首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Mechanism responsible for the enlargement of end-expiratory lung volume (EELV) induced by chronic hypoxia remains unclear. The fact that the increase in EELV persists after return to normoxia suggests involvement of morphological changes. Because hypoxia has been also shown to activate lung mast cells, we speculated that they could play in the mechanism increasing EELV similar role as in vessel remodeling in hypoxic pulmonary hypertension (HPH). We, therefore, tested an effect of mast cells degranulation blocker disodium cromoglycate (DSCG) on hypoxia induced EELV enlargement. Ventilatory parameters, EELV and right to left heart weight ratio (RV/LV+S) were measured in male Wistar rats. The experimental group (H+DSCG) was exposed to 3 weeks of normobaric hypoxia and treated with DSCG during the first four days of hypoxia, control group was exposed to hypoxia only (H), two others were kept in normoxia as non-treated (N) and treated (N+DSCG) groups. DSCG treatment significantly attenuated the EELV enlargement (H+DSCG = 6.1+/-0.8; H = 9.2+/-0.9; ml +/-SE) together with the increase in minute ventilation (H + DSCG = 190+/-8; H = 273 +/- 10; ml/min +/- SE) and RV/LV + S (H + DSCG = 0.39 +/- 0.03; H = 0.50 +/- 0.06).  相似文献   

2.
Although chronic prenatal hypoxia is considered a major cause of persistent pulmonary hypertension of the newborn, experimental studies have failed to consistently find pulmonary hypertensive changes after chronic intrauterine hypoxia. We hypothesized that chronic prenatal hypoxia induces changes in the pulmonary vasculature of the chicken embryo. We analyzed pulmonary arterial reactivity and structure and heart morphology of chicken embryos maintained from days 6 to 19 of the 21-day incubation period under normoxic (21% O(2)) or hypoxic (15% O(2)) conditions. Hypoxia increased mortality (0.46 vs. 0.14; P < 0.01) and reduced the body mass of the surviving 19-day embryos (22.4 +/- 0.5 vs. 26.6 +/- 0.7 g; P < 0.01). A decrease in the response of the pulmonary artery to KCl was observed in the 19-day hypoxic embryos. The contractile responses to endothelin-1, the thromboxane A(2) mimetic U-46619, norepinephrine, and electrical-field stimulation were also reduced in a proportion similar to that observed for KCl-induced contractions. In contrast, no hypoxia-induced decrease of response to vasoconstrictors was observed in externally pipped 21-day embryos (incubated under normoxia for the last 2 days). Relaxations induced by ACh, sodium nitroprusside, or forskolin were unaffected by chronic hypoxia in the pulmonary artery, but femoral artery segments of 19-day hypoxic embryos were significantly less sensitive to ACh than arteries of control embryos [pD(2) (= -log EC(50)): 6.51 +/- 0.1 vs. 7.05 +/- 0.1, P < 0.01]. Pulmonary vessel density, percent wall area, and periarterial sympathetic nerve density were not different between control and hypoxic embryos. In contrast, hypoxic hearts showed an increase in right and left ventricular wall area and thickness. We conclude that, in the chicken embryo, chronic moderate hypoxia during incubation transiently reduced pulmonary arterial contractile reactivity, impaired endothelium-dependent relaxation of femoral but not pulmonary arteries, and induced biventricular cardiac hypertrophy.  相似文献   

