transporter genes, SCS7 and CCC2, respectively, suggest a second possible point of sterol regulation at the level of complex sphingolipid hydroxylation. In addition, [(3)H]inositol radiolabeling of sterol biosynthesis inhibitor-treated wild type cells and late sterol pathway mutants showed that additional blocks in sterol biosynthesis have profound effects on sphingolipid metabolism, particularly sphingolipid hydroxylation state. Finally, our genetic studies in erg26-1 cells using the LCB phosphate phosphatase gene, LBP1, suggest that increasing the levels of the LCB sphingoid base phosphate can remediate the temperature-sensitive phenotype of erg26-1 cells.  相似文献   

4.
The first elaborate metabolic model of Saccharomyces cerevisiae sphingolipid metabolism was reconstructed in silico. The model considers five different states of sphingolipid hydroxylation, rendering it unique among other models. It is aimed to clarify the significance of hydroxylation on sphingolipids and hence to interpret the preferences of the cell between different metabolic pathway branches under different stress conditions. The newly constructed model was validated by single, double and triple gene deletions with experimentally verified phenotypes. Calcium sensitivity and deletion mutations that may suppress calcium sensitivity were examined by CSG1 and CSG2 related deletions. The model enabled the analysis of complex sphingolipid content of the plasma membrane coupled with diacylglycerol and phosphatidic acid biosynthesis and ATP consumption in in silico cell. The flux data belonging to these critically important key metabolites are integrated with the fact of phytoceramide induced cell death to propose novel potential drug targets for cancer therapeutics. In conclusion, we propose that IPT1, GDA1, CSG and AUR1 gene deletions may be novel candidates of drug targets for cancer therapy according to the results of flux balance and variability analyses coupled with robustness analysis.  相似文献   

5.
We have identified mouse sphingomyelin synthase 1 as a novel suppressor of the growth inhibitory effect of heterologously expressed Bax. Yeast cells expressing sphingomyelin synthase 1 were also found to show an increased resistance to a variety of cytotoxic stimuli including hydrogen peroxide, osmotic stress and elevated temperature. Sphingomyelin synthase 1 functions by catalyzing the conversion of ceramide and phosphatidylcholine to sphingomyelin and diacylglycerol. Ceramide is an antiproliferative and proapoptotic sphingolipid whose level increases in response to a variety of stresses. Consistent with its biochemical function, yeast cells expressing sphingomyelin synthase 1 have an enhanced ability to grow in media containing the cell-permeable C2-ceramide analog as well as the ceramide precursor phytosphingosine. We also show that overexpression of AUR1, a potential yeast functional homolog of sphingomyelin synthase, also protects cells from osmotic stress. Taken together, these results suggest that sphingomyelin synthase 1 likely prevents cell death by counteracting stress-mediated accumulation of endogenous sphingolipids.  相似文献   

6.
赵莉  苟萍  林慧珍  赵红霞 《微生物学通报》2016,43(11):2414-2420
【目的】探讨灰葡萄孢菌及其抗Ab A突变体AUR1基因序列与IPC合成酶活性的关系。【方法】通过分子生物学方法测定野生型及突变体的AUR1的基因序列,高效液相荧光色谱法测定IPC合成酶活力,苯甲酰化法测定神经酰胺含量。【结果】AUR1基因序列和IPC合成酶活性测定表明4株不同的突变体均产生了对IPC合成酶抑制剂Ab A的抗性,它们的突变类型为:(1)AUR1序列中缺失内含子;(2)AUR1序列中缺失内含子和P155S氨基酸突变;(3)AUR1序列中缺失内含子和V33A的氨基酸突变;(4)AUR1序列中缺失内含子和P155S、S177P、F237L的氨基酸突变。AUR1缺失内含子和既缺失内含子又伴随P155S氨基酸突变的突变体的Ab A抗性较强。神经酰胺含量测定表明野生型IPC合成酶被抑制,导致神经酰胺积累,而突变体则能抵抗Ab A对IPC合成酶的抑制作用。【结论】AUR1基因中的内含子对IPC合成酶的调控起重要的作用。Ab A通过抑制IPC合成酶引起神经酰胺积累,IPC合成酶是鞘脂代谢的关键酶。  相似文献   

