首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferox trout are large, long-lived, piscivorous trout normally found in deep lakes; they are highly prized by trophy anglers. Lough Corrib and Lough Mask, Western Ireland, have recorded the majority of Irish specimen ferox trout since angling records began. Little was known regarding the spawning location of ferox trout relative to sympatric brown trout, and a radio telemetry study was initiated in both catchments in 2005. Over the period 2005–2009, 79 ferox were captured by angling and radio tagged in Lough Corrib, while 55 ferox were tagged in Lough Mask. Manual and helicopter tracking were carried out on all spawning streams entering both lakes over the autumn/winter period to detect tagged fish. Overall, 37 radio-tagged trout (46.8%) were detected in Lough Corrib streams and 21 tagged trout (38.2%) were recorded from Lough Mask streams. Results from radio tracking indicate that the majority (92%) of ferox trout tagged in Lough Corrib spawned in a single spawning stream, the Cong river, while the majority (76%) of ferox trout tagged in Lough Mask spawned in the Cong canal and Cong river. These results suggest that these streams are most likely the principle spawning locations of ferox trout in both lakes. The occurrence of ferox trout predominantly in single spawning rivers in both catchments highlights the vulnerability of the study ferox populations. As a result of these findings, conservation measures were introduced for ferox trout in both catchments.  相似文献   

2.
Electrophoretic studies of five polymorphic enzyme loci ( G-3-PDH-2, LDH-I, LDH-5, PGI-2, PGI-3 ) in brown trout from Lough Melvin in northwestern Ireland have demonstrated that the morphotypes known by the vernacular names of 'ferox', 'gillaroo' and 'sonaghen', are not merely ecophenotypes but represent genetically distinct and reproductively isolated populations. The results suggest that the long life and higher growth potential of ferox trout of this lake, and possibly others, has a genetic basis. These separate demes of brown trout are probably the result of multiple invasions in post-glacial times of allopatrically derived stocks. Lough Melvin's isolated position and absence of pike, Esox lucius , and large cyprinids have probably contributed to its pristine condition. As such it is one of the few remaining examples of what may once have been a widespread situation in Britain and Ireland.  相似文献   

3.
Molecular marker studies reported here, involving allozymes, mitochondrial DNA and microsatellites, demonstrate that ferox brown trout Salmo trutta in Lochs Awe and Laggan, Scotland, are reproductively isolated and genetically distinct from co-occurring brown trout. Ferox were shown to spawn primarily, and possibly solely, in a single large river in each lake system making them particularly vulnerable to environmental changes. Although a low level of introgression seems to have occurred with sympatric brown trout, possibly as a result of human-induced habitat alterations and stocking, ferox trout in these two lakes meet the requirements for classification as a distinct biological, phylogenetic and morphological species. It is proposed that the scientific name Salmo ferox Jardine, 1835 , as already applied to Lough Melvin (Ireland) ferox, should be extended to Awe and Laggan ferox.  相似文献   

4.
The phylogeographical structure of brown trout Salmo trutta in Britain and Ireland was studied using polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) analysis of four mitochondrial DNA segments (16S/ND1, ND5/6, COXIII/ND5 and ND5/12S). Analysis of 3636 individuals from 83 sites–morphotypes revealed a total of 25 haplotypes. These haplotypes were nested in seven two‐step clades. Although there was a clear geographical patterning to the occurrence of derived clades, admixture among ancestral clades was extensive throughout the studied area. A relevant feature of the data was that some populations contained mixtures of highly divergent clades. This type II phylogeographic pattern is uncommon in nature. Clade intermixing is likely to have taken place during earlier interglacials as well as since the Last Glacial Maximum. The anadromous life history of many S. trutta populations has probably also contributed to clade mixing. Based on the data presented here and published data, postglacial colonization of Britain and Ireland most likely involved S. trutta from at least five potential glacial refuges. Probable locations for such refugia were: south of England–western France, east of the Baltic Sea, western Ireland, Celtic Sea and North Sea. Ferox S. trutta, as defined by their longevity, late maturation and piscivory, exhibited a strong association with a particular clade indicating that they share a common ancestor. Current evidence indicates that the Lough Melvin gillaroo S. trutta and sonaghen S. trutta sympatric types diverged prior to colonization of Lough Melvin and, although limited gene flow has occurred since secondary contact, they have remained largely reproductively isolated due to inlet and outlet river spawning segregation. Gillaroo S. trutta may reflect descendents of a previously more widespread lineage that has declined due to habitat alterations particularly affecting outlet rivers. The mosaic‐like distribution of mtDNA lineages means that conservation prioritization in Britain and Ireland should be based on the biological characteristics of local populations rather than solely on evolutionary lineages.  相似文献   

