共查询到20条相似文献,搜索用时 0 毫秒
1.
The activities of pyruvate carboxylase, phosphoenolpyruvate carboxylase and fructose diphosphatase in muscles from vertebrates and invertebrates 总被引:7,自引:7,他引:0 下载免费PDF全文
1. The activities of pyruvate carboxylase, phosphoenolpyruvate carboxylase and fructose diphosphatase in crude homogenates of vertebrate and invertebrate muscles are reported. 2. Pyruvate carboxylase activity was present in all insect flight muscles that were investigated: in homogenates of bumble-bee flight muscle the activity was inhibited by ADP and activated by acetyl-CoA, and it was distributed mainly in the mitochondrial fraction. This is the first demonstration of pyruvate carboxylase activity in muscle. However, the activity appears to be restricted to insect flight muscle, since it was not found in other invertebrate or vertebrate muscles. 3. Since the three enzymes were never found together in the same muscle, it is concluded that these enzymes cannot provide a pathway for the synthesis of glycogen from lactate or pyruvate in muscle. Other roles for these enzymes in muscle are suggested. In particular, pyruvate carboxylase may be present in insect flight muscle for the provision of oxaloacetate to support the large increase in activity of the tricarboxylic acid cycle which occurs when an insect takes flight. 相似文献
2.
3.
The effects of calcium ions on the activities of trehalase, hexokinase, phosphofructokinase, fructose diphosphatase and pyruvate kinase from various muscles 下载免费PDF全文
1. The effects of Ca2+ on the activities and regulatory properties of trehalase, hexokinase, phosphofructokinase, fructose diphosphatase and pyruvate kinase from vertebrate red and white muscle and insect fibrillar and non-fibrillar muscle have been investigated. These muscles were selected because of the possible difference in the role of glycolysis in energy production in the vertebrate muscles, and the possible difference in the role of Ca2+ in the control of contraction in the two types of insect muscle. An increase in Ca2+ concentration from 0.001μm to 10μm did not modify the activities nor did it modify the regulatory properties of these enzymes from these various muscles. 2. Concentrations of Ca2+ above 0.1mm inhibited the activities of hexokinase and phosphofructokinase from the different muscles. It has been suggested that this inhibition may provide the basis for a theory of regulation of glycolysis (Margreth et al., 1967). If phosphofructokinase is located within the sarcoplasmic reticulum, its activity will be inhibited when the muscle is at rest, but the release of Ca2+ from the reticulum during contraction will lead to a stimulation of its activity and hence an increase in glycolytic flux. The distribution of hexokinase and phosphofructokinase in the various cell fractions of these muscles was very variable. In particular, both enzymes were present almost exclusively in the 100000g supernatant fraction in the extracts of insect flight muscles. Thus there is no correlation between the properties of the enzymes and their distribution in muscle. 3. It is concluded that Ca2+ does not control the activities of the important regulatory enzymes of glycolysis in muscle. It is suggested that in some muscles the sensitivity of the control mechanism at the level of phosphofructokinase to changes in the concentration of AMP may be increased by a process known as `substrate-cycling'. 相似文献
4.
5.
6.
Female Gryllus assimilis subjected to 4.5-7.7h continuous tethered flight had significantly lower amounts of total lipid, triglyceride and total soluble carbohydrate compared with unflown controls. A much greater amount of total lipid (6.3mg) was used during flight compared with carbohydrate (0.14mg). Flown individuals also had substantially reduced amounts of injected, radiolabeled [(14)C]-oleic acid. Activities of lipid, carbohydrate and amino acid catabolizing enzymes in flight muscles of G. assimilis and its wing-polymorphic congener, G. firmus, were very similar to activities in insects which primarily utilize lipid to power flight. By contrast, enzyme activities were very different from those in insects which primarily or exclusively use carbohydrate or proline as a flight fuel. These results strongly implicate lipid as the major flight fuel in Gryllus. Previous studies have shown that lipid levels are higher in flight-capable (long-winged) G. firmus that have small ovaries compared with flightless (short-winged) females that have large ovaries. Results of the present and previous studies collectively indicate that elevated lipid in long-winged G. firmus represents an energetic cost of flight capability which reduces (trade-offs with) reproduction in Gryllus. In G. firmus, mass-specific activities of nearly all enzymes were considerably reduced in underdeveloped, and to a lesser degree in histolyzed muscle, compared with fully-developed flight muscle. An important exception was alanine aminotransferase, whose activity was the highest in histolyzed muscle, and which may be involved in the catabolism of amino acids derived from muscle degradation. Despite the dramatic differences in enzyme activity, electrophoretic profiles of soluble flight-muscle proteins differed only subtly between fully-developed and underdeveloped or histolyzed flight muscles. 相似文献
7.
