首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Zhou Y  Chen H  Chu P  Li Y  Tan B  Ding Y  Tsang EW  Jiang L  Wu K  Huang S 《Plant cell reports》2012,31(2):379-389
In plants, small heat shock proteins (sHSPs) are unusually abundant and diverse proteins involved in various abiotic stresses, but their functions in seed vigor remain to be fully explored. In this study, we report the isolation and functional characterization of a sHSP gene, NnHSP17.5, from sacred lotus (Nelumbo nucifera Gaertn.) in seed germination vigor and seedling thermotolerance. Sequence alignment and phylogenetic analysis indicate that NnHSP17.5 is a cytosolic class II sHSP, which was further supported by the cytosolic localization of the NnHSP17.5-YFP fusion protein. NnHSP17.5 was specifically expressed in seeds under normal conditions, and was strongly up-regulated in germinating seeds upon heat and oxidative stresses. Transgenic Arabidopsis seeds ectopically expressing NnHSP17.5 displayed enhanced seed germination vigor and exhibited increased superoxide dismutase activity after accelerated aging treatment. In addition, improved basal thermotolerance was also observed in the transgenic seedlings. Taken together, this work highlights the importance of a plant cytosolic class II sHSP both in seed germination vigor and seedling thermotolerance.  相似文献   

3.
4.
5.
The influence of salicylic acid (SA) on elicitation of defense mechanisms in Arabidopsis (Arabidopsis thaliana) seeds and seedlings was assessed by physiological measurements combined with global expression profiling (proteomics). Parallel experiments were carried out using the NahG transgenic plants expressing the bacterial gene encoding SA hydroxylase, which cannot accumulate the active form of this plant defense elicitor. SA markedly improved germination under salt stress. Proteomic analyses disclosed a specific accumulation of protein spots regulated by SA as inferred by silver-nitrate staining of two-dimensional gels, detection of carbonylated (oxidized) proteins, and neosynthesized proteins with [35S]-methionine. The combined results revealed several processes potentially affected by SA. This molecule enhanced the reinduction of the late maturation program during early stages of germination, thereby allowing the germinating seeds to reinforce their capacity to mount adaptive responses in environmental water stress. Other processes affected by SA concerned the quality of protein translation, the priming of seed metabolism, the synthesis of antioxidant enzymes, and the mobilization of seed storage proteins. All the observed effects are likely to improve seed vigor. Another aspect revealed by this study concerned the oxidative stress entailed by SA in germinating seeds, as inferred from a characterization of the carbonylated (oxidized) proteome. Finally, the proteomic data revealed a close interplay between abscisic signaling and SA elicitation of seed vigor.  相似文献   

6.
7.
构建了植物过量表达载体p35S::GaSus3,通过花序浸染法成功获得转GaSus3基因拟南芥植株。利用NaCl模拟盐胁迫处理,证实转基因拟南芥与野生型相比耐盐性明显增强。在盐胁迫下,转基因拟南芥受到的影响较小,而野生型则受盐害影响严重:转基因拟南芥具有更好的萌发率和主根长度,以保证植株正常生长;盐胁迫下转基因拟南芥能保持较多的绿色叶片,而野生型则过早黄化死亡。研究还发现,转基因拟南芥的过氧化氢酶活性在胁迫前后都高于野生型,这说明转GaSus3基因能够提高拟南芥抗氧化胁迫的能力。研究结果为进一步探讨GaSus3基因在棉花耐盐方面的功能奠定了基础。  相似文献   

8.
盐胁迫是植物种子萌发与植株生长的重要限制因子。以羽衣甘蓝(Brassica oleracea var.acephala)名古屋为材料,研究不同盐分对其种子萌发的影响,探索水杨酸(SA)及其合成抑制剂氨基茚磷酸(AIP)处理对羽衣甘蓝种子萌发的调控效应。实验结果表明,150与200 mmol·L^–1 NaCl处理后的羽衣甘蓝种子活力显著降低。盐胁迫显著降低种子的吸水速率、种子活力与幼苗质量,降低苯丙氨酸裂解酶活性与内源SA含量,提高过氧化氢(H2O2)与超氧阴离子(O2^–.)含量。SA可以缓解盐胁迫对羽衣甘蓝种子活力的抑制作用,通过促进内源SA合成,从而提高种子吸水率与种子活力,促进种子对K^+、Mg^2+的吸收,降低Na+含量。此外,外源施加SA能够显著增强超氧化物歧化酶和过氧化物酶活性,降低H2O2与O2^–.的积累。相反,氨基茚磷酸(AIP)处理能够增强盐胁迫对种子萌发的抑制作用,推测这与AIP处理能够显著降低种子内源SA含量密切相关。研究表明外源SA主要通过提高保护酶活性、降低活性氧积累和维持体内离子平衡来增强羽衣甘蓝的耐盐性。  相似文献   