7.
All mature Saccharomyces cerevisiae sphingolipids comprise inositolphosphorylceramides containing C26:0 or C24:0 fatty acids and either phytosphingosine or dihydrosphingosine. Here we analysed the lipid profile of lag1 Δ lac1 Δ mutants lacking acyl-CoA-dependent ceramide synthesis, which require the reverse ceramidase activity of overexpressed Ydc1p for sphingolipid biosynthesis and viability. These cells, termed 2Δ.YDC1, make sphingolipids containing exclusively dihydrosphingosine and an abnormally wide spectrum of fatty acids with between 18 and 26 carbon atoms. Like wild-type cells, 2Δ.YDC1 cells stop growing when exposed to Aureobasidin A (AbA), an inhibitor of the inositolphosphorylceramide synthase AUR1 , yet their ceramide levels remain very low. This finding argues against a current hypothesis saying that yeast cells do not require inositolphosphorylceramides and die in the presence of AbA only because ceramides build up to toxic concentrations. Moreover, W303 lag1 Δ lac1 Δ ypc1 Δ ydc1 Δ cells, reported to be AbA resistant, stop growing on AbA after a certain number of cell divisions, most likely because AbA blocks the biosynthesis of anomalous inositolphosphorylsphingosides. Thus, data argue that inositolphosphorylceramides of yeast, the equivalent of mammalian sphingomyelins, are essential for growth. Data also clearly confirm that wild-type strains, when exposed to AbA, immediately stop growing because of ceramide intoxication, long before inositolphosphorylceramide levels become subcritical.  相似文献   

8.
Ceramides are bioactive lipids and precursors to sphingolipids. They have been shown to take part in a wide variety of different physiological processes in eukaryotic organisms and are thought to be toxic at high concentrations. Ceramide is synthesized by condensation of the sphingoid base sphinganine and a fatty acyl CoA by ceramide synthases, a family of enzymes that differ in their specificity for the length of the acyl CoA substrate. We have engineered a yeast strain where the endogenous ceramide synthase has been replaced by one of the putative enzymes from cotton. As a result, the yeast strain produces C18 rather than C26 ceramides showing that the cotton protein is a bona fide ceramide synthase with specificity towards C18 acyl CoA. Strikingly, the accumulation of C18 ceramide is not toxic in Saccharomyces cerevisiae. This allows survival of the yeast after deletion of the normally essential AUR1 (inositol phosphorylceramide synthase) gene permitting us to address the essential roles of sphingolipids. Deletion of AUR1 allows cell growth, but leads to a defect in cytokinesis, which takes twice as long as in wild-type strains. Nuclear division and recruitment of septins is apparently not affected, but cytokinesis is delayed and cell separation is incomplete.  相似文献   

9.
The mammalian ORMDL proteins are orthologues of the yeast Orm proteins (Orm1/2), which are regulators of ceramide biosynthesis. In mammalian cells, ceramide is a proapoptotic signaling sphingolipid, but it is also an obligate precursor to essential higher order sphingolipids. Therefore levels of ceramide are expected to be tightly controlled. We tested the three ORMDL isoforms for their role in homeostatically regulating ceramide biosynthesis in mammalian cells. Treatment of cells with a short chain (C6) ceramide or sphingosine resulted in a dramatic inhibition of ceramide biosynthesis. This inhibition was almost completely eliminated by ORMDL knockdown. This establishes that the ORMDL proteins mediate the feedback regulation of ceramide biosynthesis in mammalian cells. The ORMDL proteins are functionally redundant. Knockdown of all three isoforms simultaneously was required to alleviate the sphingolipid-mediated inhibition of ceramide biosynthesis. The lipid sensed by the ORMDL-mediated feedback mechanism is medium or long chain ceramide or a higher order sphingolipid. Treatment of permeabilized cells with C6-ceramide resulted in ORMDL-mediated inhibition of the rate-limiting enzyme in sphingolipid biosynthesis, serine palmitoyltransferase. This indicates that C6-ceramide inhibition requires only membrane-bound elements and does not involve diffusible proteins or small molecules. We also tested the atypical sphingomyelin synthase isoform, SMSr, for its role in the regulation of ceramide biosynthesis. This unusual enzyme has been reported to regulate ceramide levels in the endoplasmic reticulum. We were unable to detect a role for SMSr in regulating ceramide biosynthesis. We suggest that the role of SMSr may be in the regulation of downstream metabolism of ceramide.  相似文献   

