首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is believed that the nicotine concentration in tobacco is closely correlated with the amount of nitrogen (N) supplied.On the other hand,N uptake mainly occurs at the early growth stage,whereas nicotine concentration increases at the late growth stage,especially after removing the shoot apex.To identify the causes of the increased nicotine concentration in tobacco plants,and to compare the effects of different ways of mechanical wounding on nicotine concentration,field experiments were carried out in Fuzhou,Fujian Province in 2003 and 2004.Excision of the shoot apex had almost no influence on N content in the plant;however,it caused dramatic increases in nicotine concentration in leaves,especially in the middle and upper leaves.An additional increase of the nicotine concentration was obtained by removal of axillary buds.The wounding caused by routine leaf harvests,however,did not change the leaf nicotine concentration,and neither did reducing leaf harvest times.The present results revealed no direct relationship between N supply and nicotine concentration in tobacco leaves,and indicate that not all kinds of mechanical wounding were capable of stimulating nicotine synthesis in tobacco plants.Since nicotine production is highly dependent on the removal of apical meristems and hence on the major sources of auxin in the plant,and application of 1-naphthylacetic acid onto the cut surface of the stem after removing the shoot apex markedly decreased the nicotine concentration in different leaves and the total nicotine content in the plant,the results suggest that decreased auxin supply caused by removal of the shoot apex as a kind of mechanical wounding might regulate nicotine synthesis in the roots of tobacco plants.  相似文献   

2.
Mechanical wounding stimulates nicotine synthesis in tobacco plants. In the practice of tobacco production, most nitrogen (N) is taken up before removal of the shoot apex, while nicotine is mainly synthesized afterwards. Since N is required for nicotine synthesis, it is interesting to know whether plants can use N taken up before removal of the shoot apex to synthesize nicotine after wounding. To address this question, a hydroponics culture experiment was carried out, in which N was supplied as NH4NO3 at two levels (1 mM and 6 mM) in pre-culture, and N was either withdrawn or replaced by 15N after removing the shoot apex for the next seven days. Removal of the shoot apex caused a marked increase in nicotine concentration in various organs, also when plants grew under low-N conditions and showed symptoms of N deficiency. Increased nicotine accumulation even occurred when N was withdrawn from the growth medium before the apex was removed, indicating that tobacco plants can use N taken up previously to synthesize nicotine after mechanical wounding. The amount of N used for nicotine synthesis accounted for 5–6% of the total N, irrespective of treatment. Although most of the nicotine in intact plants and plants with the apex removed was synthesized de novo, as evidenced by the data when N was replaced by 15N-labeled NH4NO3, a large amount of the N absorbed before the N replacement was incorporated into the newly formed nicotine. The proportion of nicotine-15N to total nicotine-N was almost the same as that of 15N to total N in various organs. The results show the utilization of remobilized N taken up before excision of the shoot apex for nicotine synthesis afterwards, and highlight the importance of N cycling within plants, both when grown under N-sufficient and N-deficient conditions.Key words: 15N-isotope nitrogen, mechanical wounding, nicotine concentration, nicotine synthesis, nitrogen deficiency, removal of the shoot apex, tobacco (Nicotiana tabacum L.)  相似文献   

3.
Lu YX  Li CJ  Zhang FS 《Annals of botany》2005,95(6):991-998
BACKGROUND AND AIMS: Ammonium can result in toxicity symptoms in many plants when it is supplied as the sole source of N. In this work, influences of different nitrogen forms at two levels (2 and 15 mm N) on growth, water relations and uptake and flow of potassium were studied in plants of Nicotiana tabacum 'K 326'. METHODS: Xylem sap from different leaves was collected from 106-d-old tobacco plants cultured in quartz sand by application of pressure to the root system. Whole-shoot transpiration for each of the treatments was measured on a daily basis by weight determination. KEY RESULTS: Total replacement of NO(3)(-)N by NH(4)(+)-N caused a substantial decrease in dry weight gain, even when plants grew under nutrient deficiency. Increasing nutrient concentration resulted in a greater net dry weight gain when nitrogen was supplied as NO(3)(-) or NH(4)NO(3), but resulted in little change when nitrogen was supplied as NH(4)(+). NH(4)(+)-N as the sole N-source also caused reduction in transpiration rate, changes in plant WUE (which depended on the nutrient levels) and a decrease in potassium uptake. However, the amount of xylem-transported potassium in the plants fed with NH(4)(+) was not reduced: it was 457 % or 596 % of the potassium currently taken up at low or high nutrient level, respectively, indicating a massive export from leaves and cycling of potassium in the phloem. CONCLUSIONS: Ammonium reduces leaf stomatal conductance of tobacco plants. The flow and partitioning of potassium in tobacco plants can be changed, depending on the nitrogen forms and nutrient levels.  相似文献   