9.
Drought stress is a serious threat to the germination of plant seeds and the growth of seedlings. Melatonin has been proven to play an important role in alleviating plant stress. However, its effect on seed germination under drought conditions is still poorly understood. Therefore, we studied the effects of melatonin on rice seed germination and physiological characteristics under drought stress. Rice seeds were treated with different concentrations of melatonin (i.e., 0, 20, 100, and 500 μM) and drought stress was simulated with 5% polyethylene glycol 6000 (PEG6000). The results showed that 100 μM melatonin can effectively improve the germination potential, rate and index; the vigor index of rice seeds; and the length of the shoot and root. In addition, that treatment also increased the activity of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and reduced the content of malondialdehyde (MDA). The grey relational grade between the shoot MDA content and the melatonin seed-soaking treatment was the highest, which could be useful for evaluating the effect of melatonin on drought tolerance. Two-way analysis of variance showed that the effect of single melatonin treatment on rice seeds was more significant than that of single drought stress and interaction treatment of drought and melatonin (p < 0.05). The subordinate function results showed that 100 μM melatonin significantly improved the germination and physiological indexes of rice seeds and effectively alleviated the adverse effects of drought stress on rice seedlings. The results helped to improve the understanding of the morphological and physiological involvement of melatonin in promoting seed germination and seedling development under drought stress.  相似文献   

10.
11.
利用免疫印迹(WB)分析了水稻(Oryza sativa) OsPR10A在其不同生长时期、不同组织部位及多种非生物逆境胁迫下的表达特征, 发现OsPR10A在干旱、盐胁迫以及茉莉酸甲酯(MeJA)和脱落酸(ABA)诱导下表达量明显升高, 表明该蛋白可能在干旱和盐胁迫应答过程中发挥作用。为证明这一推测, 我们构建了OsPR10A超表达载体, 经农杆菌介导转化水稻, 获得超表达OsPR10A的纯合株系。田间表型观察表明, 转基因株系株高变矮、穗长变短、结实率降低。用20% PEG6000在水稻种子萌发过程中进行干旱处理, 结果显示, OsPR10A超表达株系的根长和芽长均显著高于野生型, 证明超表达OsPR10A可增强水稻萌发期耐旱性。该研究有助于增进人们对水稻OsPR10A功能的了解。  相似文献   

12.
利用免疫印迹(WB)分析了水稻(Oryza sativa) OsPR10A在其不同生长时期、不同组织部位及多种非生物逆境胁迫下的表达特征, 发现OsPR10A在干旱、盐胁迫以及茉莉酸甲酯(MeJA)和脱落酸(ABA)诱导下表达量明显升高, 表明该蛋白可能在干旱和盐胁迫应答过程中发挥作用。为证明这一推测, 我们构建了OsPR10A超表达载体, 经农杆菌介导转化水稻, 获得超表达OsPR10A的纯合株系。田间表型观察表明, 转基因株系株高变矮、穗长变短、结实率降低。用20% PEG6000在水稻种子萌发过程中进行干旱处理, 结果显示, OsPR10A超表达株系的根长和芽长均显著高于野生型, 证明超表达OsPR10A可增强水稻萌发期耐旱性。该研究有助于增进人们对水稻OsPR10A功能的了解。  相似文献   

13.
Seed germination recovery aptitude is an adaptive trait of overriding significance for the successful establishment and dispersal of extremophile plants in their native ecosystems. Cakile maritima is an annual halophyte frequent on Mediterranean coasts, which produces transiently dormant seeds under high salinity, that germinate fast when soil salinity is lowered by rainfall. Here, we report ecophysiological and proteomic data about (1) the effect of high salt (200 mM NaCl) on the early developmental stages (germination and seedling) and (2) the seed germination recovery capacity of this species. Upon salt exposure, seed germination was severely inhibited and delayed and seedling length was restricted. Interestingly, non‐germinated seeds remained viable, showing high germination percentage and faster germination than the control seeds after their transfer onto distilled water. The plant phenotypic plasticity during germination was better highlighted by the proteomic data. Salt exposure triggered (1) a marked slower degradation of seed storage reserves and (2) a significant lower abundance of proteins involved in several biological processes (primary metabolism, energy, stress‐response, folding and stability). Yet, these proteins showed strong increased abundance early after stress release, thereby sustaining the faster seed storage proteins mobilization under recovery conditions compared to the control. Overall, as part of the plant survival strategy, C. maritima seems to avoid germination and establishment under high salinity. However, this harsh condition may have a priming‐like effect, boosting seed germination and vigor under post‐stress conditions, sustained by active metabolic machinery.  相似文献   

