首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. A method is described for the purification of a form of 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (tryptophan) that probably differs from that of the native enzyme. 2. The kinetics of the reaction catalysed by 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (tryptophan) shows that the reaction proceeds via a ping-pong bi-bi mechanism, with activation by phosphoenolpyruvate (P-Prv), the first substrate, and inhibition by erythrose 4-phosphate (Ery-P) the second substrate. At low substrate concentrations, KP-Prv is 0.1 mM and KEry-P is 0.13 mM. 3. The substrates phosphoenolpyruvate and erythrose 4-phosphate and the product inorganic phosphate can protect the purified enzyme against heat denaturation, whereas the inhibitor, tryptophan, has no effect, although it binds to the enzyme in the absence of other ligands. 4. Product inhibition by inorganic phosphate is linear non-competitive with respect to phosphoenolpyruvate (Ki, slope = 22 mM and Ki, intercept = 54 mM) and substrate-linear competitive with respect to erythrose 4-phosphate (Ki, slope = 25 mM). 5. The enzyme has an activity optimum at pH 7.3 and a tryptophan inhibition optimum at pH 6.4, Trp 0.5 is 4 microM. Inhibition by tryptophan is non-competitive with respect to phosphoenolpyrovate and substrate-parabolic competitive with respect to erythrose 4-phosphate. 6. The role of the enzyme in metabolic regulation is discussed.  相似文献   

2.
3-Deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase, the first enzyme of the shikimate pathway was isolated from Nocardia mediterranei. It has a molecular weight of approx. 135,000, and four identical subunits, each with a molecular weight of 35,000. The Km values for phosphoenolpyruvate (PEP) and D-erythrose 4-phosphate (E-4-P) were 0.4 and 0.25 mM, respectively, and kinetic study showed that LTrp inhibited DAHP synthase activity, but was not competitive with respect to PEP or E-4-P. The enzyme activity was inhibited by excess of E-4-P added in the incubation system. D-ribose 5-phosphate (R-5-P), D-glucose 6-phosphate (G-6-P) or D-sedoheptulose 7-phosphate (Su-7-P) etc. inhibited DAHP synthase in cell-free extract, but on partially purified enzyme no inhibitory effect was detected. The indirect inhibition of R-5-P and other sugar phosphates was considered to be due to the formation of E-4-P catalyzed by the related enzymes present in cell-free extract.  相似文献   

3.
3-Deoxy-D-arabino-heptulosonate 7-phosphate (DAH7P) synthase catalyses the first step of the shikimate pathway, which is responsible for the biosynthesis of aromatic amino acids in microorganisms and plants. This enzyme catalyses an aldol reaction between phosphoenolpyruvate and D-erythrose 4-phosphate to generate DAH7P. Both 2-deoxyerythrose 4-phosphate and 3-deoxyerythrose 4-phosphate were synthesised and tested as alternative substrates for the enzyme. Both compounds were found to be substrates for the DAH7P synthases from Escherichia coli, Pyrococcus furiosus and Mycobacterium tuberculosis, consistent with an acyclic mechanism for the enzyme for which neither C2 nor C3 hydroxyl groups are required for catalysis. The enzymes all showed greater tolerance for the loss of the C2 hydroxyl group than the C3 hydroxyl group.  相似文献   

4.
The phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (7-phospho-2-keto-3-deoxy-D-arabino-heptonate D-erythrose-4-phosphate lyase (pyruvate phosphorylating), EC 4.2.1.15) was purified to apparent homogeneity from extracts of Escherichia coli K12. The enzyme has a molecular weight of 140,000 as judged by gel filtration and sedimentation equilibrium analysis. The enzyme has a subunit molecular weight of 35,000 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, suggesting that the native form of the enzyme is a tetramer. This was confirmed by cross-linking the enzyme with dimethylsuberimidate and by analyzing the cross-linked material by gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme shows a narrow pH optimum between pH 6.5 and 7.0. The enzyme is stable for several months when stored at -20 degrees C in buffers containing phosphoenolpyruvate. Removal of phosphoenolpyruvate causes an irreversible inactivation of the enzyme. The enzyme is strongly inhibited by L-phenylalanine and to a lesser degree by dihydrophenylalanine. Molecular parameters of the previously isolated tyrosine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from E. coli (Schoner, R., and Herrmann, K.M. (1976) J. Biol. Chem. 251, 5440-5447) are compared with those of the phenylalanine-sensitive isoenzyme from the same organism.  相似文献   

