首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi   总被引:1,自引:0,他引:1  
  相似文献   

3.
In the cockroaches Periplaneta americana, Periplaneta australasiae, Leucophaea maderae, and Nauphoeta cinerea, undiluted haemolymph, undiluted haemolymph to which 10% solid trehalose was added, and haemolymph diluted 100 or more times with 1% trehalose solution showed approximately equal trehalase activities (3 to 8 mg/ml per hr). No evidence for the presence of a trehalase inhibitor was found.Freshly drawn haemolymph of Periplaneta americana contained 14 to 16 mg trehalose/ml, which on standing was hydrolyzed to glucose at a rate of 4 to 8 mg/ml per hr. In this cockroach, the rate of haemolymph trehalose turnover was only 1.3 mg/ml per hr. This means that in vitro trehalose is hydrolyzed by undiluted haemolymph at several times the rate at which it is replaced in the haemolymph of the intact insect. The mechanism through which trehalose and trehalase can coexist in the haemolymph of the intact cockroach remains therefore unexplained.  相似文献   

4.
5.
The yeastTorulopsis candida NCYC 576 was found to transport acyclic polyols (D-arabinitol,L-arabinitol, ribitol, xylitol,D-mannitol,D-glucitol and erythritol) and monosaccharides (D-galactose,L-sorboseD-xylose) by an active process, reaching high intracellular concentrations, making use of four different carrier systems: (1) high-affinity for polyols, (2) high-affinity for monosaccharides, (3) lowaffinity for both polyols and monosaccharides, and (4) specific high-affinity for erythritol andD-ribose.  相似文献   

6.
The intestinal resident Candida glabrata opportunistically infects humans. However few genetic factors for adaptation in the intestine are identified in this fungus. Here we describe the C. glabrata CYB2 gene encoding lactate dehydrogenase as an adaptation factor for survival in the intestine. CYB2 was identified as a virulence factor by a silkworm infection study. To determine the function of CYB2, we analysed in vitro phenotypes of the mutant Δcyb2. The Δcyb2 mutant grew well in glucose medium under aerobic and anaerobic conditions, was not supersensitive to nitric oxide which has fungicidal-effect in phagocytes, and had normal levels of general virulence factors protease, lipase and adherence activities. A previous report suggested that Cyb2p is responsible for lactate assimilation. Additionally, it was speculated that lactate assimilation was required for Candida virulence because Candida must synthesize glucose via gluconeogenesis under glucose-limited conditions such as in the host. Indeed, the Δcyb2 mutant could not grow on lactate medium in which lactate is the sole carbon source in the absence of glucose, indicating that Cyb2p plays a role in lactate assimilation. We hypothesized that Cyb2p-mediated lactate assimilation is necessary for proliferation in the intestinal tract, as the intestine is rich in lactate produced by bacteria flora, but not glucose. The Δcyb2 mutant showed 100-fold decreased adaptation and few cells of Saccharomyces cerevisiae can adapt in mouse ceca. Interestingly, C. glabrata could assimilate lactate under hypoxic conditions, dependent on CYB2, but not yeast S. cerevisiae. Because accessible oxygen is limited in the intestine, the ability for lactate assimilation in hypoxic conditions may provide an advantage for a pathogenic yeast. From those results, we conclude that Cyb2p-mediated lactate assimilation is an intestinal adaptation factor of C. glabrata.  相似文献   

7.
  • 1.1. The rates at which the pulmonate snail B. glabrata takes up soluble glucose and maltose from a defined medium were evaluated by measuring the buccal mass pulsation rate, the drinking rate, net changes in the concentrations of sugars in the medium and the rate of accumulation of 14C labelled maltose.
  • 2.2. It was demonstrated that B. glabrata was capable of net accumulation of maltose and glucose via the mouth and integument, respectively.
  • 3.3. Some of the maltose in the medium was also hydrolysed to glucose by exogenous snail enzymes.
  • 4.4. The mechanisms involved in the accumulation of the sugars and the relevance of the results to the biochemical ecology of the snails and other aquatic invertebrates are discussed.
  相似文献   

8.
The stability of the amorphous trehalose prepared by using several procedures is presented and discussed. Amorphization is shown to occur by melting (T(m)=215 degrees C) or milling (room temperature) the crystalline anhydrous form TRE-beta. Fast dehydration of the di-hydrate crystalline polymorph, TRE-h, also produces an amorphous phase. Other dehydration procedures of TRE-h, such as microwave treatment, supercritical extraction or gentle heating at low scan rates, give variable fractions of the polymorph TRE-alpha, that undergo amorphization upon melting (at lower temperature, T(m)=130 degrees C). Additional procedures for amorphization, such as freeze-drying, spray-drying or evaporation of trehalose solutions, are discussed. All these procedures are classified depending on the capability of the undercooled liquid phase to undergo cold crystallization upon heating the glassy state at temperatures above the glass transition temperature (T(g)=120 degrees C). The recrystallizable amorphous phase is invariably obtained by the melt of the polymorph TRE-alpha, while other procedures always give an amorphous phase that is unable to crystallize above T(g). The existence of two different categories is analyzed in terms of the transformation paths and the hypothesis that the systems may exhibit different molecular mobilities.  相似文献   

9.