14.
15.
In Arabidopsis thaliana, the etr1-2 mutation confers dominant ethylene insensitivity and results in a greater proportion of mature seeds that exhibit dormancy compared with mature seeds of the wild-type. We investigated the impact of the etr1-2 mutation on other plant hormones by analyzing the profiles of four classes of plant hormones and their metabolites by HPLC-ESI/MS/MS in mature seeds of wild-type and etr1-2 plants. Hormone metabolites were analyzed in seeds imbibed immediately under germination conditions, in seeds subjected to a 7-day moist-chilling (stratification) period, and during germination/early post-germinative growth. Higher than wild-type levels of abscisic acid (ABA) appeared to contribute, at least in part, to the greater incidence of dormancy in mature seeds of etr1-2. The lower levels of abscisic acid glucose ester (ABA-GE) in etr1-2 seeds compared with wild-type seeds under germination conditions (with and without moist-chilling treatments) suggest that reduced metabolism of ABA to ABA-GE likely contributed to the accumulation of ABA during germination in the mutant. The mutant seeds exhibited generally higher auxin levels and a large build-up of indole-3-aspartate when placed in germination conditions following moist-chilling. The mutant manifested increased levels of cytokinin glucosides through zeatin-O-glucosylation (Z-O-Glu). The resulting increase in Z-O-Glu was the largest and most consistent change associated with the ETR1 gene mutation. There were more gibberellins (GA) and at higher concentrations in the mutant than in wild-type. Our results suggest that ethylene signaling modulates the metabolism of all the other plant hormone pathways in seeds. Additionally, the hormone profiles of etr1-2 seed during germination suggest a requirement for higher than wild-type levels of GA to promote germination in the absence of a functional ethylene signaling pathway.  相似文献   

16.
The formation of abnormal amino acid residues is a major source of spontaneous age-related protein damage in cells. The protein l-isoaspartyl methyltransferase (PIMT) combats protein misfolding resulting from l-isoaspartyl formation by catalyzing the conversion of abnormal l-isoaspartyl residues to their normal l-aspartyl forms. In this way, the PIMT repair enzyme system contributes to longevity and survival in bacterial and animal kingdoms. Despite the discovery of PIMT activity in plants two decades ago, the role of this enzyme during plant stress adaptation and in seed longevity remains undefined. In this work, we have isolated Arabidopsis thaliana lines exhibiting altered expression of PIMT1, one of the two genes encoding the PIMT enzyme in Arabidopsis. PIMT1 overaccumulation reduced the accumulation of l-isoaspartyl residues in seed proteins and increased both seed longevity and germination vigor. Conversely, reduced PIMT1 accumulation was associated with an increase in the accumulation of l-isoaspartyl residues in the proteome of freshly harvested dry mature seeds, thus leading to heightened sensitivity to aging treatments and loss of seed vigor under stressful germination conditions. These data implicate PIMT1 as a major endogenous factor that limits abnormal l-isoaspartyl accumulation in seed proteins, thereby improving seed traits such as longevity and vigor. The PIMT repair pathway likely works in concert with other anti-aging pathways to actively eliminate deleterious protein products, thus enabling successful seedling establishment and strengthening plant proliferation in natural environments.  相似文献   

17.
Despite extensive studies in eukaryotic aldehyde dehydrogenases, functional information about the ALDH7 antiquitin-like proteins is lacking. A soybean antiquitin homologue gene, designated GmTP55, has been isolated which encodes a dehydrogenase motif-containing 55 kDa protein induced by dehydration and salt stress. GmTP55 is closely related to the stress-induced plant antiquitin-like proteins that belong to the ALDH7 family. Transgenic tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana) plants constitutively expressing GmTP55 have been obtained in order to examine the physiological role of this enzyme under a variety of stress conditions. Ectopic expression of GmTP55 in both Arabidopsis and tobacco conferred tolerance to salinity during germination and to water deficit during plant growth. Under salt stress, the germination efficiency of both transgenic tobacco and Arabidopsis seeds was significantly higher than that of their control counterparts. Likewise, under progressive drought, the transgenic tobacco lines apparently kept the shoot turgidity to a normal level, which contrasted with the leaf wilt phenotype of control plants. The transgenic plants also exhibited an enhanced tolerance to H(2)O(2)- and paraquat-induced oxidative stress. Both GmTP55-expressing Arabidopsis and tobacco seeds germinated efficiently in medium supplemented with H(2)O(2), whereas the germination of control seeds was drastically impaired. Similarly, transgenic tobacco leaf discs treated with paraquat displayed a significant reduction in the necrotic lesions as compared with control leaves. These transgenic lines also exhibited a lower concentration of lipid peroxidation-derived reactive aldehydes under oxidative stress. These results suggest that antiquitin may be involved in adaptive responses mediated by a physiologically relevant detoxification pathway in plants.  相似文献   