10.
11.
12.
Sphingolipid levels are tightly regulated to maintain cellular homeostasis. During pathologic conditions such as in aging, inflammation, and metabolic and neurodegenerative diseases, levels of some sphingolipids, including the bioactive metabolite ceramide, are elevated. Sphingolipid metabolism has been linked to autophagy, a critical catabolic process in both normal cell function and disease; however, the in vivo relevance of the interaction is not well-understood. Here, we show that blocking autophagy in the liver by deletion of the Atg7 gene, which is essential for autophagosome formation, causes an increase in sphingolipid metabolites including ceramide. We also show that overexpression of serine palmitoyltransferase to elevate de novo sphingolipid biosynthesis induces autophagy in the liver. The results reveal autophagy as a process that limits excessive ceramide levels and that is induced by excessive elevation of de novo sphingolipid synthesis in the liver. Dysfunctional autophagy may be an underlying mechanism causing elevations in ceramide that may contribute to pathogenesis in diseases.  相似文献   

13.
14.
15.
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that acts as both an extracellular ligand for the endothelial differentiation gene-1 (EDG-1) G-protein coupled receptor (GPCR) family and as an intracellular messenger. Cellular levels of S1P are low and tightly regulated in a spatial-temporal manner not only by sphingosine kinase (SPHK) but also by degradation catalyzed by S1P lyase, specific S1P phosphohydrolases, and by general lipid phosphate phosphohydrolases (LPPs). LPPs are characterized as magnesium-independent, insensitive to inhibition by N-ethylmaleimide (NEM) and possessing broad substrate specificity with a variety of phosphorylated lipids, including S1P, phosphatidic acid (PA), and lysophosphatidic acid (LPA). LPPs contain three highly conserved domains that define a phosphohydrolase superfamily. Recently, several specific S1P phosphohydrolases have been identified in yeast and mammalian cells. Phylogenetic and biochemical analyses indicate that these enzymes constitute a new subset of the LPP family. As further evidence, S1P phosphohydrolases exhibit high specificity for phosphorylated sphingoid bases. Enforced expression of S1P phosphohydrolase alters the cellular levels of sphingolipid metabolites in yeast and mammalian cells, increasing sphingosine and ceramide, bioactive sphingolipids that often have opposing biological actions to S1P. By regulating the cellular ratio between ceramide/sphingosine and S1P, S1P phosphohydrolase is poised to be a critical factor in cell survival/cell death decisions. Indeed, expression of S1P phosphohydrolase in mammalian cells increases apoptosis, whereas deletion of S1P phosphohydrolases in yeast correlates with resistance to heat stress. In this review, we discuss the role of phosphohydrolases in the metabolism of S1P and how turnover of S1P can regulate sphingolipid metabolites signaling.  相似文献   

16.
In yeast, the inositolphosphorylceramides mostly contain C26:0 fatty acids. Inositolphosphorylceramides were considered to be important for viability because the inositolphosphorylceramide synthase AUR1 is essential. However, lcb1Δ cells, unable to make sphingoid bases and inositolphosphorylceramides, are viable if they harbor SLC1-1, a gain of function mutation in the 1-acyl-glycerol-3-phosphate acyltransferase SLC1. SLC1-1 allows the incorporation of C26:0 fatty acids into phosphatidylinositol (PI), thus generating PI″, an abnormal, C26-containing PI, presumably acting as surrogate for inositolphosphorylceramide. Here we show that the lethality of the simultaneous deletion of the known ceramide synthases LAG1/LAC1/LIP1 and YPC1/YDC1 can be rescued by the expression of SLC1-1 or the overexpression of AUR1. Moreover, lag1Δ lac1Δ ypc1Δ ydc1Δ (4Δ) quadruple mutants have been reported to be viable in certain genetic backgrounds but to still make some abnormal uncharacterized inositol-containing sphingolipids. Indeed, we find that 4Δ quadruple mutants make substantial amounts of unphysiological inositolphosphorylphytosphingosines but that they also still make small amounts of normal inositolphosphorylceramides. Moreover, 4Δ strains incorporate exogenously added sphingoid bases into inositolphosphorylceramides, indicating that these cells still possess an unknown pathway allowing the synthesis of ceramides. 4Δ cells also still add quite normal amounts of ceramides to glycosylphosphatidylinositol anchors. Synthesis of inositolphosphorylceramides and inositolphosphorylphytosphingosines is operated by Aur1p and is essential for growth of all 4Δ cells unless they contain SLC1-1. PI″, however, is made without the help of Aur1p. Furthermore, mannosylation of PI″ is required for the survival of sphingolipid-deficient strains, which depend on SLC1-1. In contrast to lcb1Δ SLC1-1, 4Δ SLC1-1 cells grow at 37 °C but remain thermosensitive at 44 °C.  相似文献   