5.
Homogeneous, recombinant 3-deoxy-D-manno-octulosonate 8-phosphate synthase from Neisseria gonorrhoeae is shown to catalyze the formation of 3-deoxy-D-manno-octulosonate 8-phosphate from phosphoenolpyruvate and D-arabinose 5-phosphate as determined from (1)H-nuclear magnetic resonance analysis of the product. This enzyme does not catalyze the condensation of D-erythrose 4-phosphate and phosphoenolpyruvate to form 3-deoxy-D-ribo-heptulosonate 7-phosphate, as was previously reported (P. S. Subramaniam, G. Xie, T. Xia, and R. A. Jensen, J. Bacteriol. 180:119-127, 1998).  相似文献   

6.
1. Co2+ is not a cofactor for 3-deoxy-D-arabinoheptulosonate-7-phosphate synthetase(phe). 2. The following analogues of phosphoenolpyruvate were tested as inhibitors of 3-deoxy-D-arabinoheptolosonate-7-phosphate synthetase(phe): pyruvate, lactate, glycerate, 2-phosphoglycerate, 2,3-bisphosphoglycerate, 3-methylphosphoenolpyruvate, 3-ethylphosphoenolpyruvate and 3,3-demethylphosphoenolpyruvate. The rusults obtained indicate that the binding of phosphoenolpyruvate to the enzyme requires a phosphoryl group on the C-2 position of the substrate and one free hydrogen atom at the C-3 position. 3. The dead-end inhibition pattern observed with the substrate analogue 2-phosphoglycerate when either phosphoenolpyruvate or erythrose 4-phosphate was the variable substrate is inconsistent with a ping-pong mechanism and indicates that the reaction mechanism for this enzyme must be sequential. The following kinetic constants were determined:Km for phosphoenolpyruvate, 0.08 +/- 0.04 mM; Km for erythrose 4-phosphate, 0.9 +/- 0.3 mM; K is for competitive inhibition by 2-phosphoglycerate with respect to phosphoenolpyruvate, 1.0 +/- 0.1 mM. 4. The enzyme was observed to have a bell-shaped pH PROFILE WITH A PH OPTIMUM OF 7.0. The effects of pH ON V and V/(Km for phosphoenolpyruvate) indicated that an ionizing group of pKa 8.0-8.1 is involved in the catalytic activity of the enzyme. The pKa of this group is unaffected by the binding of phosphoenolpyruvate.  相似文献   

7.
Howe DL  Sundaram AK  Wu J  Gatti DL  Woodard RW 《Biochemistry》2003,42(17):4843-4854
Escherichia coli 3-deoxy-D-manno-octulosonate 8-phosphate (KDO8-P) synthase is able to utilize the five-carbon phosphorylated monosaccharide, 2-deoxyribose 5-phosphate (2dR5P), as an alternate substrate, but not D-ribose 5-phosphate (R5P) nor the four carbon analogue D-erythrose 4-phosphate (E4P). However, E. coli KDO8-P synthase in the presence of either R5P or E4P catalyzes the rapid consumption of approximately 1 mol of PEP per active site, after which consumption of PEP slows to a negligible but measurable rate. The mechanism of this abortive utilization of PEP was investigated using [2,3-(13)C(2)]-PEP and [3-F]-PEP, and the reaction products were determined by (13)C, (31)P, and (19)F NMR to be pyruvate, phosphate, and 2-phosphoglyceric acid (2-PGA). The formation of pyruvate and 2-PGA suggests that the reaction catalyzed by KDO8-P synthase may be initiated via a nucleophilic attack to PEP by a water molecule. In experiments in which the homologous enzyme, 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAH7-P) synthase was incubated with D,L-glyceraldehyde 3-phosphate (G3P) and [2,3-(13)C(2)]-PEP, pyruvate and phosphate were the predominant species formed, suggesting that the reaction catalyzed by DAH7-P synthase starts with a nucleophilic attack by water onto PEP as observed in E. coli KDO8-P synthase.  相似文献   

