首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 756 毫秒
1.
Genetic and biochemical studies have provided convincing evidence that the 5' noncoding region (5' NCR) of hepatitis C virus (HCV) is highly conserved among viral isolates worldwide and that translation of HCV is directed by an internal ribosome entry site (IRES) located within the 5' NCR. We have investigated inhibition of HCV gene expression using antisense oligonucleotides complementary to the 5' NCR, translation initiation codon, and core protein coding sequences. Oligonucleotides were evaluated for activity after treatment of a human hepatocyte cell line expressing the HCV 5' NCR, core protein coding sequences, and the majority of the envelope gene (E1). More than 50 oligonucleotides were evaluated for inhibition of HCV RNA and protein expression. Two oligonucleotides, ISIS 6095, targeted to a stem-loop structure within the 5' NCR known to be important for IRES function, and ISIS 6547, targeted to sequences spanning the AUG used for initiation of HCV polyprotein translation, were found to be the most effective at inhibiting HCV gene expression. ISIS 6095 and 6547 caused concentration-dependent reductions in HCV RNA and protein levels, with 50% inhibitory concentrations of 0.1 to 0.2 microM. Reduction of RNA levels, and subsequently protein levels, by these phosphorothioate oligonucleotides was consistent with RNase H cleavage of RNA at the site of oligonucleotide hybridization. Chemically modified HCV antisense phosphodiester oligonucleotides were designed and evaluated for inhibition of core protein expression to identify oligonucleotides and HCV target sequences that do not require RNase H activity to inhibit expression. A uniformly modified 2'-methoxyethoxy phosphodiester antisense oligonucleotide complementary to the initiator AUG reduced HCV core protein levels as effectively as phosphorothioate oligonucleotide ISIS 6095 but without reducing HCV RNA levels. Results of our studies show that HCV gene expression is reduced by antisense oligonucleotides and demonstrate that it is feasible to design antisense oligonucleotide inhibitors of translation that do not require RNase H activation. The data demonstrate that chemically modified antisense oligonucleotides can be used as tools to identify important regulatory sequences and/or structures important for efficient translation of HCV.  相似文献   

2.
To clarify the binding properties of hepatitis C virus (HCV) core protein and its viral RNA for the encapsidation, morphogenesis, and replication of HCV, the specific interaction of HCV core protein with its genomic RNA synthesized in vitro was examined in an in vivo system. The positive-sense RNA from the 5' end to nucleotide (nt) 2327, which covers the 5' untranslated region (5'UTR) and a part of the coding region of HCV structural proteins, interacted with HCV core protein, while no interaction was observed in the same region of negative-sense RNA and in other regions of viral and antiviral sense RNAs. The internal ribosome entry site (IRES) exists around the 5'UTR of HCV; therefore, the interaction of the core protein with this region of HCV RNA suggests that there is some effect on its cap-independent translation. Cells expressing HCV core protein were transfected with reporter RNAs consisting of nt 1 to 709 of HCV RNA (the 5'UTR of HCV and about two-thirds of the core protein coding regions) followed by a firefly luciferase gene (HCV07Luc RNA). The translation of HCV07Luc RNA was suppressed in cells expressing the core protein, whereas no significant suppression was observed in the case of a reporter RNA possessing the IRES of encephalomyocarditis virus followed by a firefly luciferase. This suppression by the core protein occurred in a dose-dependent manner. The expression of the E1 envelope protein of HCV or beta-galactosidase did not suppress the translation of both HCV and EMCV reporter RNAs. We then examined the regions that are important for suppression of translation by the core protein and found that the region from nt 1 to 344 was enough to exert this suppression. These results suggest that the HCV core protein interacts with viral genomic RNA at a specific region to form nucleocapsids and regulates the expression of HCV by interacting with the 5'UTR.  相似文献   