3.
Hypoxia in neonates causes dysfunction of excitatory and inhibitory neurotransmission resulting in permanent brain damage. The present study is to understand the cerebellar GABA(A) receptor alterations and neuroprotective effect of glucose supplementation prior to current sequence of resuscitation - oxygen and epinephrine supplementation in hypoxic neonatal rats. Hypoxic insult caused a significant decrease in GABA(A) receptor number along with down regulated expression of GABA(Aα1,) GABA(Aα5), GABA(Aδ) and GABA(Aγ3) receptor subunits in the cerebellum which accounts for the respiratory inhibition. Hypoxic rats supplemented with glucose alone and with oxygen showed a reversal of the receptor alterations and changes in GABA(A) receptor subunits expression to near control. Glucose can reduce ATP-depletion-induced alterations in GABA receptors, thereby assisting in overcoming the neuronal damage caused by hypoxia. Resuscitation with oxygen alone and epinephrine was less effective in reversing the receptor alterations. The reduction in the GABA(A) receptors functional regulation during hypoxia plays an important role in cerebellar damage. Resuscitation with glucose alone and glucose with oxygenation to hypoxic neonatal rats helps in protecting the brain from severe hypoxic damage.  相似文献   

4.
J Egel  J Pfanstiel  J B Puschett 《Life sciences》1985,37(18):1675-1681
Previous studies have indicated that the thiazide diuretics exert effects on proximal electrolyte transport. To determine whether the locus of these effects is at the brush border membrane (BBM) and if renal metabolism is affected, adult female Sprague-Dawley rats were acutely treated with either 1 mg/kg metolazone, 20 mg/kg chlorothiazide followed by a 20 mg/kg/hr maintenance infusion, 10 mg/kg acetazolamide followed by a 10 mg/kg/hr maintenance infusion, or the vehicles only. Administration of these agents resulted in an approximately tenfold increase in sodium excretion. Neither urinary phosphate nor inulin excretion changed significantly in any group. Sodium dependent BBM vesicle phosphate transport was examined at 0.15, 0.5, and 1 and 120 minute incubation periods in the diuretic treated groups and their respective control groups. Decreased uptake was seen in all pre-equilibrium time points in rats treated with metolazone: 0.15 minutes: 221 +/- 24 pmoles/mg protein (pmol/mg prot) in control rats versus (vs) 185 +/- 23 pmoles/mg prot in metolazone-treated animals (P less than .05) ; 0.5 minutes: 463 +/- 54 vs 369 +/- 49 pmol/mg prot (P less than .005); 1 minute: 549 +/- 74 vs 460 +/- 61 pmol/mg prot (P less than .05); no significant difference in phosphate transport was noted at the two hour equilibrium time point. No significant differences in sodium dependent phosphate transport existed between chlorothiazide or acetazolamide treated rats and control animals. Substrate-stimulated renal gluconeogenesis did not differ between metolazone treated and control animals. We therefore conclude that metolazone inhibits phosphate transport through an effect on the BBM and does not affect renal gluconeogenesis in the rat.  相似文献   

5.
6.
This experiment was designed to investigate whether chronic hypoxia affect rat pulmonary artery (PA) endothelium-dependent relaxation and the content of cGMP in PA. Both ACh and ATP could induce endothelium-dependent relaxation of PA, not prevented by indomethacin, but completely abolished by methylene blue. These results indicated that vasodilatation of PA induced by both ACh and ATP is mediated by EDRF (endothelium-derived relaxing factor). Chronic hypoxia significantly depressed PA endothelium-dependent relaxation. The percent relaxation of IPPA and EPPA by 10(-6) mol/L ACh was 61.3% and 59.2% of those in control, and the percent relaxation of IPPA and EPPA by 1.8 x 10(-5) mol/L ATP was 64.9% and 55.3% respectively of the control. Chronic hypoxia also depressed SNP-induced endothelium-independent relaxation. Chronic hypoxia significantly decreased the content of cGMP in PA. The basic level of cGMP was 51.9 +/- 5.7 (n = 14) in hypoxia group and 84.9 +/- 9.7 (n = 14) pmol/g wet wt. in control group (P less than 0.01). After treatment of PA with ACh (10(-7) mol/L), the content of cGMP was 91.4 +/- 7.3 (n = 5) pmol/g wet wt. in hypoxic group and 240.8 +/- 30.6 (n = 5) pmol/g wet wt. in control group (P less than 0.01). Our data suggest that chronic hypoxia might depress rat pulmonary artery endothelium-dependent relaxation through the inhibition of soluble guanylate cyclase in vascular smooth muscle cells.  相似文献   