8.
We have demonstrated the co-purification in constant ratio of all five activities of the pentafunctional arom enzyme complex from Neurospora crassa. Progressive inactivation of the 3-dehydroquinate synthase component of the purified enzyme complex by chelating agents was blocked by the substrate, 3-deoxy-D-arabino-heptulosonate 7-phosphate, but not by the cofactor NAD+. Full activity was restored at Zn2+ concentrations as low as 0.05 nM. Atomic absorption data indicated that the intact enzyme complex contained 1 atom per subunit of tightly bound zinc. The arom 3-dehydroquinate synthase had a calculated turnover number of 19s-1, this being within the narrow range of values obtained for the other four activities of the intact multifunctional enzyme. The Km for 3-deoxy-D-arabino-heptulosonate 7-phosphate was 1.4 microM in a phosphate-free buffer; inorganic phosphate was a competitive inhibitor with respect to 3-deoxy-D-arabino-heptulosonate 7-phosphate.  相似文献   

9.
The cytosolic isoenzyme of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase (DS-Co: EC 4.1.2.15) in Spinacia oleracea, Solanum tubersosum and many other higher plants was found to use a diversity of substrates. Diose (glycolaldehyde), triose (D-glyceraldehyde, L-glyceraldehyde and DL-glyceraldehyde 3-phosphate), tetrose (D-erythrose, L-erythrose, D-erythrose 4-phosphate, D-threose and L-threose), and pentose (D-ribose 5-phosphate and D-arabinose 5-phosphate) were utilized in combination with phosphoenolpyruvate (PEP) to make the corresponding 2-keto-3-deoxy sugar acids. Glyoxylate was also utilized by DS-Co. Glycoladehyde exhibited the highest reaction velocity when substrates were tested at 3 mM concentrations. Pentoses were poor substrates except when phsophorylated, an effect which is probably due to an increased fraction of the molecules being in the open-chain form. Little stereoselective discrimination exists since comparable velocities were demonstrated with the D and L isomers of glyceraldehyde, erythrose or threose. The enzyme is not a reversible aldolase since pyruvate failed to substitute for PEP. The use of D-erythrose 4-phsophate or glycolaldehyde resulted in Km values of 1.95 mM and 8.60 mM, respectively. However, glycolaldehyde exhibited the largest VmaxKm ratio, suggesting a greater catalytic efficiency for this substrate. Glycolaldehyde is an ideal substrate for inexpensive assays of DS-Co that are absolutely selective in the presence of two other plant enzymes which also utilize erythrose 4-phosphate and PEP. The spinach DS-Co enzymes required divalent metals for activity. The presence of 20 mM Mg2+, 1 mM Co2+ and 1 mM Mn2+ yielded relative activities of 100, 70 and 15, respectively. The pH optimum was 9.5 and temperature optimum for activity was 49°C. The molecular masses of DS-Co from spinach, tobacco and pea were all in the range of 400 kDa. The possible roles of DS-Co in biosynthesis of α-ketoglutarate and aromatic amino acids, in biosynthesis of components of cell wall and phytotoxin, and in acting as a sink for 2-and 3-carbon sugars are discussed.  相似文献   

10.
3-Deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) catalyzes the reaction between three-carbon phosphoenolpyruvate (PEP) and five-carbon d-arabinose 5-phosphate (A5P), generating KDO8P, a key intermediate in the biosynthetic pathway to 3-deoxy-D-manno-octulosonate, a component of the lipopolysaccharide of the Gram-negative bacterial cell wall. Both metal-dependent and metal-independent forms of KDO8PS have been characterized. KDO8PS is evolutionarily and mechanistically related to the first enzyme of the shikimate pathway, the obligately divalent metal ion-dependent 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS) that couples PEP and four-carbon D-erythrose 4-phosphate (E4P) to give DAH7P. In KDO8PS, an absolutely conserved KANRS motif forms part of the A5P binding site, whereas in DAH7PS, an absolutely conserved KPR(S/T) motif accommodates E4P. Here, we have characterized four mutants of this motif (AANRS, KAARS, KARS, and KPRS) in metal-dependent KDO8PS from Acidithiobacillus ferrooxidans and metal-independent KDO8PS from Neisseria meningitidis to test the roles of the universal Lys and the Ala-Asn portion of the KANRS motif. The X-ray structures, determined for the N. meningitidis KDO8PS mutants, indicated no gross structural penalty resulting from mutation, but the subtle changes observed in the active sites of these mutant proteins correlated with their altered catalytic function. (1) The AANRS mutations destroyed catalytic activity. (2) The KAARS mutations lowered substrate selectivity, as well as activity. (3) Replacing KANRS with KARS or KPRS destroyed KDO8PS activity but did not produce a functional DAH7PS. Thus, Lys is critical to catalysis, and other changes are necessary to switch substrate specificity for both the metal-independent and metal-dependent forms of these enzymes.  相似文献   

