首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary The phenomenon of dosage compensation in Drosophila melanogaster which consists in doubling of the activity of the X-chromosome genes in males as compared to those in females was studied.The specific activities of 6-phosphogluconate dehydrogenase (6PGD) and glucose-6-phosphate dehydrogenase (G6PD) determined by the sex-linked structural genes Pgd and Zw respectively were studied in flies carrying duplications for different regions of the X-chromosome. The increase in dose of Pgd and Zw in females resulting from the addition of an extra X-chromosome or X-fragments leads to a proportional rise in the specific activities of 6PGD and G6PD. On the other had the addition to females of the X-chromosome carrying no Pgd gene or X-fragments lacking Pgd and Zw has no effect on the enzyme activities. Thus we failed to reveal in the X-chromosome any compensatory genes envisaged by Muller, which would repress sex-linked structural genes proportional to their dose.The 6PGD and G6PD levels in phenotypically male-like intersexes carrying two X-chromosomes and three autosome sets (2X3A) is 30% higher than in diploid (2X2A) or triploid (3X3A) females. However the specific activities of the enzymes in female-like intersexes are the same as in regular females. The levels of 6PGD and G6PD per one X-chromosome are 1.5–2.0 times higher in the intersexes than in the normal females and metafemales (3X2A). The results indicate that the level of expression of the X-chromosome is determined by the X:A ratio. It is suggested that the decreased X:A ratio in males is responsible for the hyperactivation of their X-chromosomes.  相似文献   

3.
4.
The incorporation of 3H-uridine in different regions of polytene chromosomes in live cells of the Drosophila melanogaster salivary glands was compared with the incorporation of 3H-UTP in the same regions under the incubation of cytological preparations of these chromosomes with the E. coli RNA polymerase. The label distribution by regions was compared with the DNA content in them. Individual regions of chromosomes differ by 3H-uridine incorporation in live cells to a much greater extent than by 3H-UTP incorporation in vitro under the incubation with a non-homologous enzyme. RNA synthesis in an exogenous enzyme depends on the DNA content in different chromosome regions to a much greater extent than RNA synthesis in vivo. The correlation of label distribution after 3H-uridine incorporation in live cells and after RNA synthesis in vitro on the preparations by the bacterial RNA polymerase is, correspondingly, very low. This enzyme forms, however, RNA's on puffs 2-3 times more actively than on the same regions in non-puffing state but this difference is dozens of times greater in live cells. RNA synthesis in vitro is, thus, non-specific and does not correspond practically to the intensity of RNA synthesis on the same chromosome regions in live cells. At the same time, as in live cells, the E. coli enzyme synthesizes twice more RNA on the single X-chromosome of males (1X2A) than on each of X-chromosomes of diploid (2X2A) and triploid (3X3A) females or superfemales (3X2A), whereas in intersexes (2X3A) X-chromosomes display intermediate template activity. Thus, RNA synthesis by a heterologous enzyme in vitro does not differ by this index from the synthesis in live cells. It is suggested that differences in the template activity of X-chromosomes in vitro depending on the sex index (X : A) are due to different degree of DNP condensation in these chromosomes. In spite of differences in the degree of condensation, the male X-chromosome binds on the fixed preparation approximately the same amount of thymus histone F1 carrying fluorochrome as each of two female X-chromosomes. Hence, there is no sharp difference between the male and female X-chromosomes by the number and length of DNA regions accessible for interaction with exogenous proteins. On the basis of the data obtained, a hypothesis about two levels and, respectively, two mechanisms of control gene activity in animal chromosomes is considered. The first mechanism is, supposedly, based on decondensation of DNP appears to result in that the same proteins-regulators in the same amount activate corresponding genes in X-chromosome in males twice more strongly than in females.  相似文献   