5.
Lake Tinnsjø, Norway, has been heavily stocked over three decades with two different brown trout stocks. A population genetic survey based on 13 allozyme coding loci was conducted to investigate the genetic composition of the present trout population and the genetic impact of the two donors. Contrary to expectations, highly significant differences in allelic frequencies between Lake Tinnsjø trout and the two donor stocks were found at several loci, suggesting minimal gene flow from stocked trout to the wild populations. Pairwise genetic distance values were several times higher between donor stocks and Lake Tinnsjø samples than between the various spawning inlets to Lake Tinnsjø. Fst increased from 0.024 to 0.090, when samples from the donor stocks were included in the material. There were no deviations from expected Hardy–Weinberg distribution of genotypes in the spawning inlets. It was concluded that the donor stocks contributed little to the trout gene pool in the lake. A possible exception is the trout population below the lake outlet.  相似文献   

6.
The supportive breeding programme for sea trout (Salmo trutta) in the River Dalälven, Sweden, is based on a sea‐ranched hatchery stock of local origin that has been kept ‘closed’ to the immigration of wild genes since the late 1960s (about seven generations). In spite of an apparent potential for substantial uni directional gene flow from sea‐ranched to wild (naturally produced) trout, phenotypic differences with a presumed genetic basis have previously been observed between the two ‘stocks’. Likewise, two previous studies of allozyme and mitochondrial DNA variation based on a single year of sampling have indicated genetic differentiation. In the present study we used microsatellite and allozyme data collected over four consecutive years, and tested for the existence of overall genetic stock divergence while accounting for temporal heterogeneity. Statistical analyses of allele frequency variation (F‐statistics) and multilocus genotypes (assignment tests) revealed that wild and sea‐ranched trout were significantly different in three of four years, whereas no overall genetic divergence could be found when temporal heterogeneity among years within stocks was accounted for. On the basis of estimates of effective population size in the two stocks, and of FST between them, we also assessed the level of gene flow from sea‐ranched to wild trout to be ≈ 80% per generation (with a lower confidence limit of ≈ 20%). The results suggest that the reproductive success of hatchery and naturally produced trout may be quite similar in the wild, and that the genetic characteristics of the wild stock are largely determined by introgressed genes from sea‐ranched fish.  相似文献   

7.
A previously described isozyme polymorphism at one of two skeletal muscle LdhA loci in brown trout is due to a null allele, Ldh1(n), producing no detectable catalytic activity. Homozygotes for this allele have approximately only 56% of the LDH activity in skeletal muscle relative to homozygotes for the active allele. The remaining activity results from enzyme subunits produced by other LDH loci. The Ldh1(n) allele is common and widespread throughout brown trout populations in Sweden and is also found in populations from Ireland. The persistence of duplicate gene expression for the LdhA loci in almost all salmonid species is best explained by natural selection against individuals containing null alleles. However, there is no indication of natural selection against brown trout with the Ldh1(n) allele: We suggest that the selection against individuals containing null alleles that is apparently responsible for the persistence of duplicate LdhA loci in salmonids occurs only under certain environmental conditions.   相似文献   

8.
1. Microsatellite and isozyme loci variation were used to study structure and dynamics of a brown trout (Salmo trutta) population heavily affected by damming. The downstream area accessible for spawning was drastically reduced to a stream 1 km long influenced by regulated discharge. 2. Stocking of hatchery‐reared juveniles failed and the population is entirely supported by anadromous adults from neighbouring populations. 3. Temporal genetic stability is reported here. Some punctual between‐river genetic differences are likely because of different contribution from each neighbouring river through years. 4. High anadromy‐mediated gene flow produces a lack of genetic substructure in the region. The role of anadromous brown trout on maintenance of endangered small populations is emphasised.  相似文献   