11.
Conversion of glucose and ammonium salts into tryptophan by mutants of Escherichia coli was examined as part of a feasibility study on the manufacture of tryptophan. This involved construction, largely by transduction, or a variety of multiple-mutation strains with defined genotypes. By comparing the properties of these strains, we were able to define in biochemical terms several changes that significantly enhance process productivity, namely (i) release of the first enzyme of the common pathway of aromatic biosynthesis and the first enzyme of the tryptophan pathway (3-deoxy-D-arabino-heptulosonate 7-phosphate synthase and the anthranilate aggregate, respectively) from inhibition by end products, (ii) blockage of the diversion of chorismate to phenylalanine and tyrosine biosynthesis, and (iii) presence of highly elevated tryptophan pathway enzyme levels, such as result from interference with both repression and attenuation, combined with gene amplification. By using strains carrying appropriate mutations to effect all of these changes, high values of specific productivity were obtained in bath culture (approximately 80 mg/g [dry weight] per h). Furthermore, a pronounced decay in the level of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase activity was implicated as a cause of declining process producitivity during stationary phase, emphasizing the value of having derepressed levels of this enzyme.  相似文献   

12.
Conversion of glucose and ammonium salts into tryptophan by mutants of Escherichia coli was examined as part of a feasibility study on the manufacture of tryptophan. This involved construction, largely by transduction, or a variety of multiple-mutation strains with defined genotypes. By comparing the properties of these strains, we were able to define in biochemical terms several changes that significantly enhance process productivity, namely (i) release of the first enzyme of the common pathway of aromatic biosynthesis and the first enzyme of the tryptophan pathway (3-deoxy-D-arabino-heptulosonate 7-phosphate synthase and the anthranilate aggregate, respectively) from inhibition by end products, (ii) blockage of the diversion of chorismate to phenylalanine and tyrosine biosynthesis, and (iii) presence of highly elevated tryptophan pathway enzyme levels, such as result from interference with both repression and attenuation, combined with gene amplification. By using strains carrying appropriate mutations to effect all of these changes, high values of specific productivity were obtained in bath culture (approximately 80 mg/g [dry weight] per h). Furthermore, a pronounced decay in the level of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase activity was implicated as a cause of declining process producitivity during stationary phase, emphasizing the value of having derepressed levels of this enzyme.  相似文献   

13.
In Escherichia coli, genes aroF+, aroG+, and aroH+ encode isoenzymes of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthases that are feedback inhibited by tyrosine, phenylalanine, and tryptophan, respectively. A single base pair change in aroF causes a Pro-148-to-Leu-148 substitution and results in a tyrosine-insensitive enzyme.  相似文献   

14.
The broad-spectrum herbicide glyphosate inhibits the growth of Candida maltosa and causes the accumulation of shikimic acid and shikimate-3-phosphate. Glyphosate is a potent inhibitor of three enzymes of aromatic amino acid biosynthesis in this yeast. In relation to tyrosine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase and dehydroquinate synthase, the inhibitory effect appears at concentrations in the mM range, but 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase is inhibited by micromolar concentrations of glyphosate. Inhibition of partially purified EPSP synthase reaction by glyphosate is competitive with respect to phosphoenolpyruvate (PEP) with a K i -value of 12 M. The app. K m for PEP is about 5-fold higher and was 62 M. Furthermore, the presence of glyphosate leads to derepression of many amino acid biosynthetic enzymes.Abbreviations DAHP 3-deoxy-D-arabino-heptulosonate 7-phosphate - EPSP synthase 5-enolpyruvylshikimate 3-phosphate synthase - PEP phosphoenolpyruvate - S-3-P shikimate-3-phosphate  相似文献   