Background  

Natural acquisition of novel genes from other organisms by horizontal or lateral gene transfer is well established for microorganisms. There is now growing evidence that horizontal gene transfer also plays important roles in the evolution of eukaryotes. Genome-sequencing and EST projects of plant and animal associated nematodes such as Brugia, Meloidogyne, Bursaphelenchus and Pristionchus indicate horizontal gene transfer as a key adaptation towards parasitism and pathogenicity. However, little is known about the functional activity and evolutionary longevity of genes acquired by horizontal gene transfer and the mechanisms favoring such processes.  相似文献   

10.
The influence of nitrate and ammonium assimilation on the flow of recently fixed carbon has been determined in intact Anacystis nidulans cells actively fixing CO2. Assimilation of nitrate or ammonium resulted in substantial increases in the incorporation of carbon into acid-soluble metabolites, the magnitude of the effect being dependent on the irradiance. The radiolabel in sugar phosphate was virtually unaffected by nitrogen assimilation, whereas that in organic acids and, in particular, in amino acids was markedly increased. Enhancement of carbon incorporation into amino acids induced by nitrogen assimilation was not accompanied by parallel increases in the size of the amino acid pools. This resulted in an appreciable increase of the specific radioactivity of most amino acids under conditions of nitrogen assimilation. The data indicate that nitrate and ammonium assimilation induce an enhancement of carbon flow through the glycolytic and the tricarboxylic-acid pathways to oxaloacetate and α-ketoglutarate, as well as a stimulation of amino-acid turnover. These effects were more pronounced at saturating irradiance. We thank the Dirección General de Investigación Científica y Técnica, Spain (research grant PB88-0019) and the Plan Andaluz de Investigación (grupo 3101) for financial support, and P. Pérez de León for excellent secretarial assistance.  相似文献   

11.
目的:为筛选出一株产海藻糖合酶的菌株,并以此菌的全DNA为模板,克隆出产海藻糖合酶的目的基因片段。方法:实验过程中采用了常规筛选菌种、快速提取细菌全基因、显微镜观察菌种、热启动PCR技术、电泳纯化回收基因片段、EcoRⅠ和HindⅢ双酶切鉴定目的基因片段等方法。结果:在电镜下可观察到有芽孢、杆菌;菌株16S rRNA基因扩增产物共计1490个碱基;PCR方法扩增出阳性克隆大约1700bp的基因片段。结论:通过生理、形态、结构特征分析及16S rRNA基因全序列比较得出结论:筛选到一株短小芽孢杆菌;PCR扩增出阳性克隆片段,全长1722bp,为实验所要的编码海藻糖合酶的基因片段。  相似文献   

12.
Flies without Trehalose   总被引:2,自引:0,他引:2  
Living organisms adapt to environmental changes through metabolic homeostasis. Sugars are used primarily for the metabolic production of ATP energy and carbon sources. Trehalose is a nonreducing disaccharide that is present in many organisms. In insects, the principal hemolymph sugar is trehalose instead of glucose. As in mammals, hemolymph sugar levels in Drosophila are regulated by the action of endocrine hormones. Therefore, the mobilization of trehalose to glucose is thought to be critical for metabolic homeostasis. However, the physiological role of trehalose as a hemolymph sugar during insect development remains largely unclear. Here, we demonstrate that mutants of the trehalose-synthesizing enzyme Tps1 failed to produce trehalose as expected but survived into the late pupal period and died before eclosion. Larvae without trehalose grew normally, with a slight reduction in body size, under normal food conditions. However, these larvae were extremely sensitive to starvation, possibly due to a local defect in the central nervous system. Furthermore, Tps1 mutant larvae failed to grow on a low-sugar diet and exhibited severe growth defects on a low-protein diet. These diet-dependent phenotypes of Tps1 mutants demonstrate the critical role of trehalose during development in Drosophila and reveal how animals adapt to changes in nutrient availability.  相似文献   

13.
Trehalose and dry dipalmitoylphosphatidylcholine revisited   总被引:4,自引:0,他引:4  
Dry mixtures of sonicated vesicles of DPPC and trehalose which contained a maximum of 0.2 mol water/mol lipid were examined by differential scanning calorimetry, Fourier transform infrared spectroscopy and freeze-fracture electron microscopy. Samples of dry DPPC and trehalose prepared from aqueous solution had a minimum Tm of 24 degrees C for the gel to liquid-crystalline transition provided that the vesicles were dried with trehalose while the lipid was in liquid-crystalline phase. This low transition is compared to a transition of 105-112 degrees C for dry pure DPPC and of 42 degrees C for hydrated pure DPPC. The present work is an extension of earlier work from this laboratory using both other lipids and other methods of preparation.  相似文献   