4.
The effects of different kinds of mechanical wounding on nicotine production in tobacco plants were compared, with sand or hydroponics culture under controlled conditions. Both removal of the shoot apex and damage of the youngest unfolded leaves nos 1 and 2 by a comb-like brusher with 720 punctures caused an increase in nicotine concentration in whole plants at day 3, and reached its highest level at day 6. The nicotine concentration induced by excision of the shoot apex was much higher than that induced by leaf wounding. Both treatments also caused an increase in jasmonic acid (JA) concentration within 90 min in the shoot, followed by an increase in the roots (210 min), in which the JA concentration induced by leaf wounding was significantly higher than that induced by excision of the shoot apex. The increase in nicotine concentration occurred throughout the whole plant, especially in the shoot, while the increase in JA concentration in the shoot was restricted to the damaged tissues, and was not observed in the adjacent tissues. Removal of the lateral buds that emerged after excision of the shoot apex caused a further increase in nicotine concentrations in the plant tissues. Removal of mature leaves, however, did not cause any changes in nicotine concentration in the plant, even though the degree of wounding in this case was comparable with that occurring with apex removal. The results suggest that the nicotine production in tobacco plants was not correlated with the degree of wounding (cut-surface or punctures), but was highly dependent on the removal of apical meristems and hence on the major sources of auxin in the plant. Furthermore, immediate application of 1-naphthylacetic acid (NAA) on the cut surface after removing the shoot apex completely inhibited the increase both in nicotine in whole plants and in JA in the damaged stem segment and roots. Application of an auxin transport inhibitor around the stem directly under the shoot apex of intact plants also caused an increase in nicotine concentration in the whole plant. The results strongly suggest that auxin serves as a negative signal to regulate nicotine synthesis in roots of tobacco plants.  相似文献   

5.
Sas L  Rengel Z  Tang C 《Annals of botany》2002,89(4):435-442
Nitrogen nutrition can influence cluster root formation in many wild species, but the effect of N form on cluster root formation and root exudation by white lupin is not known. In a solution culture study, we examined the effect of N nutrition (ammonium, nitrate, both or N2 fixation) on cluster root formation and H+ extrusion by white lupin plants under deficient and adequate P supply. The number of cluster roots increased greatly when plants were supplied with I microM P compared with 50 microM P, the increase being 7.8-fold for plants treated with (NH4)2SO4, 3-fold for plants treated with KNO3 and NH4NO3, and 2-4-fold for N2-fixing plants. Under P deficiency. NH4+-N supply resulted in production of a greater number and biomass of cluster roots than other N sources. Dry weight of cluster roots was 30 % higher than that of non-cluster roots in P-deficient plants treated with (NH4)2SO4 and NH4NO3. In plants treated with sufficient P (50 microM), the weight of non-cluster roots was approx. 90 % greater than that of cluster roots. Both total (micromol per plant h(-1)) and specific (micromol g(-1) root d. wt h(-1)) H+ extrusions were greatest from roots of plants supplied with (NH4)2SO4, followed by those supplied with NH4NO3 and N2 fixation, whereas plants receiving KNO3 had negative net H+ extrusion between the third and fifth week of growth (indicating uptake of protons or release of OH- ions). The rate of proton extrusion by NH4+-N-fed plants was similar under P-deficient and P-sufficient conditions. In contrast, proton exudation by N2-fixing plants and KNO3-treated plants was ten-fold greater under P deficiency than under P sufficiency. In comparison with P deficiency, plants treated with 50 microM P had a significantly higher concentration of P in roots, shoots and youngest expanded leaves (YEL). Compared with the N2 fixation and KNO3 treatments, total N concentration was highest in roots, shoots and YEL of plants supplied with (NH4)2SO4 and NH4NO3, regardless of P supply. Under P deficiency, K concentrations in roots decreased at all N supplies, especially in plants treated with (NH4)2SO4 and NH4NO3, which coincided with the greatest H+ extrusion at these P and N supplies. In conclusion, NH4-N nutrition stimulated cluster root formation and H+ extrusion by roots of P-deficient white lupin.  相似文献   