3.
Chronic hepatitis C virus (HCV) infection has a significantly increased prevalence of type 2 diabetes mellitus (T2DM). Insulin resistance is a critical component of T2DM pathogenesis. Several mechanisms are likely to be involved in the pathogenesis of HCV-related insulin resistance. Since we and others have previously observed that HCV core protein activates c-Jun N-terminal kinase (JNK) and mitogen-activated protein kinase, we examined the contribution of these pathways to insulin resistance in hepatocytes. Our experimental findings suggest that HCV core protein alone or in the presence of other viral proteins increases Ser(312) phosphorylation of the insulin receptor substrate-1 (IRS-1). Hepatocytes infected with cell culture-grown HCV genotype 1a or 2a displayed a significant increase in the Ser(473) phosphorylation status of the Ser/Thr kinase protein kinase B (Akt/PKB), while Thr(308) phosphorylation was not significantly altered. HCV core protein-mediated Ser(312) phosphorylation of IRS-1 was inhibited by JNK (SP600125) and phosphatidylinositol-3 kinase (LY294002) inhibitors. A functional assay also suggested that hepatocytes expressing HCV core protein alone or infected with cell culture-grown HCV exhibited a suppression of 2-deoxy-d-[(3)H]glucose uptake. Inhibition of the JNK signaling pathway significantly restored glucose uptake despite HCV core expression in hepatocytes. Taken together, our results demonstrated that HCV core protein increases IRS-1 phosphorylation at Ser(312) which may contribute in part to the mechanism of insulin resistance.  相似文献   

4.
5.
6.
7.
Hepatitis C virus (HCV) core protein, a viral nucleocapsid, has been shown to affect various intracellular events including the nuclear factor kappaB (NF-kappaB) signaling supposedly associated with inflammatory response, cell proliferation, and apoptosis. In order to elucidate the effect of HCV core protein on the NF-kappaB signaling in HeLa and HepG2 cells, a reporter assay was utilized. HCV core protein significantly activated NF-kappaB signaling in a dose-dependent manner not only in HeLa and HepG2 cells transiently transfected with core protein expression plasmid, but also in HeLa cells induced to express core protein under the control of doxycycline. HCV core protein increased the DNA binding affinity of NF-kappaB in the electrophoretic mobility shift assay. Acetyl salicylic acid, an IKKbeta-specific inhibitor, and dominant negative form of IKKbeta significantly blocked NF-kappaB activation by HCV core protein, suggesting HCV core protein activates the NF-kappaB pathway mainly through IKKbeta. Moreover, the dominant negative forms of TRAF2/6 significantly blocked activation of the pathway by HCV core protein, suggesting HCV core protein mimics proinflammatory cytokine activation of the NF-kappaB pathway through TRAF2/6. In fact, HCV core protein activated interleukin-1beta promoter mainly through NF-kappaB pathway. Therefore, this function of HCV core protein may play an important role in the inflammatory reaction induced by this hepatotropic virus.  相似文献   

8.
MicroRNA 122 (miR-122) increases the accumulation and translation of hepatitis C virus (HCV) RNA in infected cells through direct interactions with homologous sequences in the 5' untranslated region (UTR) of the HCV genome. Argonaute 2 (Ago2) is a component of the RNA-induced silencing complex (RISC) and mediates small interfering RNA (siRNA)-directed mRNA cleavage and microRNA translational suppression. We investigated the function of Ago2 in HCV replication to determine whether it plays a role in enhancing the synthesis and translation of HCV RNA that is associated with miR-122. siRNA-mediated depletion of Ago2 in human hepatoma cells reduced HCV RNA accumulation in transient HCV replication assays. The treatment did not adversely affect cell viability, as assessed by cell proliferation, capped translation, and interferon assays. These data are consistent with complementary roles for Ago2 and miR-122 in enhancing HCV RNA amplification. By using a transient HCV replication assay that is dependent on an exogenously provided mutant miR-122, we determined that Ago2 depletion still reduced luciferase expression and HCV RNA accumulation, independently of miR-122 biogenesis. miR-122 has previously been found to stimulate HCV translation. Similarly, Ago2 knockdown also reduced HCV translation, and its depletion reduced the ability of miR-122 to stimulate viral translation. These data suggest a direct role for Ago2 in miR-122-mediated translation. Finally, Ago2 was also necessary for efficient miR-122 enhancement of HCV RNA accumulation. These data support a model in which miR-122 functions within an Ago2-containing protein complex to augment both HCV RNA accumulation and translation.  相似文献   