Temperature and the regulation of enzyme activity in poikilotherms. Properties of lungfish fructose diphosphatase 下载免费PDF全文
1. The properties of fructose diphosphatase from liver of South American lungfish (Lepidosiren paradoxa) were examined. 2. Saturation curves for substrate (fructose diphosphate) and both cofactors (Mn(2+) and Mg(2+)) are sigmoidal and Hill plots of these results suggest about 2 interacting substrate and cofactor sites/molecule of enzyme. 3. Mn(2+) is an efficient positive modulator of the enzyme and K(a) for Mn(2+) is about 20-30-fold lower than the K(a) for Mg(2+). 4. Lungfish fructose diphosphatase is inhibited by low concentrations of AMP, and the affinity of the enzyme for AMP is insensitive to temperature. 5. The affinities of fructose diphosphatase for fructose diphosphate and Mn(2+) appear to be dependent on temperature, whereas affinity for Mg(2+) is temperature-independent. 6. The pH optimum of the enzyme depends on the presence of the particular cofactor. As pH increases, the K(a) values of both cations are lowered, maximum velocities are increased and the saturation curves for cofactor become hyperbolic. 7. The possible roles of these ions, pH and substrate in the modulation of fructose diphosphatase and gluconeogenic activity in the lungfish are discussed in relation to aestivation and temperature adaptation. 相似文献
8.
1. The properties of fructose diphosphatase from the liver of rainbow trout (Salmo gairdnerii) were examined over the physiological temperature range of the organism. 2. Saturation curves for substrate (fructose 1,6-diphosphate) and a cofactor (Mg(2+)) are sigmoidal, and Hill plots of the results suggest a minimum of two interacting fructose 1,6-diphosphate sites and two interacting Mg(2+) sites per molecule of enzyme. 3. Mn(2+)-saturation curves are hyperbolic, and the K(a) for Mn(2+), which inhibits the enzyme at high concentrations, is 50-100-fold lower than the K(a) for Mg(2+). 4. Fructose diphosphatase is inhibited by low concentrations of AMP; this inhibition appears to be decreased and reversed by increasing the concentrations of Mg(2+) and Mn(2+). Higher concentrations of AMP are required to inhibit the trout fructose diphosphatase in the presence of Mn(2+). 5. The affinities of fructose diphosphatase for fructose diphosphate and Mn(2+) appear to be temperature-independent, whereas the affinities for Mg(2+) and AMP are highly temperature-dependent. 6. The pH optimum of the enzyme depends on the concentrations of Mg(2+) and Mn(2+). In addition, pH determines the K(a) for Mg(2+); at high pH, K(a) for Mg(2+) is lowered. 7. The enzyme is inhibited by Ca(2+) and Zn(2+), and the inhibition is competitive with respect to both cations. 8. The possible roles of these ions and AMP in the modulation of fructose diphosphatase and gluconeogenic activity are discussed in relation to temperature adaptation. 相似文献
9.
A Leite J A Neto J F Leyton O Crivellaro H A el-Dorry 《The Journal of biological chemistry》1988,263(33):17527-17533
Phosphofructokinase from the flight muscle of bumblebee was purified to homogeneity and its molecular and catalytic properties are presented. The kinetic behavior studies at pH 8.0 are consistent with random or compulsory-order ternary complex. At pH 7.4 the enzyme displays regulatory behavior with respect to both substrates, cooperativity toward fructose 6-phosphate, and inhibition by high concentration of ATP. Determinations of glycolytic intermediates in the flight muscle of insects exposed to low and normal temperatures showed statistically significant increases in the concentrations of AMP, fructose 2,6-bisphosphate, and glucose 6-phosphate during flight at 25 degrees C or rest at 5 degrees C. Measuring the activity of phosphofructokinase and fructose 1,6-bisphosphatase at 25 and 7.5 degrees C, in the presence of physiological concentrations of substrates and key effectors found in the muscle of bumblebee kept under different environmental temperatures and activity levels, suggests that the temperature dependence of fructose 6-phosphate/fructose 1,6-bisphosphate cycling may be regulated by fluctuation of fructose 2,6-bisphosphate concentration and changes in the affinity of both enzymes for substrates and effectors. Moreover, in the presence of in vivo concentrations of substrates, phosphofructokinase is inactive in the absence of fructose 2,6-bisphosphate. 相似文献
10.