6.
Duan YH  Zhang YL  Ye LT  Fan XR  Xu GH  Shen QR 《Annals of botany》2007,99(6):1153-1160
BACKGROUND AND AIMS: There is increased evidence that partial nitrate (NO3-) nutrition (PNN) improves growth of rice (Oryza sativa), although the crop prefers ammonium (NH4+) to NO3- nutrition. It is not known whether the response to NO3- supply is related to nitrogen (N) use efficiency (NUE) in rice cultivars. Methods Solution culture experiments were carried out to study the response of two rice cultivars, Nanguang (High-NUE) and Elio (Low-NUE), to partial NO3- supply in terms of dry weight, N accumulation, grain yield, NH4+ uptake and ammonium transporter expression [real-time polymerase chain reaction (PCR)]. KEY RESULTS: A ratio of 75/25 NH4+ -N/NO3- -N increased dry weight, N accumulation and grain yield of 'Nanguang' by 30, 36 and 21 %, respectively, but no effect was found in 'Elio' when compared with those of 100/0 NH4+ -N/NO3- -N. Uptake experiments with 15N-NH4+ showed that NO3- increased NH4+ uptake efficiency in 'Nanguang' by increasing Vmax (14 %), but there was no effect on Km. This indicated that partial replacement of NH4+ by NO3- could increase the number of the ammonium transporters but did not affect the affinity of the transporters for NH4+. Real-time PCR showed that expression of OsAMT1s in 'Nanguang' was improved by PNN, while that in 'Elio' did not change, which is in accordance with the differing responses of these two cultivars to PNN. Conclusions Increased NUE by PNN can be attributed to improved N uptake. The rice cultivar with a higher NUE has a more positive response to PNN than that with a low NUE, suggesting that there might be a relationship between PNN and NUE.  相似文献   

7.
Rapid effects of nitrogen form on leaf morphogenesis in tobacco   总被引:43,自引:0,他引:43  
Ammonium (NH4+) instead of nitrate (NO3-) as the nitrogen (N) source for tobacco (Nicotiana tabacum L.) cultivated in a pH-buffered nutrient solution resulted in decreased shoot and root biomass. Reduction of shoot fresh weight was mainly related to inhibition of leaf growth, which was already detectable after short-term NH4+ treatments of 24 h, and even at a moderate concentration level of 2 mM. Microscopic analysis of the epidermis of fully expanded leaves revealed a decrease in cell number (50%) and in cell size (30%) indicating that both cell division and cell elongation were affected by NH4+ application. Changes in various physiological parameters known to be associated with NH4(+)-induced growth depression were examined both in long-term and short-term experiments: the concentrations of total N, soluble sugars and starch as well as the osmotic potential, the apparent hydraulic conductivity and the rate of water uptake were not reduced by NH4+ treatments (duration 1-12 d), suggesting that leaf growth was neither limited by the availability of N and carbohydrates, nor by a lack of osmotica or water supply. Although the concentration of K+ in leaf press sap declined in expanding leaves by approximately 15% in response to NH4+ nutrition, limitation of mineral nutrients seems to be unlikely in view of the fast response of leaf growth at 24 h after the start of the NH4+ treatment. No inhibitory effects were observed when NH4+ and NO3- were applied simultaneously (each 1 mM) resulting in a NO3-/NH4+ net uptake ratio of 6:4. These findings suggest that the rapid inhibition of leaf growth was not primarily related to NH4+ toxicity, but to the lack of NO3(-)-supply. Growth inhibition of plants fed solely with NH4+ was associated with a 60% reduction of the zeatine + zeatine riboside (Z + ZR) cytokinin fraction in the xylem sap after 24 h. Furthermore Z + ZR levels declined to almost zero within the next 4 d after start of the NH4+ treatment. In contrast, the concentrations of the putative Z + ZR precursors isopentenyl-adenine and isopentenyl-adenosine (i-Ade + i-Ado) were not affected by NH4+ application. Since cytokinins are involved in the regulation of both cell division and cell elongation, it seems likely that the presence of NO3- is required to maintain biosynthesis and/or root to shoot transfer of cytokinins at a level that is sufficient to mediate normal leaf morphogenesis.  相似文献   