9.
Saito K  Meyer K  Warner R  Basu A  Ray RB  Ray R 《Journal of virology》2006,80(9):4372-4379
We have previously shown that hepatitis C virus (HCV) core protein modulates multiple cellular processes, including those that inhibit tumor necrosis factor alpha (TNF-alpha)-mediated apoptosis. In this study, we have investigated the signaling mechanism for inhibition of TNF-alpha-mediated apoptosis in human hepatoma (HepG2) cells expressing core protein alone or in context with other HCV proteins. Activation of caspase-3 and the cleavage of DNA repair enzyme poly(ADP-ribose) polymerase were inhibited upon TNF-alpha exposure in HCV core protein-expressing HepG2 cells. In vivo protein-protein interaction studies displayed an association between TNF receptor 1 (TNFR1) and TNFR1-associated death domain protein (TRADD), suggesting that the core protein does not perturb this interaction. A coimmunoprecipitation assay also suggested that HCV core protein does not interfere with the TRADD-Fas-associated death domain protein (FADD)-procaspase-8 interaction. Further studies indicated that HCV core protein expression inhibits caspase-8 activation by sustaining the expression of cellular FLICE (FADD-like interleukin-1beta-converting enzyme)-like inhibitory protein (c-FLIP). Similar observations were also noted upon expression of core protein in context to other HCV proteins expressed from HCV full-length plasmid DNA or a replicon. A decrease in endogenous c-FLIP by specific small interfering RNA induced TNF-alpha-mediated apoptotic cell death and caspase-8 activation. Taken together, our results suggested that the TNF-alpha-induced apoptotic pathway is inhibited by a sustained c-FLIP expression associated with the expression of HCV core protein, which may play a role in HCV-mediated pathogenesis.  相似文献   

10.
研究HCV核心蛋白对干扰素α诱导的抗病毒分子PKR和2′-5′OAS表达的影响及其机制。HCV核心蛋白表达质粒转染HepG2细胞,RT-PCR分析PKR和2′-5′OAS的mRNA水平变化,荧光素酶活性分析核心蛋白对ISRE介导的基因表达的影响;Western-blot分析SOCS3、STAT1及STAT1磷酸化水平的变化。在干扰素α刺激情况下,表达HCV核心蛋白的细胞中,PKR和2′-5′OAS的mRNA水平下降,ISRE介导的荧光素酶活性降低,STAT1磷酸化水平下降。此外,核心蛋白表达的细胞中SOCS3的mRNA和蛋白水平明显升高。结果表明,HCV核心蛋白可能通过激活SOCS3、抑制STAT1的磷酸化,从而下调干扰素α诱导的PKR和2′-5′OAS表达。  相似文献   

11.

Background

Hepatitis C virus (HCV) has been reported to regulate cellular microRNAs (miRNAs). The HCV core protein is considered to be a potential oncoprotein in HCV-related hepatocellular carcinoma (HCV-HCC), but HCV core-regulated miRNAs are largely unknown. Our preliminary experiments revealed significant down-regulation of microRNA-152 (miR-152) by HCV core protein in HepG2 cells. Through target gene prediction softwares, Wnt1 was predicted to be a potential target of miR-152. The present study was initiated to investigate whether miR-152 is aberrantly regulated by the HCV core protein, and involved in the regulation of the aberrant proliferation of HCV-HCC cells.

Methods

MiR-152 levels were examined by stem-loop real-time RT-PCR (SLqRT-PCR). Cell proliferation was analyzed by MTT and colony formation assay. Cell cycle analysis was performed by flow cytometry. Luciferase reporter assay was conducted to confirm miRNA-target association. Wnt1 expression was determined by real-time qPCR and Western blotting.

Results

HCV core protein significantly suppressed miR-152 expression, and led to significant Wnt1 up-regulation with a concomitant aberrantly promoted proliferation. Moreover, we validated that miR-152 inhibition promoted, while miR-152 mimics inhibited cell proliferation. Using, qRT–PCR and western blot, Wnt1 was demonstrated to be regulated by miR-152. Luciferase activity assay showed that while miR-152 mimics significantly reduced the luciferase activity by 83.76% (P<0.0001), miR-152 inhibitor showed no effect on luciferase reporter. Most notably, salvage expression of miR-152 after Ad-HCV core infection for 24 h almost totally reversed the proliferation-promoting effect of the HCV core protein, and meanwhile, reduced the expression of both Wnt1 mRNA and protein to basal levels.

