首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucocorticoids (GCs) are widely used to treat inflammatory diseases. However, they cause debilitating side effects, which limit the use of these compounds. In the past decade, many researchers have attempted to find so-called dissociated GCs that have separate distinct transactivation and transrepression activities. Anti-inflammation of GCs is a result of glucocorticoid receptor (GR)-mediated transactivation and transrepression in some tissues, similar to their side effects; therefore, the goal to discover a compound that has anti-inflammatory properties, but lacks the negative side effects seen with GCs, has yet to be achieved. In the present study, we introduce a plant-derived compound, ginsenoside Rg1, which possesses GC and estrogen-like activities. In this study, we show that Rg1 downmodulates LPS-induced proinflammatory cytokine release and inhibits NF-κB nuclear translocation and DNA binding activity. The negative effects on NF-κB activation are due to a decrease in IκB phosphorylation and protein stabilization. Furthermore, the inhibitory effect of Rg1 on NF-κB is GR-dependent, as small interfering RNA knockdown of GR abrogated this function. Rg1 also displayed profound inhibitory effects on LPS-induced MAPK activation. Importantly, Rg1 did not impair proliferation or differentiation of mouse osteoblasts. Finally, we show that Rg1 can effectively inhibit acute and chronic inflammation in vivo, but it does not cause hyperglycemia or osteoporosis as seen with dexamethasone. These results suggest that ginsenoside Rg1 may serve as a novel anti-inflammatory agent and may exhibit a potential profile for therapeutic intervention in inflammatory diseases.  相似文献   

2.
Glucocorticoids (GCs) are the mainstay of asthma therapy; however, major side effects limit their therapeutic use. GCs influence the expression of genes either by transactivation or transrepression. The antiinflammatory effects of steroids are thought to be due to transrepression and the side effects, transactivation. Recently, a compound, RU 24858, has been identified that demonstrated dissociation between transactivation and transrepression in vitro. RU 24858 exerts strong AP-1 inhibition (transrepression), but little or no transactivation. We investigated whether this improved in vitro profile results in the maintenance of antiinflammatory activity (evaluated in the Sephadex model of lung edema) with reduced systemic toxicity (evaluated by loss in body weight, thymus involution, and bone turnover) compared with standard GCs. RU 24858 exhibits comparable antiinflammatory activity to the standard steroid, budesonide. However, the systemic changes observed indicate that transactivation events do occur with this GC with similar potency to the standard steroids. In addition, the GCs profiled showed no differentiation on quantitative osteopenia of the femur. These results suggest that in vitro separation of transrepression from transactivation activity does not translate to an increased therapeutic ratio for GCs in vivo or that adverse effects are a consequence of transrepression.  相似文献   

3.
Recent data cast new light on the mechanisms by which glucocorticoids (GCs)elicit apoptosis of thymocytes and leukemia cells. Here we attempt to integrate recentstudies by others and us, which provide a novel insight to this apoptotic process. In thelast few years it was made clear that there is a tight cooperation between genomic andnon-genomic effects exerted by GC receptors (GRs). GC invokes major alterations in thegene expression profile through GR-mediated transactivation and transrepression, whichultimately tip the balance between pro-survival and pro-apoptotic proteins. Althoughessential in shaping the cell’s proteome, these genomic effects are insufficient to elicitapoptotic death and additional signals are required for activating the pro-apoptoticproteins. Several non-genomic effects have been described that occur immediatelyfollowing exposure to GC, which are imperative for the induction of apoptosis. We haverecently observed that GC induces instant GR translocation to the mitochondria in GCsensitive,but not in GC-resistant, T lymphoid cells. This response contrasts the nucleartranslocation of GR occurring in both cell types. We propose that the sustained elevationof GR in the mitochondria following GC exposure is crucial for triggering apoptosis.  相似文献   