8.
不同氮素形态比例对五味子幼苗生长特性的影响   总被引:2,自引:0,他引:2  
以2年生五味子苗木为试验材料,在田间条件下,施以铵态氮(NH4+-N)和硝态氮(NO3--N)不同比例,分析了叶片可溶性蛋白、叶绿素含量、根系及茎叶中全氮含量、生物量等季节的动态变化规律,探讨了不同氮素形态比例对五味子苗木生长的影响。结果表明,五味子苗木在不同生长时期对不同氮素形态的吸收和利用存在明显差异,NH4+-N和NO3--N对五味子幼苗生长有显著的联合效应。在五味子生长前期,五味子主要以吸收和同化NH4+-N为主,并以铵态氮和硝态氮比例为75∶25时地上部生物量积累较多;而在五味子生长的中后期,五味子主要以NO3--N吸收和同化为主,并以铵态氮和硝态氮比例为25∶75时地上部生物量积累较多。  相似文献   

9.
Understanding of the influences of root-zone CO2 concentration on nitrogen (N) metabolism is limited. The influences of root-zone CO2 concentration on growth, N uptake, N metabolism and the partitioning of root assimilated 14C were determined in tomato (Lycopersicon esculentum). Root, but not leaf, nitrate reductase activity was increased in plants supplied with increased root-zone CO2. Root phosphoenolpyruvate carboxylase activity was lower with NO3(-)- than with NH4(+)-nutrition, and in the latter, was also suppressed by increased root-zone CO2. Increased growth rate in NO3(-)-fed plants with elevated root-zone CO2 concentrations was associated with transfer of root-derived organic acids to the shoot and conversion to carbohydrates. With NH4(+)-fed plants, growth and total N were not altered by elevated root-zone CO2 concentrations, although 14C partitioning to amino acid synthesis was increased. Effects of root-zone CO2 concentration on N uptake and metabolism over longer periods (> 1 d) were probably limited by feedback inhibition. Root-derived organic acids contributed to the carbon budget of the leaves through decarboxylation of the organic acids and photosynthetic refixation of released CO2.  相似文献   

10.
There is ample experimental evidence that, Na, if supplied in separate fertiliser granules or crystals to N, i.e., in blended fertiliser form, can improve both the yield and the recovery of fertiliser N by grassland swards in situations of limited K supply, but not in situations of K abundance. There is some evidence, though, that in K-replete situations, Na, if supplied in the same fertiliser granule as N, i.e. in concentrated complex fertiliser (CCF) form, also improves dry matter production and N recovery by swards whilst lowering the risk of grass tetany in grazing animals. However, the mechanism for the latter effect of Na on N uptake has never been elucidated, nor has it been clarified whether Na stimulates NH 4 + and NO 3 uptake by plants or simply NO 3 uptake alone. The aim of the present study was to see if supplying Na in the same fertiliser pellets (NNa-CCF) as NH4NO3 (differentially labelled with15N), or in separate pellets (NNa-blend), had any effect on the recovery of15N-labelled NH 4 + and NO 3 -N by perennial ryegrass plants growing in a glasshouse under K-replete conditions. The results of the experiment confirmed that using an NNa-CCF was more beneficial to shoot production than using an NNa-blend. However, the differential in shoot production occurred without any corresponding difference in total N (i.e. NH 4 + plus NO 3 -N) recovery in shoot tissue. Instead, Na, in the CCF appears to have stimulated NO 3 uptake at the expense of NH 4 + absorption, thereby altering the balance between NH 4 + and NO 3 -nutrition in favour of NO 3 -nutrition, and stimulating shoot production as a consequence. It was concluded that if grassland is already well supplied with K it would be more beneficial in terms of sward production to apply a Na and N-containing CCF than a blend of separate Na and N-containing granules or crystals.  相似文献   