Conclusion

These findings provide important evidence that the reduced miR-152 expression by HCV core protein can indirectly lose an inhibitory effect on Wnt1, which might, at least partially lead to cell proliferation of liver cancer cells. MiR-152 may have a therapeutic potential to suppress liver cancer proliferation.  相似文献   

12.
Short hairpin RNAs (shRNAs) efficiently inhibit gene expression by RNA interference. Here, we report the efficient inhibition by DNA-based vector-derived shRNAs of core protein expression in Huh-7 cells. The shRNAs were designed to target the core region of the hepatitis C virus (HCV) genome. The core region is the most conserved region in the HCV genome, making it an ideal target for shRNAs. We identified an effective site on the core region for suppression of the HCV core protein. The HCV core protein in core protein-expressing Huh-7 cells was downregulated by core protein-shRNA expression vectors (core-shRNA-452, 479, and 503). Our results support the feasibility of using shRNA-based gene therapy to inhibit HCV core protein production.  相似文献   

13.
Translation initiation of hepatitis C virus (HCV) RNA occurs through an internal ribosome entry site (IRES) located at its 5' end. As a positive-stranded virus, HCV uses the genomic RNA template for translation and replication, but the transition between these two processes remains poorly understood. HCV core protein (HCV-C) has been proposed as a good candidate to modulate such a regulation. However, current data are still the subject of controversy in attributing any potential role in HCV translation to the HCV core protein. Here we demonstrate that HCV-C displays binding activities toward both HCV IRES and the 40 S ribosomal subunit by using centrifugation on sucrose gradients. To gain further insight into these interactions, we investigated the effect of exogenous addition of purified HCV-C on HCV IRES activity by using an in vitro reporter assay. We found that HCV IRES-mediated translation was specifically modulated by HCV-C provided in trans, in a dose-dependent manner, with up to a 5-fold stimulation of the IRES efficiency upon addition of low amounts of HCV-C, followed by a decrease at high doses. Interestingly, mutations within some domains of the IRES as well as the presence of an upstream reporter gene both lead to changes in the expected effects, consistent with the high dependence of HCV IRES function on its overall structure. Collectively, these results indicate that the HCV core protein is involved in a tight modulation of HCV translation initiation, depending on its concentration, and they suggest an important biological role of this protein in viral gene expression.  相似文献   

14.
Short hairpin RNAs (shRNAs) efficiently inhibit gene expression by RNA interference. Here, we report the efficient inhibition by DNA-based vector-derived shRNAs of core protein expression in Huh-7 cells. The shRNAs were designed to target the core region of the hepatitis C virus (HCV) genome. The core region is the most conserved region in the HCV genome, making it an ideal target for shRNAs. We identified an effective site on the core region for suppression of the HCV core protein. The HCV core protein in core protein-expressing Huh-7 cells was downregulated by core protein-shRNA expression vectors (core-shRNA-452, 479, and 503). Our results support the feasibility of using shRNA-based gene therapy to inhibit HCV core protein production.  相似文献   

15.
16.
Hepatitis C virus core protein binds to a DEAD box RNA helicase.   总被引:19,自引:0,他引:19  
Approximately 4 million Americans are infected with the hepatitis C virus (HCV), making it a major cause of chronic liver disease. Because of the lack of an efficient cell culture system, little is known about the interaction between HCV and host cells. We performed a yeast two-hybrid screen of a human liver cell cDNA library with HCV core protein as bait and isolated the DEAD box protein DBX. DBX has significant amino acid sequence identity to mouse PL10, an ATP-dependent RNA helicase. The binding of DBX to HCV core protein occurred in an in vitro binding assay in the presence of 1 M NaCl or detergent. When expressed in mammalian cells, HCV core protein and DBX were co-localized at the endoplasmic reticulum. In a mutant strain of Saccharomyces cerevisiae, DBX complemented the function of Ded1p, an essential DEAD box RNA helicase. HCV core protein inhibited the growth of DBX-complemented mutant yeast but not Ded1p-expressing yeast. HCV core protein also inhibited the in vitro translation of capped but not uncapped RNA. These findings demonstrate an interaction between HCV core protein and a host cell protein involved in RNA translation and suggest a mechanism by which HCV may inhibit host cell mRNA translation.  相似文献   