5.
6.
Triploid intersexes homozygous for a mutant (msl-2) known to impede the hyperactivation of the X chromosome in diploid males differentiate into adults, sexually indistinguishable from their heterozygous sibs. A shift toward female sexual differentiation mediated by manipulating the rearing temperature is accompanied by an apparent increase in the level of an X-linked gene product. This unexpected result is rationalized in terms of differential lethality of individuals at the two extremities of the distribution of X-activity levels in intersexes raised at a particular temperature. No evidence of a mosaicism comparable to the sexual mosaicism exhibited could be found with respect to an X-linked gene product in triploid intersexes.  相似文献   

7.
Dosage compensation in Drosophila melanogaster triploids   总被引:1,自引:1,他引:0  
  相似文献   

8.
Mating between a diploid male and a diploid female ofBombus atratus produced fertile triploid F1 females. The F2 descendents of these virgin females were composed of haploid males (10), diploid males (4), aneuploid males (3) and intersexes (2). These data indicate that sex is produced by a balance between male determining and female determining genes: they, also, suggest that the number of sex genes are not large.  相似文献   

9.
In the textbook view, the ratio of X chromosomes to autosome sets, X:A, is the primary signal specifying sexual fate in Drosophila. An alternative idea is that X chromosome number signals sex through the direct actions of several X-encoded signal element (XSE) proteins. In this alternative, the influence of autosome dose on X chromosome counting is largely indirect. Haploids (1X;1A), which possess the male number of X chromosomes but the female X:A of 1.0, and triploid intersexes (XX;AAA), which possess a female dose of two X chromosomes and the ambiguous X:A ratio of 0.67, represent critical tests of these hypotheses. To directly address the effects of ploidy in primary sex determination, we compared the responses of the signal target, the female-specific SxlPe promoter of the switch gene Sex-lethal, in haploid, diploid, and triploid embryos. We found that haploids activate SxlPe because an extra precellular nuclear division elevates total X chromosome numbers and XSE levels beyond those in diploid males. Conversely, triploid embryos cellularize one cycle earlier than diploids, causing premature cessation of SxlPe expression. This prevents XX;AAA embryos from fully engaging the autoregulatory mechanism that maintains subsequent Sxl expression, causing them to develop as sexual mosaics. We conclude that the X:A ratio predicts sexual fate, but does not actively specify it. Instead, the instructive X chromosome signal is more appropriately seen as collective XSE dose in the early embryo. Our findings reiterate that correlations between X:A ratios and cell fates in other organisms need not implicate the value of the ratio as an active signal.  相似文献   

10.
11.
In the textbook view, the ratio of X chromosomes to autosome sets, X:A, is the primary signal specifying sexual fate in Drosophila. An alternative idea is that X chromosome number signals sex through the direct actions of several X-encoded signal element (XSE) proteins. In this alternative, the influence of autosome dose on X chromosome counting is largely indirect. Haploids (1X;1A), which possess the male number of X chromosomes but the female X:A of 1.0, and triploid intersexes (XX;AAA), which possess a female dose of two X chromosomes and the ambiguous X:A ratio of 0.67, represent critical tests of these hypotheses. To directly address the effects of ploidy in primary sex determination, we compared the responses of the signal target, the female-specific SxlPe promoter of the switch gene Sex-lethal, in haploid, diploid, and triploid embryos. We found that haploids activate SxlPe because an extra precellular nuclear division elevates total X chromosome numbers and XSE levels beyond those in diploid males. Conversely, triploid embryos cellularize one cycle earlier than diploids, causing premature cessation of SxlPe expression. This prevents XX;AAA embryos from fully engaging the autoregulatory mechanism that maintains subsequent Sxl expression, causing them to develop as sexual mosaics. We conclude that the X:A ratio predicts sexual fate, but does not actively specify it. Instead, the instructive X chromosome signal is more appropriately seen as collective XSE dose in the early embryo. Our findings reiterate that correlations between X:A ratios and cell fates in other organisms need not implicate the value of the ratio as an active signal.  相似文献   