18.
不同发育时期小麦种子活力的变化及其对环境温度的响应   总被引:1,自引:0,他引:1  
以济麦22和山农23号为试验材料,利用标准发芽试验法对不同年份小麦种子发育过程中的种子活力变化进行研究,分析环境温度对不同发育时期小麦种子活力变化的影响,为早期小麦种子的利用及高活力种子的生产提供参考依据.结果表明: 伴随着小麦种子发育,鲜种子在花后26 d左右出现发芽能力,之后其发芽率整体呈上升趋势;干种子发芽势、发芽率和发芽指数在花后5~8 d迅速升高,之后保持相对稳定,活力指数主要受到幼苗单株干质量的影响而持续升高,一般在完熟前4~6 d达到最大值;不同发育时期小麦干种子的田间种植及其后代种子的活力测定表明,济麦22花后17 d以后的干种子田间出苗较好,并可成穗结实,其后代种子的发芽率和活力指数在不同样品间无显著差异.环境温度对不同发育时期小麦种子活力变化的影响显著,小麦花后日平均温度均值、日最高气温均值以及日最低气温均值均高,且花后日温差均值大的年份,种子发育时间短、百粒重及种子活力达到最大值的时间较早;反之,发育时间较长、百粒重及种子活力达到最大值的时间较晚,但完熟期积温高,种子活力较高.  相似文献   

19.
Frey  Anne  Audran  Corinne  Marin  Elena  Sotta  Bruno  Marion-Poll  Annie 《Plant molecular biology》1999,39(6):1267-1274
Abscisic acid (ABA) is a plant hormone synthesized during seed development that is involved in the induction of seed dormancy. Delayed germination due to seed dormancy allows long-term seed survival in soil but is generally undesirable in crop species. Freshly harvested seeds of wild-type Nicotiana plumbaginifolia plants exhibit a clear primary dormancy that results in delayed germination, the degree of primary dormancy being influenced by environmental culture conditions of the mother plant. In contrast, seeds, obtained either from ABA-deficient mutant aba2-s1 plants directly or aba2-s1 plants grafted onto wild-type plant stocks, exhibited rapid germination under all conditions irrespective of the mother plant culture conditions. The ABA biosynthesis gene ABA2 of N. plumbaginifolia, encoding zeaxanthin epoxidase, was placed under the control of the constitutive 35S promoter. Transgenic plants overexpressing ABA2 mRNA exhibited delayed germination and increased ABA levels in mature seeds. Expression of an antisense ABA2 mRNA, however, resulted in rapid seed germination and in a reduction of ABA abundance in transgenic seeds. It appears possible, therefore, that seed dormancy can be controlled in this Nicotiana model species by the manipulation of ABA levels.  相似文献   

20.
Seed germination and innate immunity both have significant effects on plant life spans because they control the plant's entry into the ecosystem and provide defenses against various external stresses, respectively. Much ecological evidence has shown that seeds with high vigor are generally more tolerant of various environmental stimuli in the field than those with low vigor. However, there is little genetic evidence linking germination and immunity in plants. Here, we show that the rice lectin receptor‐like kinase OslecRK contributes to both seed germination and plant innate immunity. We demonstrate that knocking down the OslecRK gene depresses the expression of α–amylase genes, reducing seed viability and thereby decreasing the rate of seed germination. Moreover, it also inhibits the expression of defense genes, and so reduces the resistance of rice plants to fungal and bacterial pathogens as well as herbivorous insects. Yeast two‐hybrid and co‐immunoprecipitation experiments revealed that OslecRK interacts with an actin‐depolymerizing factor (ADF) in vivo via its kinase domain. Moreover, the rice adf mutant exhibited a reduced seed germination rate due to the suppression of α–amylase gene expression. This mutant also exhibited depressed immune responses and reduced resistance to biotic stresses. Our results thus provide direct genetic evidence for a common physiological pathway connecting germination and immunity in plants. They also partially explain the common observation that high‐vigor seeds often perform well in the field. The dual effects of OslecRK may be indicative of progressive adaptive evolution in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号