15.
The tyrosine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (7-phospho-2-keto-3-deoxy-D-arabino-heptonate D-erythrose-4-phosphate lyase (pyruvate-phosphorylating), EC 4.2.1.15) was purified to homogeneity from extracts of Escherichia coli K12. A spectrophotometric assay of the enzyme activity, based on the absorption difference of substrates and products at 232 nm, was developed. The enzyme has a molecular weight of 66,000 as judged by gel filtration on Sephadex G-200, and a subunit molecular weight of 39,000 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. This suggests either a rapid monomer-dimer equilibrium, or a very asymmetric shape for the native enzyme. The enzyme shows a narrow pH optimum around pH 7.0. The enzyme is stable for several months when stored at -20 degrees in phosphate buffer containing phosphoenol-pyruvate. Intersecting lines in double reciprocal plots of initial velocity data at substrate concentrations in the micromolar range suggest a sequential mechanism with-catalyzed reaction. Product inhibition studies specify an ordered sequential BiBi mechanism with a dead-end E-P complex. The feedback inhibitor tyrosine at concentrations above 10 muM exhibits noncompetitive inhibition with respect to erythrose-4-P, and competitive inhibition with respect to the other substrate, P-enolpyruvate. In addition, tyrosine at concentrations of at least 10 muM causes an alteration of one or more than one kinetic parameter of the enzyme.  相似文献   

16.
The enzyme 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyzes the condensation reaction between phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P). DAH7PS from the hyperthermophile Pyrococcus furiosus has been expressed in Escherichia coli. The expressed protein was insoluble but was partially solubilized as a dimer by the inclusion of 200 mM KCl in the cell lysis buffer. An effective two step purification procedure has been developed. The first step resulted in a high degree of purification and involved lysis by sonication at approximately 40 degrees C followed by a heat treatment at 70 degrees C. A continuous assay measuring the loss of PEP at 232 nm at elevated temperatures was also developed. Temperature, pH, and divalent metal ions all had an effect on the extinction coefficient of PEP. Purified recombinant P. furiosus DAH7PS is a dimer with a subunit Mr of 29,226 (determined by ESMS), shows resistance to denaturation by SDS, has activity over a broad pH range, and has an activation energy of 88 kJmol-1. The kinetic parameters are Km (PEP) 120 microM, Km (E4P) 28 microM, and kcat 1.5s-1, at 60 degrees C and pH 6.8. DAH7PS is not inhibited by phenylalanine, tyrosine, or tryptophan. EDTA inactivates the enzyme and enzyme activity is restored by a wide range of divalent metal ions including (in order of decreasing effectiveness): Zn2+, Cd2+, Mn2+, Co2+, Ni2+, Ca2+, Hg2+, and Cu2+. This detailed characterization of the DAH7PS from P. furiosus raises the possibility that the subfamily Ibeta DAH7PS enzymes are metal ion dependent, contrary to previous predictions.  相似文献   

17.
Tyrosine feedback-inhibits the 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase isoenzyme AroF of Escherichia coli. Here we show that an Asn-8 to Lys-8 substitution in AroF leads to a tyrosine-insensitive DAHP synthase. This mutant enzyme exhibited similar activities (v=30-40 U mg(-1)) and substrate affinities (K(m)(erythrose-4-phosphate)=0.5 mM, positive cooperativity with respect to phospho(enol)pyruvate) as the wild-type AroF, but showed decreased thermostability. An engineered AroF enzyme lacking the seven N-terminal residues also was tyrosine-resistant. These results strongly suggest that the N-terminus of AroF is involved in the molecular interactions occurring in the feedback-inhibition mechanism.  相似文献   