11.
The effect of the nitrogen source (gaseous nitrogen, N2, or nitrate ions, NO3-) on the use of carbon (C) for root and nodule growth of pea (Pisum sativum L.) was investigated using 13C-labelling of assimilated CO2 at various stages of growth. Nitrate supply and growing conditions (sowing dates, air CO2 concentration) were varied to alter photosynthetic rates. Nodules are the sink with the highest demand for C in both the vegetative and flowering stages, growing at the expense of shoot and root in the vegetative stage, but only at the expense of roots at flowering. Until flowering, the addition of C into root and nodule biomass was linearly related to pre-existing biomass, thus determining net sink strengths which decreased with root and nodule age. Nodule growth patterns did not depend on the N source, whereas root growth was increased by nitrate when nodule biomass was low. At seed filling, the increase in C of biomass of the root system was no longer related to pre-existing biomass and C was preferentially diverted to roots of plants assimilating nitrate, or to nodules for plants fixing N2.  相似文献   

12.
Compensation by dark-period uptake of NH(4)(+) and NO(3)(-) in the grasses Phleum pratense L. and Festuca pratensis Huds. following N deprivation during the preceding light period was investigated in flowing solution culture under an artificial 10/14 h light/dark cycle. N was supplied as either NO(3)(-), NH(4)(+) or NH(4)NO(3) at 20+/-5 mmol m(-3), available continuously or only during the dark period, for 5-10 d. Intermittent N supply did not affect total daily N uptake, growth rate or net partitioning of dry matter. Net uptake and influx of NO(3)(-) varied similarly throughout the diurnal cycle when NO(3)(-) was supplied continuously, with a marginal contribution by NO(3)(-) efflux. Influx was significantly higher and efflux slightly higher following interruption of NO(3)(-) supply during the light period. Nitrate accounted for 80% of N in xylem exudate except between hours 6-9 of the light period when the amino acid concentration increased 3-fold, primarily as glutamine. Diurnal variation in relative NO(3)(-) uptake exhibited five phases of constant acceleration/deceleration, described reasonably well assuming NO(3)(-) influx was subject to metabolic co-regulation by NO(3)(-) and amino acid levels in the cytoplasmic compartment of the roots. Accordingly, influx is determined by variation in root NO(3)(-) levels throughout the dark period and the first half of the light period, but is down-regulated by increased amino acid levels during the second half of the light period. The sharp light/dark transitions affect transpiration rate and hence xylem N flux which, in turn, affect NO(3)(-) levels in the cytoplasmic compartment of the roots and the rate of NO(3)(-) assimilation in the shoot.  相似文献   