7.
The effect of maternal hypoxia on the modification of the fetal brain cell membrane N-methyl-d-aspartate (NMDA) receptor and its modulatory sites was investigated. Experiments were conducted in pregnant guinea pigs of 60 days of gestation. Guinea pig fetuses were exposed to maternai hypoxia (FiO2=7%) for 60 minutes. Tissue hypoxia in the fetal brain was documented biochemically by decreased levels of ATP and phosphocreatine (91.3% and 88.6% lower than normoxia, respectively). MK-801 binding characteristics (Bmax = number of receptors, Kd = affinity of receptor) were used as an index of NMDA receptor modification. P2 membrane fraction was prepared from the cortex of normoxic and hypoxic fetal brain and washed thoroughly before carrying out the binding assay. In hypoxic brains, Bmax decreased from the normoxic control level 0.79±0.03 pmol/mg protein to 0.58±0.03 pmol/mg protein (P<0.005) and Kd value decreased (increased affinity) from 8.54±0.27 nM to 4.01±0.23 nM (P<0.005) respectively. The MK-801 binding in the absence of added glutamate and glycine in hypoxic brain was 100% higher as compared to controls, indicating an increased sensitivity of the NMDA receptor to activation. The spermine dependent maximum activation of the NMDA receptor increased to 44% in the hypoxic animals as compared to 25% in controls. The Mg2+ response of the NMDA receptor was not affected by hypoxia. The increased affinity and increased basal activation (tone) of the NMDA receptor during hypoxia, as well as its increased activation by spermine, would hyperstimulate the NMDA receptor-ion channel complex function which could increase the susceptibility of the fetal brain to hypoxia. The results of this study indicate that hypoxia causes differential and selective modification of specific sites (recognition, co-activator, and modulatory) of the NMDA receptor ion channel complex. The hypoxia-induced modification of the NMDA receptor modulatory sites appears to be the potential mechanism of neuroexcitotoxicity.  相似文献   

8.
To investigate the, interaction between -aminobutyric acid (GABA) and benzodiazepine (BZD) receptor sites during development, the time-course of appearance of flunitrazepam (FNZ) binding sites and their pharmacological characterization were studied in developing chick optic lobe. At the earliest stage examined, embryonic day (Ed) 12, the receptor density was 30.9 % (0.05±0.01 pmol/mg protein) of that found in the chick optic lobes of adult chicks. The adult value was achieved on Ed 16 (0.16±0.01 pmol/mg protein). After this stage there was a sharp and transient increase in specific [3H]FNZ binding of about two-fold reaching a maximal value between hatching and the postnatal day (pnd) 2 (0.33±0.01 pmol/mg protein). Scatchard analysis at different stages of development revealed the presence of a single population of specific FNZ binding sites. The increase in [3H]FNZ binding during development was due to a large number of binding sites while their affinity remained unchanged. Competition experiments in the chick optic lobe revealed that the order of potency for displacement of specific [3H]FNZ binding paralleled the pharmacological potency of the BZDs tested. The IC50 s for clonazepam, flunitrazepam, Ro 15-1788 and chlordiazepoxide were 3.02, 4.30, 0.32, and 4778.64 nM respectively. Ro 5-4864, a potent inhibitor of BZD binding to peripheral tissues, had no effect on specific [3H]FNZ binding indicating that only central BZD binding sites are present in the chick optic lobe. The peak of maximal expression of BZD receptor sites precedes in 5–6 days the peak of GABA receptor sites indicating a precocious development of BZD receptor sites. The different appearance of both peaks may represent important events during development probably related to synaptogenesis.  相似文献   