4.
5.
Circulating glucocorticoids (GCs) are powerful regulators of immunity. Stress-induced GC secretion by the adrenal glands initially enhances and later suppresses the immune response. GC targets include lymphocytes of the adaptive immune system, which are well known for their sensitivity to GCs. Less appreciated, however, is that GCs are locally produced in lymphoid organs, such as the thymus, where GCs play a critical role in selection of the T cell antigen receptor (TCR) repertoire. Here, we review the roles of systemic and locally-produced GCs in T lymphocyte development, which has been studied primarily in laboratory mice. By antagonizing TCR signaling in developing T cells, thymus-derived GCs promote selection of T cells with stronger TCR signaling. This results in increased T cell-mediated immune responses to a range of antigens. We then compare local and systemic GC patterns in mice to those in several bird species. Taken together, these studies suggest that a combination of adrenal and lymphoid GC production might function to adaptively regulate lymphocyte development and selection, and thus antigen-specific immune reactivity, to optimize survival under different environmental conditions. Future studies should examine how lymphoid GC patterns vary across other vertebrates, how GCs function in B lymphocyte development in the bone marrow, spleen, and the avian bursa of Fabricius, and whether GCs adaptively program immunity in free-living animals.  相似文献   

6.
Estrogen receptor (ER) ligands that are able to prevent postmenopausal bone loss, but have reduced activity in the uterus and the mammary gland might be of great value for hormone therapy. It is well established that the classical ER can activate genomic as well as nongenomic signal transduction pathways. In this study, we analyse the in vivo behaviour of ER ligands that stimulate nongenomic ER effects to the same extent as estradiol, but show clearly reduced activation of genomic ER effects in vitro. Using different readout parameters such as morphological changes, cellular proliferation, and target gene induction, we are able to demonstrate that ER ligands with reduced genomic activity in vitro show a better dissociation of bone versus uterine and mammary gland effects than estradiol that stimulates genomic and nongenomic effects to the same extent. We conclude that pathway-selective ER ligands may represent an interesting option for hormone therapy.  相似文献   

7.
Glucocorticoids (GCs) play a key role in skin homeostasis and stress responses acting through the GC receptor (GR), which modulates gene expression by DNA binding-dependent (transactivation) and -independent (transrepression) mechanisms. To delineate which mechanisms underlie the beneficial and adverse effects mediated by GR in epidermis and other epithelia, we have generated transgenic mice that express a mutant GR (P493R, A494S), which is defective for transactivation but retains transrepression activity, under control of the keratin 5 promoter (K5-GR-TR mice). K5-GR-TR embryos exhibited eyelid opening at birth and corneal defects that resulted in corneal opacity in the adulthood. Transgenic embryos developed normal skin, although epidermal atrophy and focal alopecia was detected in adult mice. GR-mediated transrepression was sufficient to inhibit keratinocyte proliferation induced by acute and chronic phorbol 12-myristate 13-acetate exposure, as demonstrated by morphometric analyses, bromodeoxyuridine incorporation, and repression of keratin 6, a marker of hyperproliferative epidermis. These antiproliferative effects were mediated through negative interference of GR with MAPK/activator protein-1 and nuclear factor-kappaB activities, although these interactions occurred with different kinetics. However, phorbol 12-myristate 13-acetate-induced inflammation was only partially inhibited by GR-TR, which efficiently repressed IL-1beta and MMP-3 genes while weakly repressing IL-6 and TNF-alpha. Our data highlight the relevance of deciphering the mechanisms underlying GR actions on epithelial morphogenesis as well as for its therapeutic use to identify more restricted targets of GC administration.  相似文献   

8.
PURPOSE OF REVIEW: Recent findings suggesting that cannabinoid receptors are potential targets for the treatment of atherosclerosis are reviewed. RECENT FINDINGS: Cannabinoids, such as Delta9-tetrahydrocannabinol, the major psychoactive compound of marijuana, their synthetic analogs and endogenous cannabinoid ligands, produce their biological effects by interacting with specific receptors. In the apolipoprotein E knockout mouse model of atherosclerosis, Delta9-tetrahydrocannabinol was shown to inhibit disease progression through pleiotropic effects on inflammatory cells. Blocking of cannabinoid receptor CB2, the main cannabinoid receptor expressed on immune cells, abolished the observed effects. The development of novel cannabinoid receptor ligands that selectively target CB2 receptors or pharmacological modulation of the endocannabinoid system might offer novel therapeutic strategies in the treatment of atherosclerosis. Several reports demonstrating an implication of the endocannabinoid system in different inflammatory conditions support this hypothesis. SUMMARY: The immunomodulatory capacity of cannabinoids is now well established and suggests a broad therapeutic potential of cannabinoids for a variety of conditions, including atherosclerosis. New strategies based on nonpsychotropic cannabinoid receptor ligands or compounds modulating endocannabinoid synthesis or stability might solve the problem of the unwanted side effects associated with cannabinoid administration.  相似文献   