9.
Four tributaries of Lake St-Jean (Québec, Canada) are used for spawning and juvenile habitat by land-locked Atlantic salmon. Spawning runs have drastically declined since the mid-1980s, and consequently, a supportive-breeding programme was undertaken in 1990. In this study, we analysed seven microsatellite loci and mtDNA, and empirically estimated effective population sizes to test the hypotheses that (i) fish spawning in different tributaries form genetically distinct populations and (ii) the supportive breeding programme causes genetic perturbations on wild populations. Allele frequency distribution, molecular variance and genetic distance estimates all supported the hypothesis of genetic differentiation among salmon from different tributaries. Gene flow among some populations was much more restricted than previously reported for anadromous populations despite the small geographical scale (40 km) involved. Both mtDNA and microsatellites revealed a more pronounced differentiation between populations from two tributaries of a single river compared with their differentiation with a population from a neighbouring river. The comparison of wild and F1-hatchery fish (produced from breeders originating from the same river) indicated significant changes in allele frequencies and losses of low-frequency alleles but no reduction in heterozygosity. Estimates of variance and inbreeding population size indicated that susceptibility to genetic drift and inbreeding in one population increased by twofold after only one generation of supplementation.  相似文献   

10.
The effect of the introduction of fry of anadromous sea trout, Salmo trutta L., on the genetic integrity of landlocked brown trout populations was evaluated. Samples were taken from six brown trout populations from streams above impassable waterfalls in the Conwy river system (North Wales, U.K.) in 1989 and 1990. Three of these streams had no known stocking history and three had been stocked with sea trout fry from the lower Conwy system over the last few years. Representatives of these sea trout were collected from two streams in the lower Conwy system and from a hatchery. Allele frequencies at 13 loci, six of which were polymorphic, were determined by starch gel electrophoresis.
The stocked populations were intermediate in their allele frequencies between unstocked brown trout and sea trout samples. A principal component analysis suggested significant numbers of hybrids in all of the stocked streams. This shows that some of the introduced sea trout did not migrate down the falls to the sea, but stayed in fresh water and hybridized with the local population. The significance of this finding for the conservation of the genetic resource of brown trout stocks is discussed.  相似文献   

11.
Two brown trout Salmo trutta stocks of different origin (wild Polish, domestic commercial) came into secondary contact after deliberate releases conducted in virgin rivers systems of the Subantarctic Kerguelen Islands (70 degrees E 49 degrees S). Samples obtained in 2001-2003 and a historical sample from 1993 were analysed for genetic variation at seven microsatellite loci and one allozyme locus (LDH-C1*). Bayesian clustering analysis demonstrated that rapid genetic differentiation formed separate genetic units in neighbouring rivers in less than 20 years. These genetic units were characterized by a large proportion of Polish genotypes mixed with some genomes of domestic origin (up to 30%). A different colonization strategy of the naturalized stocks, likely related with differential performance, was identified as a cause of rapid population differentiation in this area.  相似文献   

12.
Yellowstone cutthroat trout (YCT), Oncorhynchus clarki bouvieri, that spawn in the outlet of Yellowstone Lake show two potamodromous migration patterns, fluvial and allacustrine. The main purpose of this study was to determine whether those fluvial and allacustrine YCT represent reproductively isolated stocks. Redd surveys indicated spawning occurred during about 5 consecutive weeks between late May and mid-July 1993–1995. Lake fish (N=6), defined as radiotagged YCT that entered Yellowstone Lake after the spawning period (i.e. allacustrine pattern), were found in the river between the lake outlet (river kilometer [Rkm] 0) and Rkm 20.0 during spawning. Probable lake fish (N=28; tagged YCT that were last detected near the lake outlet) were found between Rkm 0 and Rkm 22.5 during spawning. River fish (N=4; tagged YCT that remained in the river when annual tracking concluded in fall, i.e. fluvial pattern) were found between Rkm 1.1 and Rkm 18.0 during spawning. Fidelity to spawning areas used between consecutive years was suggested by one of five lake fish and the single river fish for which data were available. Spatial overlap in spawning and a lack of temporal separation between the life-history types during spawning suggested that fluvial and allacustrine YCT were not reproductively isolated. Radiotagging, as well as visual observations made annually from boats during April and May, indicated fluvial YCT overwintered downstream from Rkm 14 and were few, probably on the order of 10% of all YCT that spawned in the Yellowstone River.  相似文献   

13.
Management of multiple exploited stocks of anadromous salmonids in large catchments requires understanding of movement and catchment use by the migrating fish and of their harvesting. The spawning migration of sea trout (Salmo trutta) and Atlantic salmon (Salmo salar) was studied in the River Tweed, UK, using acoustic telemetry to complement exploitation rate data and to quantify catchment penetration. Salmon (n = 79) and sea trout (n = 65) were tagged in the tidal-influenced Tweed in summer–autumn. No tagged salmon left the river before spawning, but 3% (2010) and 8% (2011) of pre-spawning sea trout dropped out. Combined tag regurgitation/fish mortality in salmon was 12.5%, while trout mortality was 6% (2010) and 0% (2011). The estimated spawning positions of salmon and sea trout differed; tagged salmon were mostly in the main channel while trout occurred mostly in the upper Tweed and tributaries. Early fish migrated upstream slower than later fish, but sea trout moved through the lower-middle river more quickly than salmon, partly supporting the hypothesis that the lower exploitation rate in autumn of trout (1 vs 3.3% for salmon) there is generated by differences in migration behaviour.  相似文献   