9.
To investigate the effects of training in normoxia vs. training in normobaric hypoxia (fraction of inspired O2 = 20.9 vs. 13.5%, respectively) on the regulation of Na+-K+-ATPase pump concentration in skeletal muscle (vastus lateralis), 9 untrained men, ranging in age from 19 to 25 yr, underwent 8 wk of cycle training. The training consisted of both prolonged and intermittent single leg exercise for both normoxia (N) and hypoxia (H) during a single session (a similar work output for each leg) and was performed 3 times/wk. Na+-K+-ATPase concentration was 326 +/- 17 (SE) pmol/g wet wt before training (Control), increased by 14% with N (371 +/- 18 pmol/g wet wt; P < 0.05), and decreased by 14% with H (282 +/- 20 pmol/g wet wt; P < 0.05). The maximal activity of citrate synthase, selected as a measure of mitochondrial potential, showed greater increases (P < 0.05) with H (1.22 +/- 0.10 mmol x h-1 x g wet wt-1; 70%; P < 0.05) than with N (0.99 +/- 0.10 mmol x h-1 x g wet wt-1; 51%; P < 0.05) compared with pretraining (0.658 +/- 0.09 mmol x h-1 x g wet wt-1). These results demonstrate that normobaric hypoxia induced during exercise training represents a potent stimulus for the upregulation in mitochondrial potential while at the same time promoting a downregulation in Na+-K+-ATPase pump expression. In contrast, normoxic training stimulates increases in both mitochondrial potential and Na+-K+-ATPase concentration.  相似文献   

10.
Exposure of the CNS to hypoxia is associated with cell death. Our aim was to establish a temporal correlation between cellular and molecular alterations induced by an acute hypoxia evaluated at different post-hypoxia (p-h) times and at two stages of chick optic lobe development: embryonic days (ED) 12 and 18. TUNEL assays at ED12 disclosed a significant increase (300%) in pyknotic cells at 6 h p-h, while at ED18 no morphological changes were observed in hypoxic versus controls. At ED12 there was a significant increase (48%) in Bcl-2 levels at the end of the hypoxic treatment, followed by a significant increase of active caspase-9 (49%) and active caspase-3 (58%) at 30 and 60 min p-h, respectively, while at ED18 no significant changes were observed. These findings indicate that prenatal hypoxia produces an equilibrated imbalance in both pro- and anti-apoptotic proteins that culminates in a process of cell death, present at earlier stages of development.  相似文献   

11.
The hypothesis was tested that hypoxia increases AMP-activated protein kinase (AMPK) activity independently of AMP concentration ([AMP]) in heart. In isolated perfused rat hearts, cytosolic [AMP] was changed from 0.2 to 16 microM using metabolic inhibitors during both normal oxygenation (95% O2-5% CO2, normoxia) and limited oxygenation (95% N2-5% CO2, hypoxia). Total AMPK activity measured in vitro ranged from 2 to 40 pmol.min(-1).mg protein(-1) in normoxic hearts and from 5 to 55 pmol.min(-1).mg protein(-1) in hypoxic hearts. The dependence of the in vitro total AMPK activity on the in vivo cytosolic [AMP] was determined by fitting the measurements from individual hearts to a hyperbolic equation. The [AMP] resulting in half-maximal total AMPK activity (A0.5) was 3 +/- 1 microM for hypoxic hearts and 28 +/- 13 microM for normoxic hearts. The A0.5 for alpha2-isoform AMPK activity was 2 +/- 1 microM for hypoxic hearts and 13 +/- 8 microM for normoxic hearts. Total AMPK activity correlated with the phosphorylation of the Thr172 residue of the AMPK alpha-subunit. In potassium-arrested hearts perfused with variable O2 content, alpha-subunit Thr172 phosphorylation increased at O2 < or = 21% even though [AMP] was <0.3 microM. Thus hypoxia or O2 < or = 21% increased AMPK phosphorylation and activity independently of cytosolic [AMP]. The hypoxic increase in AMPK activity may result from either direct phosphorylation of Thr172 by an upstream kinase or reduction in the A0.5 for [AMP].  相似文献   