9.
Yang N  Ray DW  Matthews LC 《Steroids》2012,77(11):1041-1049
Glucocorticoids (GCs) are the most potent anti-inflammatory agents known. A major factor limiting their clinical use is the wide variation in responsiveness to therapy. The high doses of GC required for less responsive patients means a high risk of developing very serious side effects. Variation in sensitivity between individuals can be due to a number of factors. Congenital, generalized GC resistance is very rare, and is due to mutations in the glucocorticoid receptor (GR) gene, the receptor that mediates the cellular effects of GC. A more common problem is acquired GC resistance. This localized, disease-associated GC resistance is a serious therapeutic concern and limits therapeutic response in patients with chronic inflammatory disease. It is now believed that localized resistance can be attributed to changes in the cellular microenvironment, as a consequence of chronic inflammation. Multiple factors have been identified, including alterations in both GR-dependent and -independent signaling downstream of cytokine action, oxidative stress, hypoxia and serum derived factors. The underlying mechanisms are now being elucidated, and are discussed here. Attempts to augment tissue GC sensitivity are predicted to permit safe and effective use of low-dose GC therapy in inflammatory disease.  相似文献   

10.
在过去的几十年间,人们认为糖皮质激素(glucocorticoid,GC)仅仅是通过改变基因的表达来发挥其生理作用,这个过程需要几个小时来完成。然而,近年来越来越多的证据表明GC对激素分泌、神经元兴奋性、机体行为及细胞形态、糖类代谢等具备快速效应,这些过程往往在数秒钟或者分种内完成,这种作用机制被称为GC的非基因组作用机制。GC的非基因组作用主要可能通过两种不同的机制起作用:(1)通过细胞膜上或者细胞质内结构未知的糖皮质激素受体(glucocorticoid Recptor,GR)来发挥非基因组作用,即为特异性非基因组效应,(2)GC主要通过改变细胞膜理化作用来发挥效应。也称为非特异性非基因组效应(non-specific nongenomic effects,NSNE)。本文通过阐述近年来GC的非基因组的作用的最新研究进展并且讨论了这些非基因组作用临床治疗过程中的联系。对糖皮质激素基因组和非基因组作用机制的深入了解有助于指导我们在临床合理用药并减少其副作用。  相似文献   

11.
In mammals, glucocorticoids (GCs) and their intracellular receptor, the glucocorticoid receptor (GR), represent critical checkpoints in the endocrine control of energy homeostasis. Indeed, aberrant GC action is linked to severe metabolic stress conditions as seen in Cushing's syndrome, GC therapy and certain components of the Metabolic Syndrome, including obesity and insulin resistance. Here, we identify the hepatic induction of the mammalian conserved microRNA (miR)‐379/410 genomic cluster as a key component of GC/GR‐driven metabolic dysfunction. Particularly, miR‐379 was up‐regulated in mouse models of hyperglucocorticoidemia and obesity as well as human liver in a GC/GR‐dependent manner. Hepatocyte‐specific silencing of miR‐379 substantially reduced circulating very‐low‐density lipoprotein (VLDL)‐associated triglyceride (TG) levels in healthy mice and normalized aberrant lipid profiles in metabolically challenged animals, mediated through miR‐379 effects on key receptors in hepatic TG re‐uptake. As hepatic miR‐379 levels were also correlated with GC and TG levels in human obese patients, the identification of a GC/GR‐controlled miRNA cluster not only defines a novel layer of hormone‐dependent metabolic control but also paves the way to alternative miRNA‐based therapeutic approaches in metabolic dysfunction.  相似文献   

12.
13.
Non-competitive ligands of kainate receptors have focused significant attention as medicinal compounds because they seem to be better tolerated than competitive antagonists and uncompetitive blocker of these receptors. Here we present structural studies (X-ray structure determination, NMR and MS spectra) of novel indole-derived non-competitive antagonists of GluK1/GluK2 receptors, homology models of GluK1 and GluK2 receptors based on novel AMPA receptor template as well as molecular docking of ligands to their molecular targets. We find that the allosteric site is in the receptor transduction domain, in one receptor subunit, not between the two subunits as it was indicated by our earlier studies.  相似文献   