17.
Sphingolipids, major lipid components of the eukaryotic plasma membrane, have a variety of physiological functions and have been associated with many diseases. They have also been implicated in apoptosis. Sphingolipids are heterogeneous in their acyl chain length, with long-chain (C16) and very long-chain (C24) sphingolipids being predominant in most mammalian tissues. We demonstrate that knockdown of ELOVL1 or CERS2, which catalyze synthesis of C24 acyl-CoAs and C24 ceramide, respectively, drastically reduced C24 sphingolipid levels with a complementary increase in C16 sphingolipids. Under ELOVL1 or CERS2 knockdown conditions, cisplatin-induced apoptosis significantly increased. Enhanced sensitivity to cisplatin-induced apoptosis exhibited close correlation with increases in caspase-3/7 activity. No significant alterations in sphingolipid metabolism such as ceramide generation were apparent with the cisplatin-induced apoptosis, and inhibitors of ceramide generation had no effect on the apoptosis. Apoptosis induced by UV radiation or C6 ceramides also increased in ELOVL1 or CERS2 knockdown cells. Changes in the composition of sphingolipid chain length may affect susceptibility to stimuli-induced apoptosis by affecting the properties of cell membranes, such as lipid microdomain/raft formation.  相似文献   

18.
Sphingolipid signaling plays an important role in the regulation of central cellular processes, including cell growth, survival, and differentiation. Many of the essential pathways responsible for sphingolipid biogenesis, and key cellular responses to changes in sphingolipid balance, are conserved between mammalian and yeast cells. Here we demonstrate a novel function for the survival factor Svf1p in the yeast sphingolipid pathway and provide evidence that Svf1p regulates the generation of a specific subset of phytosphingosine. Genetic analyses suggest that Svf1p acts in concert with Lcb4p and Lcb3p to generate a localized pool of phytosphingosine distinct from phytosphingosine generated by Sur2p. This subset is implicated in cellular responses to stress, as loss of SVF1 is associated with defects in the diauxic shift and the oxidative stress response. A genetic interaction between SVF1 and SUR2 demonstrates that both factors are required for optimal growth and survival, and phenotypic similarities between svf1delta sur2delta and ypk1delta suggest that pathways controlled by Svf1p and Sur2p converge on a signaling cascade regulated by Ypk1p. Loss of YPK1 together with disruption of either SVF1 or SUR2 is lethal. Together, these data suggest that compartmentalized generation of distinct intracellular subsets of sphingoid bases may be critical for activation of signaling pathways that control cell growth and survival.  相似文献   

19.
We have discovered a novel cortical patch structure in Saccharomyces cerevisiae defined by a family of integral plasma membrane proteins, including Sur7p, Ynl194p, and Ydl222p. Sur7p-family patches localized as cortical patches that were immobile and stable. These patches were polarized to regions of the cell with a mature cell wall; they were absent from small buds and the tips of many medium-sized buds. These patches were distinct from other known cortical structures. Digestion of the cell wall caused Sur7p patches to disassemble, indicating that Sur7p requires cell wall-dependent extracellular interactions for its localization as patches. sur7Delta, ydl222Delta, and ynl194Delta mutants had reduced sporulation efficiencies. SUR7 was originally described as a multicopy suppressor of rvs167, whose product is an actin patch component. This suppression is probably mediated by sphingolipids, since deletion of SUR7, YDL222, and YNL194 altered the sphingolipid content of the yeast plasma membrane, and other SUR genes suppress rvs167 via effects on sphingolipid synthesis. In particular, the sphingoid base length and number of hydroxyl groups in inositol phosphorylceramides were altered in sur7Delta, ydl222Delta, and yne194Delta strains.  相似文献   

20.
Regulation of ceramide biosynthesis by TOR complex 2   总被引:4,自引:0,他引:4  
Ceramides and sphingoid long-chain bases (LCBs) are precursors to more complex sphingolipids and play distinct signaling roles crucial for cell growth and survival. Conserved reactions within the sphingolipid biosynthetic pathway are responsible for the formation of these intermediates. Components of target of rapamycin complex 2 (TORC2) have been implicated in the biosynthesis of sphingolipids in S. cerevisiae; however, the precise step regulated by this complex remains unknown. Here we demonstrate that yeast cells deficient in TORC2 activity are impaired for de novo ceramide biosynthesis both in vivo and in vitro. We find that TORC2 regulates this step in part by activating the AGC kinase Ypk2 and that this step is antagonized by the Ca2+/calmodulin-dependent phosphatase calcineurin. Because Ypk2 is activated independently by LCBs, the direct precursors to ceramides, our data suggest a model wherein TORC2 signaling is coupled with LCB levels to control Ypk2 activity and, ultimately, regulate ceramide formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号