12.
Survival in severe hypoxia such as occurs in high altitude requires previous acclimatization, which is acquired over a period of days to weeks. It was unknown whether intrinsic mechanisms existed that could be rapidly induced and could exert immediate protection on unacclimatized individuals against acute hypoxia. We found that mice pretreated with whole-body hypoxic preconditioning (WHPC, 6 cycles of 10-min hypoxia-10-min normoxia) survived significantly longer than control animals when exposed to lethal hypoxia (5% O2, survival time of 33.2 +/- 6.1 min vs. controls at 13.8 +/- 1.2 min, n = 10, P < 0.005). This protective mechanism became operative shortly after WHPC and remained effective for at least 8 h. Accordingly, mice subjected to WHPC demonstrated improved gas exchange when exposed to sublethal hypoxia (7% O2, arterial blood Po2 of 49.9 +/- 4.2 vs. controls at 39.7 +/- 3.6 Torr, n = 6, P < 0.05), reduced formation of pulmonary edema (increase in lung water of 0.491 +/- 0.111 vs. controls at 0.894 +/- 0.113 mg/mg dry tissue, n = 10, P < 0.02), and decreased pulmonary vascular permeability (lung lavage albumin of 7.63 +/- 0.63 vs. controls at 18.24 +/- 3.39 mg/dl, n = 6-10, P < 0.025). In addition, the severity of cerebral edema caused by exposure to sublethal hypoxia was also reduced after WHPC (increase in brain water of 0.254 +/- 0.052 vs. controls at 0.491 +/- 0.034 mg/mg dry tissue, n = 10, P < 0.01). Thus WHPC protects unacclimatized mice against acute and otherwise lethal hypoxia, and this protection involves preservation of vital organ functions.  相似文献   

13.
The present study tests the hypothesis that pretreatment with allopurinol, a xanthine oxidase inhibitor, will prevent modification of the NMDA receptor during cerebral hypoxia in newborn piglets. Eighteen newborn piglets were studied. Six normoxic control animals were compared to six untreated hypoxic and six allopurinol (20 mg/kg i.v.) pretreated hypoxic piglets. Cerebral hypoxia was induced by lowering the FiO2 to 0.05–0.07 for 1 hour and tissue hypoxia was confirmed biochemically by the measurement of ATP and phosphocreatine. Brain cell membrane Na+,K+-ATPase activity was determined to assess membrane function. Na+,K+-ATPase activity was decreased from control in both the untreated and treated hypoxic animals (46.0 ± 1.0 vs 37.9 ± 2.5 and 37.3 ± 1.4 mol Pi/mg protein/hr, respectively, p < 0.05). [3H]MK-801 binding was determined as an index of NMDA receptor modification. The receptor density (Bmax) in the untreated hypoxic group was decreased compared to normoxic control (1.09 ± 0.17 vs 0.68 ± 0.22 pmol/mg protein, p < 0.01). The dissociation constant (Kd) was also decreased in the untreated group (10.0 ± 2.0 vs 4.9 ± 1.4 nM, p < 0.01), indicating an increase in receptor affinity. However, in the allopurinol treated hypoxic group, the Bmax (1.27 ± 0.09 pmol/mg protein) was similar to normoxic control and the Kd (8.1 ± 1.2 nM, p < 0.05) was significantly higher than in the untreated hypoxic group. The data show that the administration of allopurinol prior to hypoxia prevents hypoxia-induced modification of the NMDA receptor-ion channel binding characteristics, despite neuronal membrane dysfunction. By preventing NMDA receptor-ion channel modification, allopurinol may produce a neuromodulatory effect during hypoxia and attenuate NMDA receptor mediated excitotoxicity.  相似文献   