14.
Thyroid hormones signaling is getting more complex: STORMs are coming   总被引:1,自引:0,他引:1  
T3 regulates many physiological and developmental processes by binding to thyroid hormone receptors (TRs). This induces a conformational change of DNA-bound TRs that releases corepressors in favor of coactivators. The associated chromatin modifications induce polymerase II recruitment. Mouse genetic studies clarified the respective contribution of each receptor isoform and revealed the important activity of unliganded TRs. They also confirm the paradoxical negative regulation of some promoters by liganded TRs. Recent advances place these molecular events in a broader context of extra- and intracellular regulation: control of ligand availability, changes in the cell sensitivity to T3, nongenomic effects, and cross talks with other signaling pathways contribute to increase the diversity and complexity of thyroid hormones signaling. A promising novel class of TRs synthetic ligands, called STORMs (selective TR modulators), might allow for tissue- and promoter-specific interventions.  相似文献   

15.
16.
The management of rheumatoid arthritis (RA) is primarily based on the use of disease-modifying antirheumatic drugs (DMARDs), mainly comprising synthetic chemical compounds (that is, methotrexate or leflunomide) and biological agents (tumor necrosis factor inhibitors or abatacept). On the other hand, glucocorticoids (GCs), used for decades in the treatment of RA, are effective in relieving signs and symptoms of the disease, but also interfere with radiographic progression, either as monotherapy or in combination with conventional synthetic DMARDs. GCs exert most of their biological effects through a genomic action, using the cytosolic GC receptor and then interacting with the target genes within target cells that can result in increased expression of regulatory - including anti-inflammatory - proteins (transactivation) or decreased production of proinflammatory proteins (transrepression). An inadequate secretion of GCs from the adrenal gland, in relation to stress and inflammation, seems to play an important role in the pathogenesis and disease progression of RA. At present there is clear evidence that GC therapy, especially long-term low-dose treatment, slows radiographic progression by at least 50% when given to patients with early RA, hence satisfying the conventional definition of a DMARD. In addition, long-term follow-up studies suggest that RA treatment strategies which include GC therapy may favorably alter the disease course even after their discontinuation. Finally, a low-dose, modified night-release formulation of prednisone, although administered in the evening (replacement therapy), has been developed to counteract the circadian (night) rise in proinflammatory cytokine levels that contributes to disease activity, and might represent the way to further optimize the DMARD activity exerted by GCs in RA.  相似文献   

17.
18.
糖皮质激素受体及其选择性调节剂研究进展   总被引:1,自引:0,他引:1  
糖皮质激素(glucocorticoids,GCs)是临床上广泛使用的一类抗炎药物,在体内主要通过糖皮质激素受体(glucocorticoid receptor,GR)发挥生理和药理作用。GR是核受体超家族的成员之一,为配体激活的转录因子,在机体的多种生理和病理活动中扮演重要的角色。随着对GR信号通路的深入研究,寻找针对糖皮质激素受体的新型调节剂,以期将抗炎作用和现有糖皮质激素的副作用相分离,已经成为新药发现的研究热点。本文对近年来GR的分子结构、生物学作用及其选择性调节剂的研究进展作一简要的介绍。  相似文献   

19.
Glucocorticoids (GCs) have been demonstrated to act through both genomic and nongenomic mechanisms. The present study demonstrated that corticosterone rapidly suppressed the activity of N-methyl-D-aspartate (NMDA) receptors in cultured hippocampal neurons. The effect was maintained with corticosterone conjugated to bovine serum albumin and blocked by inhibition of G protein activity with intracellular GDP-β-S application. Corticosterone increased GTP-bound G(s) protein and cyclic AMP (cAMP) production, activated phospholipase Cβ(3) (PLC-β(3)), and induced inositol-1,4,5-triphosphate (IP(3)) production. Blocking PLC and the downstream cascades with PLC inhibitor, IP(3) receptor antagonist, Ca(2+) chelator, and protein kinase C (PKC) inhibitors prevented the actions of corticosterone. Blocking adenylate cyclase (AC) and protein kinase A (PKA) caused a decrease in NMDA-evoked currents. Application of corticosterone partly reversed the inhibition of NMDA currents caused by blockage of AC and PKA. Intracerebroventricular administration of corticosterone significantly suppressed long-term potentiation (LTP) in the CA1 region of the hippocampus within 30 min in vivo, implicating the possibly physiological significance of rapid effects of GC on NMDA receptors. Taken together, our results indicate that GCs act on a putative G protein-coupled receptor to activate multiple signaling pathways in hippocampal neurons, and the rapid suppression of NMDA activity by GCs is dependent on PLC and downstream signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号