17.
CD55 limits excessive complement activation on the host cell surface by accelerating the decay of C3 convertases. In this study, we observed that hepatitis C virus (HCV) infection of hepatocytes or HCV core protein expression in transfected hepatocytes upregulated CD55 expression at the mRNA and protein levels. Further analysis suggested that the HCV core protein or full-length (FL) genome enhanced CD55 promoter activity in a luciferase-based assay, which was further augmented in the presence of interleukin-6. Mutation of the CREB or SP-1 binding site on the CD55 promoter impaired HCV core protein-mediated upregulation of CD55. HCV-infected or core protein-transfected Huh7.5 cells displayed greater viability in the presence of CD81 and CD55 antibodies and complement. Biochemical analysis revealed that CD55 was associated with cell culture-grown HCV after purification by sucrose density gradient ultracentrifugation. Consistent with this, a polyclonal antibody to CD55 captured cell culture-grown HCV. Blocking antibodies against CD55 or virus envelope glycoproteins in the presence of normal human serum as a source of complement inhibited HCV infection. The inhibition was enhanced in the presence of both the antibodies and serum complement. Collectively, these results suggest that HCV induces and associates with a negative regulator of the complement pathway, a likely mechanism for immune evasion.  相似文献   

18.
19.
Studies on hepatitis C virus (HCV) replication have been greatly advanced by the development of cell culture models for HCV known as replicon systems. The prototype replicon consists of a subgenomic HCV RNA in which the HCV structural region is replaced by the neomycin phosphotransferase II (NPTII) gene, and translation of the HCV proteins NS3 to NS5 is directed by the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES). The interferon (IFN)-inducible protein kinase PKR plays an important role in cell defense against virus infection by impairing protein synthesis as a result of eIF-2alpha phosphorylation. Here, we show that expression of the viral nonstructural (NS) and PKR proteins and eIF-2alpha phosphorylation are all variably regulated in proliferating replicon Huh7 cells. In proliferating cells, induction of PKR protein by IFN-alpha is inversely proportional to viral RNA replication and NS protein expression, whereas eIF-2alpha phosphorylation is induced by IFN-alpha in proliferating but not in serum-starved replicon cells. The role of PKR and eIF-2alpha phosphorylation was further addressed in transient-expression assays in Huh7 cells. These experiments demonstrated that activation of PKR results in the inhibition of EMCV IRES-driven NS protein synthesis from the subgenomic viral clone through mechanisms that are independent of eIF-2alpha phosphorylation. Unlike NS proteins, HCV IRES-driven NPTII protein synthesis from the subgenomic clone was resistant to PKR activation. Interestingly, activation of PKR could induce HCV IRES-dependent mRNA translation from dicistronic constructs, but this stimulatory effect was mitigated by the presence of the viral 3' untranslated region. Thus, PKR may assume multiple roles in modulating HCV replication and protein synthesis, and tight control of PKR activity may play an important role in maintaining virus replication and allowing infection to evade the host's IFN system.  相似文献   

20.
Initiation of protein synthesis on the hepatitis C virus (HCV) mRNA involves a structured element corresponding to the 5′ untranslated region and constituting an internal ribosome entry site (IRES). The domain IIId of the HCV IRES, an imperfect RNA hairpin extending from nucleotides 253 to 279 of the viral mRNA, has been shown to be essential for translation and for the binding of the 40S ribosomal subunit. We investigated the properties of a series of antisense 2′-O-methyloligoribonucleotides targeted to various portions of the domain IIId. Several oligomers, 14–17 nt in length, selectively inhibited in vitro translation of a bicistronic RNA construct in rabbit reticulocyte lysate with IC50s <10 nM. The effect was restricted to the second cistron (the Renilla luciferase) located downstream of the HCV IRES; no effect was observed on the expression of the first cistron (the firefly luciferase) which was translated in a cap-dependent manner. Moreover, antisense 2′-O-methyloligoribonucleotides specifically competed with the 40S ribosomal subunit for binding to the IRES RNA in a filter- retention assay. The antisense efficiency of the oligonucleotides was nicely correlated to their affinity for the IIId subdomain and to their ability to displace 40S ribosomal subunit, making this process a likely explanation for in vitro inhibition of HCV-IRES-dependent translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号