13.
The magnitude and impact of gaseous nitrogen dioxide (NO(2)) directly entering the leaves were investigated using foliar nitrogen isotopic composition (delta(15)N) values in tomato (Lycopersicon esculentum) and tobacco (Nicotiana tabacum). Using a hydroponics-fumigation system, (15)NO(2) (20 and 40 ppb) was supplied to shoot systems and (50 and 500 microM) was supplied to root systems. Morphological, stable isotope and nitrate reductase activity (NRA) analyses were used to quantify foliar NO(2) uptake and to examine whether realistic concentrations of NO(2) influenced plant metabolism. Nicotiana tabacum and L. esculentum incorporated 15 and 11%, respectively, of (15)NO(2)-N into total biomass via foliar uptake under low supply. On a mass basis, N. tabacum and L. esculentum incorporated 3.3 +/- 0.9 and 3.1 +/- 0.8 mg of (15)NO(2)-N into biomass, respectively, regardless of availability. There were no strong effects on biomass accumulation or allocation, leaf delta(13)C values, or leaf or root NRA in response to NO(2) exposure. Foliar NO(2 )uptake may contribute a significant proportion of N to plant metabolism under N-limited conditions, does not strongly influence growth at 40 ppb, and may be traced using foliar delta(15)N values.  相似文献   

14.
Nickel is considered to be an essential micronutrient in plants because of its role in the metalloenzyme urease. In order to characterize the metabolic consequences of Ni deprivation, the significance of Ni supply for growth and N metabolism of rice plants grown with either NH4NO3 or urea as sole N source was evaluated. Growth of plants receiving NH4NO3 was not affected by the Ni status, and neither were the activities of arginase and glutamine synthetase. However, urease activity was not detectable in leaves of low-Ni plants, which in conjunction with arginase action, led to the accumulation of urea in plants grown with NH4NO3. Amino acid contents and mineral nutrient status (except Ni) were not affected by the Ni treatment.Urea-grown Ni-deprived plants showed reduced growth and accumulated large amounts of urea owing to the lack of urease activity. These plants were further characterized by low amino acid contents indicating impaired usage of the N supplied. They also exhibited reduced levels of the urea precursor arginine, which is merely attributed to the overall N economy in these plant. When urea-grown plants were supplied with 0.5 mmol m-3 Ni in the nutrient solution, the dry weight and the amino acid N contents were increased at the expense of the urea contents, indicating efficient use of urea N in Ni-supplemented plants.A critical Ni concentration in the shoot regarding dry matter production of NH4NO3-grown plants could not be deduced, while 25 g Ni kg-1 DW is certainly inadequate for urea-grown plants. This suggests that the Ni requirement strongly depends on the N source employed.Keywords: Amino acids, ornithine cycle, Ni supply, rice, urea, urease activity.   相似文献   

15.
To study the effect of root-zone pH on characteristic responses of NH4+ -fed plants, soybeans (Glycine max?L.? Merr. cv. Ransom) were grown in flowing solution culture for 21 d on four sources of N (1.0 mol m-3 NO3-, 0.67 mol m-3 NO3- plus 0.33 mol m-3 NH4+, 0.33 mol m-3 NO3- plus 0.67 mol m-3 NH4+, and 1.0 mol m-3 NH4+) with nutrient solutions maintained at pH 6.0, 5.5, 5.0, and 4.5. Amino acid concentration increased in plants grown with NH4+ as the sole source of N at all pH levels. Total amino acid concentration in the roots of NH4+ -fed plants was 8 to 10 times higher than in NO3(-)-fed plants, with asparagine accounting for more than 70% of the total in the roots of these plants. The concentration of soluble carbohydrates in the leaves of NH4+ -fed plants was greater than that of NO3(-)-fed plants, but was lower in roots of NH4+ -fed plants, regardless of pH. Starch concentration was only slightly affected by N source or root-zone pH. At all levels of pH tested, organic acid concentration in leaves was much lower when NH4+ was the sole N source than when all or part of the N was supplied as NO3-. Plants grown with mixed NO3- plus NH4+ N sources were generally intermediate between NO3(-)- and NH4+ -fed plants. Thus, changes in tissue composition characteristic of NH4+ nutrition when root-zone pH was maintained at 4.5 and growth was reduced, still occurred when pH was maintained at 5.0 or above, where growth was not affected. The changes were slightly greater at pH 4.5 than at higher pH levels.  相似文献   

