首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Lipoprotein lipase (LPL) and pOb24 mRNAs are known to be early markers of adipose cell differentiation. Comparative studies of the expression of pOb24 and LPL genes during adipose conversion of Ob1771 preadipocyte cells and in mouse adipose tissue have shown the following: 1) the expression of both genes takes place at confluence; this event can also be triggered by growth arrest of exponentially growing cells at the G1/S stage of the cell cycle; 2) In contrast to glycerol-3-phosphate dehydrogenase mRNA, the emergence of pOb24 and lipoprotein lipase mRNAs requires neither growth hormone or tri-iodothyronine as obligatory hormones nor insulin as a modulating hormone; 3) in mouse adipose tissue, pOb24 mRNA is present at a high level in stromal-vascular cells and at a low level in mature adipocytes, and in contrast LPL mRNAs are preferentially expressed in mature adipocytes. Thus, these two genes do not appear to be regulated in a similar manner, as also shown by the differential inhibition of their expression by tumor necrosis factor (TNF) and transforming growth factor-beta (TGF-beta).  相似文献   

3.
Introns regulate the rate of unstable mRNA decay   总被引:2,自引:0,他引:2  
  相似文献   

4.
5.
Replication-dependent histone mRNAs are the only metazoan mRNAs that are not polyadenylated, ending instead in a conserved stem-loop sequence. Histone pre-mRNAs lack introns and are processed in the nucleus by a single cleavage step, which produces the mature 3' end of the mRNA. We have systematically examined the requirements for the nuclear export of a mouse histone mRNA using the Xenopus oocyte system. Histone mRNAs were efficiently exported when injected as mature mRNAs, demonstrating that the process of 3' end cleavage is not required for export factor binding. Export also does not depend on the stem-loop binding protein (SLBP) since mutations of the stem-loop that prevent SLBP binding and competition with a stem-loop RNA did not affect export. Only the length of the region upstream of the stem-loop, but not its sequence, was important for efficient export. Histone mRNA export was blocked by competition with constitutive transport element (CTE) RNA, indicating that the mRNA export receptor TAP is involved in histone mRNA export. Consistent with this observation, depletion of TAP from Drosophila cells by RNAi resulted in the restriction of mature histone mRNAs to the nucleus.  相似文献   

6.
7.
This study demonstrates that the eukaryotic translation initiation factor eIF4E is a critical node in an RNA regulon that impacts nearly every stage of cell cycle progression. Specifically, eIF4E coordinately promotes the messenger RNA (mRNA) export of several genes involved in the cell cycle. A common feature of these mRNAs is a structurally conserved, approximately 50-nucleotide element in the 3' untranslated region denoted as an eIF4E sensitivity element. This element is sufficient for localization of capped mRNAs to eIF4E nuclear bodies, formation of eIF4E-specific ribonucleoproteins in the nucleus, and eIF4E-dependent mRNA export. The roles of eIF4E in translation and mRNA export are distinct, as they rely on different mRNA elements. Furthermore, eIF4E-dependent mRNA export is independent of ongoing RNA or protein synthesis. Unlike the NXF1-mediated export of bulk mRNAs, eIF4E-dependent mRNA export is CRM1 dependent. Finally, the growth-suppressive promyelocytic leukemia protein (PML) inhibits this RNA regulon. These data provide novel perspectives into the proliferative and oncogenic properties of eIF4E.  相似文献   

8.
9.
Chen W  Islas-Osuna MA  Dieckmann CL 《Genetics》1999,151(4):1315-1325
The cytochrome b gene in Saccharomyces cerevisiae, COB, is encoded by the mitochondrial genome. Nuclear-encoded Cbp1 protein is required specifically for COB mRNA stabilization. Cbp1 interacts with a CCG element in a 64-nucleotide sequence in the 5'-untranslated region of COB mRNA. Mutation of any nucleotide in the CCG causes the same phenotype as cbp1 mutations, i.e., destabilization of both COB precursor and mature message. In this study, eleven nuclear suppressors of single-nucleotide mutations in CCG were isolated and characterized. One dominant suppressor is in CBP1, while the other 10 semidominant suppressors define five distinct linkage groups. One group of four mutations is in PET127, which is required for 5' end processing of several mitochondrial mRNAs. Another mutation is linked to DSS1, which is a subunit of mitochondrial 3' --> 5' exoribonuclease. A mutation linked to the SOC1 gene, previously defined by recessive mutations that suppress cbp1 ts alleles and stabilize many mitochondrial mRNAs, was also isolated. We hypothesize that the products of the two uncharacterized genes also affect mitochondrial RNA turnover.  相似文献   

10.
11.
12.
Dominski Z  Marzluff WF 《Gene》1999,239(1):1-14
All metazoan messenger RNAs, with the exception of the replication-dependent histone mRNAs, terminate at the 3' end with a poly(A) tail. Replication-dependent histone mRNAs end instead in a conserved 26-nucleotide sequence that contains a 16-nucleotide stem-loop. Formation of the 3' end of histone mRNA occurs by endonucleolytic cleavage of pre-mRNA releasing the mature mRNA from the chromatin template. Cleavage requires several trans-acting factors, including a protein, the stem-loop binding protein (SLBP), which binds the 26-nucleotide sequence; and a small nuclear RNP, U7 snRNP. There are probably additional factors also required for cleavage. One of the functions of the SLBP is to stabilize binding of the U7 snRNP to the histone pre-mRNA. In the nucleus, both U7 snRNP and SLBP are present in coiled bodies, structures that are associated with histone genes and may play a direct role in histone pre-mRNA processing in vivo. One of the major regulatory events in the cell cycle is regulation of histone pre-mRNA processing, which is at least partially mediated by cell-cycle regulation of the levels of the SLBP protein.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
A key factor involved in the processing of histone pre-mRNAs in the nucleus and translation of mature histone mRNAs in the cytoplasm is the stem-loop binding protein (SLBP). In this work, we have investigated SLBP nuclear transport and subcellular localization during the cell cycle. SLBP is predominantly nuclear under steady-state conditions and localizes to the cytoplasm during S phase when histone mRNAs accumulate. Consistently, SLBP mutants that are defective in histone mRNA binding remain nuclear. As assayed in heterokaryons, export of SLBP from the nucleus is dependent on histone mRNA binding, demonstrating that SLBP on its own does not possess any nuclear export signals. We find that SLBP interacts with the import receptors Impalpha/Impbeta and Transportin-SR2. Moreover, complexes formed between SLBP and the two import receptors are disrupted by RanGTP. We have further shown that SLBP is imported by both receptors in vitro. Three sequences in SLBP required for Impalpha/Impbeta binding were identified. Simultaneous mutation of all three sequences was necessary to abolish SLBP nuclear localization in vivo. In contrast, we were unable to identify an in vivo role for Transportin-SR2 in SLBP nuclear localization. Thus, only the Impalpha/Impbeta pathway contributes to SLBP nuclear import in HeLa cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号