14.
Dry mixtures of sonicated vesicles of DPPC and trehalose which contained a maximum of 0.2 mol water/mol lipid were examined by differential scanning calorimetry, Fourier transform infrared spectroscopy and freeze-fracture electron microscopy. Samples of dry DPPC and trehalose prepared from aqueous solution had a minimum Tm of 24°C for the gel to liquid-crystalline transition provided that the vesicles were dried with trehalose while the lipid was in liquid-crystalline phase. This low transition is compared to a transition of 105–112°C for dry pure DPPC and of 42°C for hydrated pure DPPC. The present work is an extension of earlier work from this laboratory using both other lipids and other methods of preparation.  相似文献   

15.
Trehalose 6-phosphate   总被引:1,自引:0,他引:1  
Trehalose 6-phosphate (T6P) is a sugar signal of emerging significance. It is an essential component of the mechanisms that coordinate metabolism with plant growth adaptation and development. Its significance began to dawn when genetic modification of the trehalose pathway produced dramatic phenotypes, before the genetic proliferation of the trehalose pathway in plants was fully realised. T6P regulates sugar utilization and starch metabolism and interacts with other signalling pathways, including those mediated by plant hormones. Trehalose phosphate synthases (TPSs) and trehalose phosphate phosphatases are regulated at the gene level by sugars, nitrate, cytokinin and abscisic acid. TPSs are also regulated post-translationally. Mechanistic details of how T6P signals are emerging, but still sparse. Nevertheless, even at this stage, targeting central regulators such as T6P offers promise in crop improvement.  相似文献   

16.
Trehalose and trehalase in Arabidopsis   总被引:3,自引:0,他引:3       下载免费PDF全文
Trehalase is ubiquitous in higher plants. So far, indications concerning its function are scarce, although it has been implicated in the detoxification of exogenous trehalose. A putative trehalase gene, T19F6.15, has been identified in the genome sequencing effort in Arabidopsis. Here we show that this gene encodes a functional trehalase when its cDNA is expressed in yeast, and that it is expressed in various plant organs. Furthermore, we present results on the distribution and activity of trehalase in Arabidopsis and we describe how inhibition of trehalase by validamycin A affects the plants response to exogenous trehalose (alpha-D-glucopyranosyl-[1, 1]-alpha-D-glucopyranoside). Trehalase activity was highest in floral organs, particularly in the anthers (approximately 700 nkat g(-1) protein) and maturing siliques (approximately 250 nkat g(-1) protein) and much lower in leaves, stems, and roots (less than 50 nkat g(-1) protein). Inhibition of trehalase in vivo by validamycin A led to the accumulation of an endogenous substance that had all the properties of trehalose, and to a strong reduction in sucrose and starch contents in flowers, leaves, and stems. Thus, trehalose appears to be an endogenous substance in Arabidopsis, and trehalose and trehalase may play a role in regulating the carbohydrate allocation in plants.  相似文献   

17.
海藻糖的生物保护作用   总被引:41,自引:0,他引:41  
海藻糖 (trehalose ,D glucopyranosylD glu copynoside)是一种非还原性二糖 ,有 (α ,α)、( β ,β)、(α ,β) 3种光学异构体。天然存在的海藻糖一般为 (α ,α)构型 ,是由 2个分子葡萄糖以α ,α 1 1键连接而成 ,分子式为C12 H2 2 O11·2H2 O ,相对分子量为 378.33,白色结晶 ,化学性质极稳定 ,无毒无害 ,不会焦收稿日期 :2 0 0 1 0 3 2 6作者简介 :聂凌鸿 ,博士生 ;宁正祥 ,教授 ,博士生导师。糖化。海藻糖广泛存在于低等植物、藻类、细菌、真菌、酵母、昆虫及无脊椎动物中 ,既是一种贮藏…  相似文献   

18.
海藻糖及其在生物工程方面的应用   总被引:4,自引:0,他引:4  
自海藻糖发现以来对其化学性质、生理功能、作用机理、代谢途径等已进行了较为深入的研究,其分子生物学的研究也渐渐兴起。研究表明海藻糖能提高生物体对干旱、低温、高温、pH、盐渍等逆境条件下的抗性。离体试验表明海藻糖能保护生物膜、蛋白质的结构并能保持逆境下的酶活性,同时,外源海藻糖同样对生物体有保护作用。由于海藻糖具有这些独特的生物学功能,它已在许多方面得以应用,可作为食品工业的一种添加剂和甜味剂,使干燥食品在得水后保持原有的色、香、味;也可作为医药工业的非特异性生物制品和生化药品保护剂,使其在常温下保存,从而降低运输与储存费用;另外,在农业研究中可利用现代分子生物技术培育表达海藻糖的转基因作物,提高农作物的抗旱、抗冻等抗逆性能。  相似文献   

19.
20.
海藻糖的生产制备及其应用前景   总被引:11,自引:0,他引:11  
海藻糖是一种广泛分布于细菌、真菌和动植物体内的双糖。在生物体内 ,它不仅作为结构成分和能量物质存在 ,而且在热击和脱水等协迫条件下 ,对生物体和生物大分子起着良好的非特异性保护作用。由于其独特的生物学功能 ,它在食品、分子生物学、医药、化妆品、农业等方面具有广阔的应用前景。简述海藻糖的生产制备、应用研究及其前景展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号