16.
外源无机氮素形态对土壤氨基糖动态的影响   总被引:3,自引:0,他引:3  
微生物生长对底物的可利用性存在不同的响应,外源氮素的形态可以显著影响微生物代谢过程,而土壤氨基糖作为微生物细胞壁残留物,其形成、分解和周转特征与外源碳氮供给密切相关,对土壤氨基糖的研究与同位素标记技术相结合,可以进一步反映微生物对底物的利用特征.本文以葡萄糖及15N标记的NH4+和NO3-为底物,利用气相色谱-质谱联机技术,通过测定氨基糖中同位素富集比例,跟踪新形成(标记)和原有(非标记)的土壤氨基糖的动态变化.结果表明:在培养过程中,15N标记的氨基糖含量显著增加,NH4+向氨基糖的转化显著高于NO3-,反映出微生物对NH4+的选择性利用.土壤中原有的氨基糖也发生了不同变化.其中,非标记氨基葡萄糖在N H4+为底物时,其含量有所增加,但在NO3-为底物时含量逐渐下降;非标记胞壁酸含量在2个处理中均不断下降,尤其以NO3-为底物时更为显著;非标记氨基半乳糖含量的增减幅度均小于20%.这种特异性变化表明,不同来源的微生物细胞壁残留物对土壤氮素周转和稳定的作用不同,真菌细胞壁残留物易于在土壤中积累,有利于土壤有机质的稳定,而细菌细胞壁残留物容易分解,在土壤有机质周转过程中起重要作用.  相似文献   

17.
 生长在供给NO-3 N、NH+4 N和NH4NO3 N氮源下的荫香(Cinnamomum burmanni)幼树暴露在增高空气NH3浓度下30 d。利用气体交换测定和氮分析研究了植株的光合作用、氮利用和氮在光合过程一些组分中的分配,根据Farquhar-von Caemmerer模式得出相关光合参数。结果表明在增高空气NH3下生长于NO-3 N的植株Rubisco最大羧化速率(Vcmax)和最大光合电子传递速率(Jmax)较正常空气下的高,但生长于NH+4 N和NH4NO3 N的植株则较正常空气下的低。无论生长于何种形式氮下的植株,在空气NH3增高下以单位叶面积为基准的叶氮含量(Na)显著增高(p<0.05)。在增高空气NH3下,生长于NO-3 N下的植株,其类囊体氮量(NT)、Rubisco氮(NR)和结合于光合电子传递链的氮(NE)的含量较正常空气下的增高(p<0.05);而生长于NH+4 N和NH4NO3 N下的植株则较正常空气下的低。表明在空气NH3增高下生长于NO-3 N的植株能有效地利用氮合成光合过程必要的组份,而生长于NH+4 N和NH4NO-3 N的植株氮在NT、NR和NE的分配受到部分限制。在空气NH3增高下生长于NO-3 N和NH4NO3 N的植株,其以单位干重为基准的有机氮量较正常空气下的高,但生长于NH+4 N的植株则较正常空气下的低,此外在空气NH3增高下生长于NO-3 N的植株的可溶性蛋白氮较正常空气下增高,而生长在NH+4 N的植株亦见降低。结果表明空气NH3增高可能有利于NO-3 N下生长的荫香植株利用空气中的氮,促进叶片光合速率提高,而空气NH3增高能抑制NH+4 N或NH4NO3 N下生长的荫香植株光合作用和氮的利用和再分配。  相似文献   