14.
Hatchery propagation of salmonids has been practiced in western North America for over a century. However, recent declines in wild salmon abundance and efforts to mitigate these declines through hatcheries have greatly increased the relative abundance of fish produced in hatcheries. The over-harvest of wild salmon by fishing mixed hatchery and wild stocks has been of concern for many years but genetic interactions between populations, such as hybridization, introgression and outbreeding depression, may also compromise the sustainability of wild populations. Our goal was to examine whether a newly established hatchery population of steelhead trout successfully reproduced in the wild and to compare their rate of reproductive success to that of sympatrically spawning native steelhead. We used eight microsatellite loci to create allele frequency profiles for baseline hatchery and wild populations and assigned the smolt (age 2) offspring of this parental generation to a population of origin. Adults originating from a generalized hatchery stock artificially selected for early return and spawning date were successful at reproducing in Forks Creek, Washington. Although hatchery females (N = 90 and 73 in the two consecutive years of the study) produced offspring that survived to emigrate as smolts, they produced only 4.4–7.0% the number produced per wild female (N = 11 and 10). This deficit in reproductive success implies that the proportion of hatchery genes in the mixed population may diminish since deliberate releases into the river have ceased. This hypothesis is being tested in a long-term study at Forks Creek.  相似文献   

15.
The London strain of rainbow trout (Oncorhynchus mykiss) was created by interbreeding three other strains of rainbow trout and therefore was expected to have higher levels of genetic variation than other strains of rainbow trout. We examined 129 London strain rainbow trout from Indiana by allozyme electrophoresis to assess levels of genetic variation and to examine the relationship between the London strain and other hatchery strains. When using the same loci to compare with other hatchery strains the London strain showed levels of genetic variation within the range of other hatchery strains: mean heterozygosity of 0.053 (0.031-0.099), 1.27 (1.20-1.60) alleles per locus and 20.0% (20.0-40.0%) of the loci were polymorphic. The London strain is somewhat distinct from other hatchery strains (D=0.009-0.072), in part because of the high frequency of the sIDHP*40 allele.  相似文献   

16.
We provide further insight into the reproductive ecology and spawning requirements of lake trout. New comparative information about substrate characteristics, sediment transport, quality of interstitial water at spawning substrates, and the role of temperature in site selection and time of spawning is given for lakes Simcoe and Manitou (Ontario) and Seneca Lake (New York). Spawning lake trout commonly use stable lag deposits derived from glacial sediments, or relict features such as fans, bars or submerged talus slopes. Artificial breakwaters of broken material may also provide suitable substrates. Optimal particle sizes range from 4 to 10 cm diameter but larger materials to 30 cm are also successfully utilized for spawning. The transport of finer particulates by wind generated water movements may limit the suitability of some substrates and successful spawning sites are usually remote from depositional effects. Successful embryo development is associated with low nutrient conditions, with high dissolved oxygen (>7 mg L-1) and with low un-ionized ammonia (<12.5 g L-1) in the interstitial water of spawning substrates. Shallow-water spawning appears to be the common strategy of colonizing lake trout. Some deepwater spawning in the Great Lakes may reflect initial colonization in shallow-water and adaptation to later increases in water level, but some may also reflect unique behavioural and physiological adaptations. Temperature is an important cue, and many wild and hatchery stocks spawn at 8 to 13 °C with latitudinal shifts in the actual time of spawning. These requirements are summarized as a dichotomous key for evaluation of approaches to restoration of lost or damaged lake trout stocks.Presented at the Conference on Rehabilitation of Lake Trout in the Great Lakes: A Critical Assessment (sponsored by the Great Lakes Fishery Commission, Ann Arbor, Michigan, January 10–14, 1994).  相似文献   