18.
Three classes of mutants of Anacystis nidulans were selected on the basis of resistance to fluorophenylalanine and 2-amino-3-phenylbutanoic acid. The most frequent type exhibited DAHP synthetase (7-phospho-2-keto-3-deoxy-D-arabino-heptonate-D-erythrose-4-phosphate-lyase [pyruvate phosphorylating], EC 4.1.2.15) activity identical to that of the parental strain. The second type was characterized by extremely low levels of the activity. The third type had a DAHP synthetase showing decreased sensitivity to inhibition by L-tyrosine. The enzyme was purified 140-fold from wild-type and feedback-insensitive strains, and the kinetics of the reaction was examined. The activity of the wild-type enzyme was inhibited 75% in the presence of 2.0 X 10-3 M tyrosine, and the altered enzyme was inhibited 10%. The following apparent constants were obtained from kinetic studies with partially purified wild-type enzyme: S0.5 for D-erythrose-4-phophate equal to 7.1 X 10-4 M; S0.5 for phosphoenolpyruvate equal to 1.4 X 10-4 M. Inhibition by tyrosine was mixed with respect to binding of both D-erythrose-4-phosphate and phosphoenolpyruvate. In addition, tyrosine promoted cooperative interactions in the binding of phosphoenolpyruvate. For the altered enzyme the following apparent constants were obtained: S0.5 for D-erythrose-4-phosphate equal to 7.1 X 10-4 M; S0.5 for phosphoenolpyruvate equal to 2.9 X 10-4 M. Inhibition by tyrosine was mixed with respect to D-erythrose-4-phosphate and competitive with respect to phosphoenolpyruvate. Tyrosine did not promote cooperative effects in the binding of phosphoenolpyruvate to the altered enzyme.  相似文献   

19.
Properties and regulation of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHP-synthase), EC4.1.2.15, from Alcaligenes eutrophus H16 were investigated. DAHP synthase was unstable during manipulations such as dialysis, dilution, ammonium sulfate fractionation, chromatography on DEAE-cellulose or Sephadex G-200. For kinetic measurements Sephadex G-25 treated crude extracts were used. The enzyme was not affected by thiol reagents, EDTA or divalent metal ions. The activation energy, deltaH, amounted to 16100 cal/mole. Between pH 7.2 and pH 8.2 there was little change of enzyme activity. The Km-values for the two substrates were found to be 0.043 mM phosphoenolpyruvate and 0.055 mM erythrose-4-phosphate. DAHP-synthase was inhibited by 0.5 mM phenylalanine for 60% and by 0.5 mM tyrosine for 20%. In the presence of both amino acids cumulative inhibition occurred amounting to about 70%. No other amino acid exerted inhibitory effects. A repression of DAHP-synthase by the aromatic amino acids was not observed. Some other strains of hydrogen bacteria were included in this study. The DAHP synthase from strain 12/60/X and Corynebacterium autotrophicum 7C was unregulated. The enzyme from strain 33/X was subject to retro-tyrosine inhibition and from strain 3/2, H1 and H20 were subject to cumulative inhibition.  相似文献   

20.
In Pseudomonas aeruginosa the initial enzyme of aromatic amino acid biosynthesis, 3-deoxy-D-arabinoheptulosonate 7-phosphate (DAHP) synthase, has been known to be subject to feedback inhibition by a metabolite in each of the three major pathway branchlets. Thus, an apparent balanced multieffector control is mediated by L-tyrosine, by L-tryptophan, and phenylpyruvate. We have now resolved DAHP synthase into two distinctive regulatory isozymes, herein denoted DAHP synthase-tyr (Mr = 137,000) and DAHP synthase-trp (Mr = 175,000). DAHP synthase-tyr comprises greater than 90% of the total activity. L-Tyrosine was found to be a potent effector, inhibiting competitively with respect to both phosphoenolpyruvate (Ki = 23 microM) and erythrose 4-phosphate (Ki = 23 microM). Phenylpyruvate was a less effective competitive inhibitor: phosphoenolpyruvate (Ki = 2.55 mM) and erythrose 4-phosphate (Ki = 1.35 mM). DAHP synthase-trp was found to be inhibited noncompetitively by L-tryptophan with respect to phosphoenolpyruvate (Ki = 40 microM) and competitively with respect to erythrose 4-phosphate (Ki = 5 microM). Chorismate was a relatively weak competitive inhibitor: phosphoenolpyruvate (Ki = 1.35 mM) and erythrose 4-phosphate (Ki = 2.25 mM). Thus, each isozyme is strongly inhibited by an amino acid end product and weakly inhibited by an intermediary metabolite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号