Temperature and the regulation of enzyme activity in poikilotherms. Regulatory properties of fructose diphosphatase from muscle of the Alaskan king-crab 总被引:1,自引:1,他引:0 下载免费PDF全文
Hans W. Behrisch 《The Biochemical journal》1971,121(3):399-409
1. The properties of fructose diphosphatase from skeletal muscle of the Alaskan king-crab (Paralithodes camtschatica) were examined over the physiological temperature range of the animal. 2. King-crab muscle fructose diphosphatase is first activated by Na(+) and NH(4) (+) and is then partially inhibited by these cations at concentrations higher than 10mm at 0 degrees , 8 degrees and 15 degrees C. Enzyme activity is stimulated by K(+) at 0 degrees C, but is curtailed at 8 degrees C and 15 degrees C, an effect that could render rate independent of temperature. 3. Affinity for substrate increases with decreasing temperature; below the temperature of acclimatization, K(m) for fructose 1,6-diphosphate increases, resulting in a complex U-shaped temperature-K(m) curve. 4. King-crab muscle fructose diphosphatase is inhibited by low concentrations of AMP. As with enzymes of other poikilotherms, inhibition by AMP is sensitive to temperature; the enzyme is least sensitive to inhibition by AMP near the temperature of acclimatization. 5. The affinity of fructose diphosphatase for fructose 1,6-diphosphate is enhanced by phosphoenolpyruvate, and this activation is temperature-sensitive; 0.5mm-phosphoenolpyruvate causes a sevenfold decrease in K(m) for fructose 1,6-diphosphate at 15 degrees C but a 25-fold decrease at 0 degrees C. 6. Phosphoenolpyruvate appears to decrease the affinity of king-crab muscle fructose diphosphatase for AMP at low temperature, whereas at the higher temperature it appears to enhance inhibition by AMP. Phosphoenolpyruvate was not observed to cause a reversal of inhibition of fructose diphosphatase activity by AMP. The identification of phosphoenolpyruvate as an activator of a rate-limiting step in gluconeogenesis permits the suggestion of a coupling of the controlling mechanisms of several steps in the glycolytic and gluconeogenic chains. 7. These findings suggest mechanisms for the maintenance and regulation of control of fructose diphosphatase activity in king-crab skeletal muscle at low temperature and under conditions that favour concomitant activity of phosphofructokinase. 相似文献
11.
12.
13.
K H Kiessling A Kiessling 《Comparative biochemistry and physiology. A, Comparative physiology》1984,77(1):75-78
beta R fibres (type I) constitute less than 10% of the semimembranosus and longissimus dorsi muscles and about twice as much of the gluteobiceps and flexor hallucis. Except for longissimus dorsi, 50% or more consist of alpha W (type IIB) fibres--in semimembranous, as much as 70%. Despite the comparatively large content of alpha W fibres, both the oxidative capacity and the capacity to metabolize fatty acids is high. Furthermore, unexpectedly small differences in oxidative capacity between the three fibre types beta R, alpha R and alpha W (I, IIA and IIB) are revealed by histochemical staining. These results indicate a tendency to bring the three fibre types closer together as regards metabolic activities, as an adaptation to the relatively tranquil life of this animal. However, the large content of alpha W fibres does not accord well with this way of life, as they guarantee quick movements. The comparatively high oxidative capacity of the alpha W fibres in the Svalbard reindeer and the fact that during starvation it is primarily alpha W fibres that contribute to the energy supply by protein degradation may nevertheless account for their abundant occurrence. 相似文献
14.
15.
16.
17.
18.
19.
20.
The properties of spinach leaf sucrose-phosphate synthetase (EC 2.4.1.14) and cytosolic fructose-1,6-bisphosphatase (EC 3.1.3.11) have been studied. These two enzymes have been considered to be important in the control of sucrose synthesis. Sucrose-phosphate synthetase from leaf tissue has not been studied in detail previously and we report a technique for purifying this enzyme 50-fold by chromatography on AH-Sepharose 4B. This method frees the enzyme from contaminants which interfere with assay procedures with little or no loss of activity. The partially purified enzyme has a Km for UDP-glucose of 7.1 mm and for fructose 6-phosphate of 0.8 mm. Fructose 1,6-bisphosphate, inorganic phosphate and UDP are strong inhibitors. The inhibition patterns of these suggest that the enzyme operates either by an ordered bi-bi or a Theorell-Chance mechanism. Partially purified cytosolic fructose-1,6-bisphosphatase is not only inhibited by AMP as previously reported, but is also inhibited by fructose 6-phosphate and UDP. From our observations, we conclude that sucrose biosynthesis is indeed controlled through these two enzymes and it appears that the rate of sucrose synthesis is largely dependent upon the supply of triose phosphate and ATP from the chloroplast. 相似文献