14.
The effects of tagetone on flunitrazepam (FNTZ) binding to synaptosomal membranes from chick brains in the presence and absence of allosteric modulations induced by gamma-aminobutyric acid (GABA) were investigated. Tagetone, at 50 micrograms/ml (final concentration), decreased the binding affinity of [3H]FNTZ to synaptosomal membranes form chick brain (Kd = 3.34 +/- 0.36 nM without tagetone and Kd,t = 5.86 +/- 0.86 nM with tagetone; p < 0.05, two tailed Student's t-test) without affecting maximal binding (Bmax = 488 +/- 24 fmoles/mg protein, and Bmax,t = 500 +/- 25 fmoles/mg protein in the absence and in the presence of tagetone respectively). The potency of GABA to stimulate [3H]FNTZ binding increased in the presence of tagetone (EC50 values were 2.78 and 1.12 microM with and without tagetone respectively). GABA was able to decrease merocyanine delta A570-610 values in a concentration dependent manner; half maximal effect was attained at a GABA concentration of 34 +/- 13 microM. Tagetone, at a concentration of 50 micrograms/ml and in the presence of GABA 30 microM or 60 microM, enhanced the ability of GABA alone on decreasing delta A570-610. Tagetone alone did not change delta A570-610 values. FNTZ, a well known GABA modulator, could also potentiate the effect of GABA. Theoretical calculations indicate that the effects on merocyanine delta A570-610 value are mainly exerted at the membrane potential level (delta psi m). The present results strongly suggest that tagetone affected the function of GABAA receptor in a complex way: on the one hand it impaired FNTZ binding: on the other hand tagetone improved both the coupling between FNTZ and GABA binding sites and it enhanced GABA-induced chloride permeability. Changes in the geometrical and electrostatic properties of the self-organized membrane structure may account for these effects of tagetone.  相似文献   

15.
The effects of tagetone on flunitrazepam (FNTZ) binding to synaptosomal membranes from chick brains in the presence and absence of allosteric modulations induced by gamma-aminobutyric acid (GABA) were investigated. Tagetone, at 50 mu g/ml (final concentration), decreased the binding affinity of [3H]FNTZ to synaptosomal membranes form chick brain (Kd=3.34 +/- 0.36 nM without tagetone and Kd,t=5.86 +/- 0.86 nM with tagetone; p&lt;0.05, two tailed Student's t-test) without affecting maximal binding (Bmax=488 +/- 24 fmoles/mg protein, and Bmax,t=500 +/- 25 fmoles/ mg protein in the absence and in the presence of tagetone respectively). The potency of GABA to stimulate [3H]FNTZ binding increased in the presence of tagetone (EC50 values were 2.78 and 1.12 mu M with and without tagetone respectively). GABA was able to decrease merocyanine Delta A570-610 values in a concentration dependent manner; half maximal effect was attained at a GABA concentration of 34 +/- 13 mu M. Tagetone, at a concentration of 50 mu g/ml and in the presence of GABA 30 mu M or 60 mu M, enhanced the ability of GABA alone on decreasing Delta A570-610. Tagetone alone did not change Delta A570-610 values. FNTZ, a well known GABA modulator, could also potentiate the effect of GABA. Theoretical calculations indicate that the effects on merocyanine Delta A value are mainly exerted at the membrane potential level (Delta Psim). The present results strongly suggest that tagetone affected the function of GABAA receptor in a complex way: on the one hand it impaired FNTZ binding; on the other hand tagetone improved both the coupling between FNTZ and GABA binding sites and it enhanced GABA-induced chloride permeability. Changes in the geometrical and electrostatic properties of the self-organized membrane structure may account for these effects of tagetone.  相似文献   