12.
H. Ohtani 《Chromosoma》1993,102(3):158-162
Of 21 allotriploid males that possessed two genomes of Rana nigromaculata and one genome of Rana lessonae 10 produced a large number of spermatozoa in their testes. When 4 of these males were backcrossed with a female of R. nigromaculata, all of the resulting froglets were diploid in chromosome number and were completely R. nigromaculata type in appearance. These allotriploid males proved to have produced spermatozoa with one R. nigromaculata genome hybridogentically. Therefore, their germ line cells were investigated for the mechanism of elimination of their R. lessonae chromosomes. In histologicla sections of testes, the great majority of spermatogonia (approximately 104 cells) between mitotic prometaphase and anaphase appeared normal in chromosome behavior, whereas 17 spermatogonia showed several chromosomes whose behavior deviated from the normal course during the same period. These deviant chromosomes concentrated together near the equatorial plate and remained stationary at anaphase. In metaphase chromosome preparations made from spermatogonia, 67 and 185 of the 477 chromosome spreads were diploid and triploid, respectively. The rest were aneuploid. Notably, 8 triploid spreads consisted of 26 or more normal chromosomes and 13 or fewer degenerate chromosomes. From these results it is concluded that a set of R. lessonae chromosomes is eliminated from some, but not all spermatogonia by becoming degenerate during the mitotic period.by H.C. Macgregor  相似文献   

13.
Independent spontaneous triploid tomato plants (Lycopersicon esculentum Mill.) were collected among diploid hybrids growing in commercial greenhouses. Ploidy levels were verified by counting chromosomes, and the donor of the double genome dose was determined by restriction fragment length polymorphism (RFLP) analysis. The TG101 probe, which is tightly linked to the Tm-2 a locus, revealed different restriction patterns between TMV-resistant and TMV-susceptible parent lines. The parent donor which provided two genomes to the triploid was identified by comparing the relative intensity of alleles in the triploid with that in the diploid. The results indicate that both parents can serve as a double genome donor.  相似文献   

14.
Hybridisation between diploid (2n=28) dwarf birch Betula nana L. and tetraploid (2n=56) downy birch B. pubescens Ehrh. has occurred in natural populations in Iceland. About 10% of birch plants randomly collected are triploid (2n=42) hybrids. Ribosomal gene mapping on chromosomes and genomic in situ hybridisation confirms the hybridity. However, the triploid hybrids are not morphologically distinct, i.e. they are not different from diploid and tetraploid birch plants that have intermediate morphology. The triploid hybrids have evidently played an important role in driving bi-directional gene flow between these two species. This paper reviews the extent of interspecific hybridisation in selected birch woodland populations and discusses the significance of natural hybridisation and introgression in birch.  相似文献   

15.
Boroń A 《Genetica》1999,105(3):293-300
The present work provides new data on the banding pattern of diploid Cobitis taenia and its triploid hybrid females, which belong to the diploid–polyploid complex in the Vistula River tributary. C-banding, silver-staining (Ag), and fluorescent staining with chromomycin A3 techniques were used to describe the diploid and triploid karyotype. The karyotype of Cobitis taenia of 2n=48 was characterised by one pair of NOR-bearing subtelocentric chromosomes and at least four chromosomes with CMA3-positive sites. The C-positive heterochromatin was present in the centromeres of almost all chromosomes and the pericentromeric regions of several metacentric and submetacentric chromosomes. The triploid females of 3n=74 had two pairs of chromosomes with active NORs. The NORs-sites were located terminally on two biarmed and two uniarmed chromosomes. The CMA3-staining revealed at least six A3-positive sites. The C-banded and A3-stained triploid karyotype was composed of haploid set of Cobitis taenia and diploid set of unidentified species, so heterochromatin pattern confirmed the possibility of their hybrid origin. The characteristics of banded diploid and triploid karyotype, and the hypothetical karyotype of an unknown species of 2n=50 is discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The occurrence of a natural triploid among diploid individuals of Eigenmannia sp from the Amazon basin is described. The diploid individuals had 2n=31 and 32 chromosomes, the difference in chromosome number being due to a Robertsonian rearrangement. The triploid individual presented 2n=46 and had two fused acrocentrics. NOR activity was present in the three homologues of triploid and a NOR polymorphism was detected in the triploid and diploids.  相似文献   