17.
The geographical distributions of inherited biochemical markers were used to measure the amount of genetic isolation between stocks of Namibian and South African anchovy, Engraulis capensis . A contingency-table analysis of allele frequencies for 10 polymorphic protein-coding loci revealed no significant frequency differences between spawning areas. The average Nei genetic distance between samples was 0.0003 and there were no geographic trends in the amount of genetic distance between populations. Average population heterozygosity for 31 loci was 0.115 and this accounted for 99.26% of the total genetic variation. The remaining 0.24% was due to all temporal and spatial differences combined. The observed amount of genetic divergence between populations was used to estimate the amount of migration between spawning areas, using the stepping-stone model of migration. As few as 13 migrants may account for the observed genetic divergence between spawning areas. The validity of using the genetic stock concept in the management of marine fishes is discussed.  相似文献   

18.
Allele frequencies were determined at 14 microsatellite loci in 284 female and 50 male rainbow trout that were sampled throughout the spawning season from a commercial trout farm. Phenotypic selection has expanded the spawning season of the broodstock from 2 weeks to 8 months. Females maturing in different seasons showed significantly different allelic distributions (P<0·001) at all loci. The spawning time for the majority of females sampled could be predicted based on their genotypic information [chromosome segment sharing coefficient (CSSC) values]. CSSC analyses assigned 100, 56, 76 and 68% of summer, fall, winter, and spring spawning females, respectively to the season from which their gametes were actually collected. Alternatively, only 38 and 14% of summer and spring spawning XY males respectively, were assigned to the correct season. Loci linked to thermal tolerance and spawning time quantitative trait loci (QTL) showed significantly greater heterogeneity (higher average Ds values) in allele frequencies than those not known to be linked to QTL based on previous work. Thus, phenotypic selection for spawning time has led to concomitant changes in allele frequencies at markers of QTL. This suggests that the QTL detected in our previous work have detectable effects in fish from other genetic backgrounds.  相似文献   

19.
Contemporary genetic structure of Atlantic salmon (Salmo salar L.) in the River Moy in Ireland is shown here to be strongly related to landscape features and population demographics, with populations being defined largely by their degree of physical isolation and their size. Samples of juvenile salmon were collected from the 17 major spawning areas on the river Moy and from one spawning area in each of five smaller nearby rivers. No temporal allele frequency differences were observed within locations for 12 microsatellite loci, whereas nearly all spatial samples differed significantly, suggesting that each was a separate population. Bayesian clustering and landscape genetic analyses suggest that these populations can be combined hierarchically into five genetically informative larger groupings. Lakes were found to be the single most important determinant of the observed population structure. Spawning area size was also an important factor. The salmon population of the closest nearby river resembled genetically the largest Moy population grouping. In addition, we showed that anthropogenic influences on spawning habitats, in this case arterial drainage, can affect relationships between populations. Our results show that Atlantic salmon biodiversity can be largely defined by geography, and thus, knowledge of landscape features (for example, as characterized within Geographical Information Systems) has the potential to predict population structure in other rivers without an intensive genetic survey, or at least to help direct sampling. This approach of combining genetics and geography, for sampling and in subsequent statistical analyses, has wider application to the investigation of population structure in other freshwater/anadromous fish species and possibly in marine fish and other organisms.  相似文献   

20.
Single-nucleotide polymorphisms (SNPs) have several advantages over other genetic markers, including lower mutation and genotyping error rates, ease of inter-laboratory standardization, and the prospect of high-throughput, low-cost genotyping. Nevertheless, their development and use has only recently moved beyond model organisms to groups such as salmonid fishes. Oncorhynchus mykiss is a salmonid native to the North Pacific rim that has now been introduced throughout the world for fisheries and aquaculture. The anadromous form of the species is known as steelhead. Native steelhead populations on the west coast of the United States have declined and many now have protected status. The nonanadromous, or resident, form of the species is termed rainbow, redband or golden trout. Additional life history and morphological variation, and interactions between the forms, make the species challenging to study, monitor and evaluate. Here, we describe the discovery, characterization and assay development for 139 SNP loci in steelhead/rainbow trout. We used EST sequences from existing genomic databases to design primers for 480 genes. Sanger-sequencing products from these genes provided 130 KB of consensus sequence in which variation was surveyed for 22 individuals from steelhead, rainbow and redband trout groups. The resulting TaqMan assays were surveyed in five steelhead populations and three rainbow trout stocks, where they had a mean minor allele frequency of 0.15-0.26 and observed heterozygosity of 0.18-0.35. Mean F(ST) was 0.204. The development of SNPs for O. mykiss will help to provide highly informative genetic tools for individual and stock identification, pedigree reconstruction, phylogeography and ecological investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号