16.
We developed a microassay for heme oxygenase, in which bilirubin (BR) production was measured by HPLC, and compared it to previously reported spectrophotometric methods. The microassay required as little as 5 mg wet human, rat, or chick embryo liver. Using the HPLC assay, values for heme oxygenase activity in extracts (10,000 g supernatant) of normal human liver obtained by needle biopsies were 44 +/- 7 (pmol BR.min-1.mg protein-1). Spectrophotometric assays of homogenates of human liver resulted in low values for heme oxygenase, due to unknown sources of interference. Comparative values of microsomal heme oxygenase activity were 294 +/- 25, 95 +/- 3, and 87 +/- 9 pmol BR.min-1.mg protein-1 for chick, rat, and human livers, respectively.  相似文献   

17.
The pathophysiologic mechanism by which chronic hypoxia causes pulmonary hypertension is unknown. If anti-platelet agents, or other pharmacologic interventions, altered the pulmonary vascular changes induced by hypoxia, information concerning the pathogenesis of the pulmonary hypertension or the potential therapeutic usefulness of the drugs might be obtained. In Study 1, rats exposed to chronic hypobaric hypoxia (PB = 520 mmHg) had a pulmonary arterial medial thickness of 6.7 +/- 0.6 mu compared to 4.1 +/- 0.2 mu* for control, normoxic rats (*p less than 0.05). Administration of dipyridamole (2mg/kg/day), or sulfinpyrazone (11 mg/kg/day) in the drinking water reduced the medial thickness to 5.0 +/- 0.3 mu* and 5.4 +/- 0.5 mu* respectively, thus suggesting the possible involvement of platelets in the response of the media to chronic hypoxia. In Study 2, hypoxic rats treated with the calcium blocker, flunarizine, were found to have less medial hypertrophy than a control group of hypoxic rats. This observation suggests that a decrease in transmembrane calcium flux may also reduce medial hypertrophy.  相似文献   

18.
It is known that an accumulation of lipoperoxidative aldehydes malondialdehyde (MDA) and 4-hydroxynonenal (HNE) takes place in liver mitochondria during aging. The existence and role of an increased extra- and intra-cellular oxidative stress in diabetes, an aging-accelerating disease, is currently under discussion. This report offers evidence that lipoperoxidative aldehydes accumulate in liver microsomes and mitochondria at a higher rate in spontaneously diabetic BB/WOR rats than in control non-diabetic animals (HNE content, diabetes vs. control: microsomes 80.6+/-19.9 vs. 25.75+/-3.6 pmol/mg prot, p = .024; mitochondria 77.4+/-15.4 vs. 26.5+/-3.5 pmol/mg prot, p = .0103). Liver subcellular fractions from diabetic rats, when exposed to the peroxidative stimulus ADP/Fe, developed more lipoperoxidative aldehydes than those from non diabetic rats (HNE amount, diabetes vs. control: microsomes 3.60+/-0.37 vs. 2.33+/-0.22 nmol/mg prot, p = .014; mitochondria 3.62+/-0.26 vs. 2.30+/-0.17 nmol/mg prot, p = .0009). Liver subcellular fractions of diabetic rats developed more fluorescent chromolipids related to HNE-phospholipid adducts, either after in vitro peroxidation (microsomes: p = .0045; mitochondria: p = .0023) or by exposure to exogenous HNE (microsomes: p = .049; mitochondria: p = .0338). This higher susceptibility of diabetic liver membranes to the non-enzymatic attack of HNE may be due to an altered phospholipid composition. Moreover, a decreased activity of the HNE-metabolizing systems can be involved: diabetic liver mitochondria and microsomes were unable to consume exogenous HNE at the same rate as non-diabetic membranes; the difference was already significant after 5' incubation (microsomes p<.001; mitochondria p<.001). These data show an increased oxidative stress inside the hepatocytes of diabetic rats; the impairment of the HNE-metabolizing systems can play a key role in the maintenance and propagation of the damage.  相似文献   