18.
Leaf growth of many plant species shows rapid changes in response to alterations of the form and the level of N supply. In hydroponically-grown tomato (Lycopersicon esculentum L.), leaf growth was rapidly stimulated by NO(3)(-) application to NH(4)(+) precultured plants, while NH(4)(+) supply or complete N deprivation to NO(3)(-) precultured plants resulted in a rapid inhibition of leaf growth. Just 10 microM NO(3)(-) supply was sufficient to stimulate leaf growth to the same extent as 2 mM. Furthermore, continuous NO(3)(-) supply induced an oscillation of leaf growth rate with a 48 h interval. Since changes in NO(3)(-) levels in the xylem exudate and leaves did not correlate with NO(3)(-)-induced alterations of leaf growth rate, additional signals such as phytohormones may be involved. Levels of a known inhibitor of leaf growth, abscisic acid (ABA), did not consistently correspond to leaf growth rates in wild-type plants. Moreover, leaf growth of the ABA-deficient tomato mutant flacca was inhibited by NH(4)(+) without an increase in ABA concentration and was stimulated by NO(3)(-) despite its excessive ethylene production. These findings suggest that neither ABA nor ethylene are directly involved in the effects of N form on leaf growth. However, under all experimental conditions, stimulation of leaf growth by NO(3)(-) was consistently associated with increased concentration of the physiologically active forms of cytokinins, zeatin and zeatin riboside, in the xylem exudate. This indicates a major role for cytokinins as long-distance signals mediating the shoot response to NO(3)(-) perception in roots.  相似文献   

19.
莴笋对不同形态氮素的反应   总被引:12,自引:2,他引:12  
探讨了不同形态氮素对莴笋生长发育的影响及其营养特性。结果表明,莴笋幼苗根系对NH4^+ -N的亲和力稍大于NO3^- -N的亲和力;分别供给NO3^- -N+NO3^- -N及NH4^+ -N,莴笋的生物学产量和吸N量均依次递减(分别为100:56.9:12.4,100:48.9:8.6),因此在水培条件下,NO3^- -N是最适合莴笋生长发育的氮源,NH4^+ -N与NO3^- -N各占50%时对莴笋的生长发育已有一定的抑制作用,仅以NH4^+ -N作氮源则莴笋很难生长;NH4^+ -N与NO3^- -N各占50%时,莴笋倾向于吸收较多的NH4^+ -N,而且在培养不同阶段NH4^+/NO3^-吸收比例均大于1,莴笋表现出喜铵性,但NH4^+ -N并非莴笋很适合的氮源;营养液中NO3^- -N不足,主要影响莴笋茎叶的生长,而NH4^+ -N所占比例达50%时,莴笋根系生长受到抑制,且有明显的受害症状;以NO3^- -N作氮源预培养两周,以含微量NO3^- -N的自来水为水源,再单独以NH4^+ -N为氮源,对莴笋生长有极大的促进作用,同时还大幅度降低了体内硝酸盐的含量。尿素作氮源莴笋未出现受害症状,但莴笋的生长发育状况明显劣于其它氮源。  相似文献   

20.
The impact of elevated pCO(2 )on N-metabolism of hydroponically grown wild-type and transformed tobacco plants lacking root nitrate reduction was studied in order to elucidate the effects on (i) nitrate uptake, (ii) long-distance transport of N, (iii) nitrate reduction with emphasis on root-NR, and (iv) the allocation of N between the root and shoot. The findings were related to alterations of growth rates. At elevated pCO(2 )the wild type exhibited higher growth rates, which were accompanied by an increase of NO(3)(-)-uptake per plant, due to a higher root:shoot ratio. Furthermore, elevated pCO(2 )enhanced nitrate reduction in the roots of the wild type, resulting in enhanced xylem-loading of organic N (amino-N) to supply the shoot with sufficient nitrogen, and decreased phloem-transport of organic N in a basipetal direction. Transformed tobacco plants lacking root nitrate reduction were smaller than the wild type and exhibited lower growth rates. Nitrate uptake per plant was decreased in transformed plants as a consequence of an impeded root growth and, thus, a significantly decreased root:shoot ratio. Surprisingly, transformed plants showed an altered allocation of amino-N between the root and the shoot, with an increase of amino-N in the root and a substantial decrease of amino-N in the shoot. In transformed plants, xylem-loading of nitrate was increased and the roots were supplied with organic N via phloem transport. Elevated pCO(2 )increased shoot-NR, but only slightly affected the growth rates of transformed plants, whereas carbohydrates accumulated at elevated pCO(2 )as indicated by a significant increase of the C/N ratio in the leaves of transformed plants. Unexpectedly, the C/N balance and the functional equilibrium between root and shoot growth was disturbed dramatically by the loss of nitrate reduction in the root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号