17.
18.
The ploidy status of Acipenser mikadoi was examined using nuclear DNA contents, karyotypes and fluorescence in situ hybridization (FISH) with 5.8S + 28S rDNA as a probe. In flow‐cytometrically sorted specimens with 8.2–9.1 pg DNA content per somatic cell, i.e. genetic diploid, the best informative metaphase with 268 chromosomes had 80 biarmed meta‐ or submetacentric (M or SM) chromosomes, 48 monoarmed telocentric (T) chromosomes and 140 microchromosomes. In genetic triploid specimens with 12.6–13.0 pg DNA content, the best informative metaphase with 402 chromosomes showed 120 biarmed M or SM, 72 monoarmed T chromosomes and 210 microchromosomes. The rDNA FISH detected a maximum 18 and 27 signals in the diploid and triploid A. miakdoi, respectively. The obtained findings thus corroborated a clear parallel between nuclear DNA contents and karyological or FISH profiles in the genetic diploid and triploid specimens, suggesting 1.5 times chromosome complements of diploid counterparts or three sets of homologues in the triploid sturgeons. Moreover, the estimated genome size and the observed molecular cytogenetic features in the diploid A. mikadoi strongly suggest that this species is a member of a functional tetraploid group recently proposed in the literature.  相似文献   

19.
Information on the spatial distribution of cytotypes and karyotype variation in plants is critical for studies of the origin and evolution of polyploid complexes. Here, the spatial distribution of cytological races and intraspecific variation in the karyotype of Lycoris radiata, an endemic species to East Asia, is investigated. Conventional karyotype analysis methods were used to determine ploidy level and karyotypical characteristics in 2,420 individuals from 114 populations of Lradiata nearly covering the whole distribution areas in China. Of 114 populations studied, 52 (45.61%), 58 (50.88%), and 4 (3.51%) are diploid, triploid, and mixoploid populations, respectively, with 1,224, 1,195, and 1 individuals being diploid, triploid, and tetraploid, respectively. The triploid possesses a much wider distribution range than the diploid, with the former almost occupying the entire range of this complex species in East Asia and the latter distributing in the middle and east regions of China. Triploids tend to occur at high altitudes, and the relationship between the ploidy and altitude is significantly positive but low (r= 0.103, p < 0.01). About 98.6% of examined bulbs have a common karyotype consisting of 22 or 33 acrocentric (A) chromosomes. Some aberrant chromosomes which should be generated from A‐type chromosome have been found including metacentrics (m), small metacentrics (m′), and B‐type chromosome. The results can provide a fundamental cytogeographic data for further studies on the evolutionary origins and adaptive divergences of polyploids, especially the triploid, within Lradiata using molecular and/or ecological methods in the future.  相似文献   

20.
The relationship between diploid and triploid forms of Colocasia antiquorum Schott. was assessed through comparative meiotic and pollen mitotic studies. Owing to poor spreading of the chromosomes of both materials, karyological observations on pachytene nuclei were limited to a few chromosomes. Among the two nucleolar chromosomes and a metacentric, telochromomere-bearing chromosome of the diploid, the latter and one of the nucleolar chromosomes characterized by a heteropycnotic short arm were identified in both bivalent and trivalent associations in the triploid. The homologues in these cases were homomorphic and intimately paired. Two types of heteromorphic bivalents exhibiting partial pairing of homomorphic segments were also recorded in the triploid. Among the 14 bivalents of the diploid at diakinesis, two were nucleolus-associated. In the triploid, chromosomal associations at diakinesis included trivalents (2 to 9), bivalents and univalents, and the chiasma frequency per paired chromosome was lower than in the diploids. In 21.6 percent of the PMCs at this stage intragenomic pairing of one or two chromosomes was observed. Post-diakinesis stages in the diploid were regular while in the triploid they were marked by various irregularities in a majority of the cells. However, fertility (stainability), size and divisional frequency of pollen in both materials were remarkably similar. Chromosome numbers in pollen nuclei in the triploid ranged from 8 to 25. Based on these data an autopolyploid origin for the triploid Colocasia and a lower base number than the gametic chromosome number for this genus are advanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号