19.
BACKGROUND AND OBJECTIVE: Acute hypoxia is associated with apoptosis and increase in ceramide levels in various organs. To assess the effect of chronic hypoxia on ceramide accumulation in the lungs and kidneys, we utilized an animal model mimicking cyanotic heart disease. METHODS: Rats were placed in a hypoxic environment at birth and oxygen levels were maintained at 10% in an air-tight Plexiglas chamber. Controls remained in room air. Animals were sacrificed and the lung and kidneys were harvested and weighed at 1 and 4 weeks, respectively. Ceramide levels were measured using a modified diacylglycerol kinase assay. RESULTS: Significant polycythemia developed in the hypoxic rats at 1 and 4 weeks. Indexed lung and kidney masses were significantly increased in the hypoxic animals as compared to controls at 1 and 4 weeks, respectively. The ceramide levels in the hypoxic lungs and kidneys were not significantly different from control groups at 1 and 4 weeks. [Ceramide/phosphate ratio in the kidneys was 1.28 +/- 0.17 (C) versus 1.18 +/- 0.12 (H) at 1 week; P = 0.39, and 1.46 +/- 0.08 (C) versus 1.33 +/- 0.15 (H) at 4 weeks (P = 0.44)] and [ceramide/phosphate ratio (pmol/nmol) in the lungs was 2.29 +/- 0.14 (C) versus 1.98 +/- 0.12 (H) at 1 week (P = 0.17), and 2.42 +/- 0.16 (C) versus 2.30 +/- 0.05 (H) at 4 weeks, P = 0.34]. CONCLUSION: The response of lungs and kidneys to chronic hypoxia includes increase in indexed mass and lack of ceramide accumulation. This is similar to the response previously reported in the chronically hypoxic brain and heart. Thus, various organs appear to have similar ceramide response pattern to chronic hypoxia.  相似文献   

20.
The effect of prolonged hypobaric hypoxia on growth of fetal sheep   总被引:1,自引:0,他引:1  
The effect of prolonged hypobaric hypoxia on fetal sheep was studied. Pregnant ewes were subjected to an atmospheric pressure of 429 torr from 30 days to 135 days gestation (long-term study). Average fetal weight for the hypoxaemic group (3.35 +/- 0.53 kg; n = 4; mean +/- SD) was significantly lower than for the controls (4.23 +/- 0.29 kg; n = 7; P less than 0.05). A short-term study was undertaken with fetuses (n = 8) which were catheterized at 110 days gestation and whose dams were subjected to hypobaric hypoxia from 120 to 141 days gestation. The mean carotid PO2 of fetuses in the hypoxic group was 12.7 +/- 0.7 torr compared to 22.7 +/- 0.7 torr for the control group (n = 9; P less than 0.001) throughout the period of treatment. Fetal arterial oxygen content fell from 6.5 +/- 1.7 to 4.9 +/- 0.4 ml/dl (P less than 0.05), but rose to control values after 7 days due to an increase in fetal haemoglobin concentration (9.6 +/- 1.1 to 13.0 +/- 1.9 g/dl, P less than 0.001) and packed cell volume (33 +/- 3 to 45 +/- 4%, P less than 0.001). In the hypoxaemic fetuses, pH fell initially from 7.34 +/- 0.02 to 7.28 +/- 0.03 (P less than 0.05) and then recovered to 7.32 +/- 0.03 within 24 h. Mean fetal weight of the short-term hypoxic group was 3.46 +/- 0.72 kg compared to 4.15 +/- 0.51 for the control group (P less than 0.05). Both long- and short-term hypoxia produced a similar reduction in fetal body weight. The adrenal glands were significantly heavier in the hypoxic fetuses than in controls. Placental weight was not effected by hypoxia, but exposure from 30 days gestation reduced the average size of cotyledons (P less than 0.05). It is concluded that the fetal sheep increases its ability to acquire and transport oxygen in response to chronic hypoxia, but this compensation is not sufficient to prevent growth retardation or changes to the pattern of tissue growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号