首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chronic beryllium disease (CBD) is caused by workplace exposure to beryllium and is characterized by the accumulation of memory CD4+ T cells in the lung. These cells respond vigorously to beryllium salts in culture by producing proinflammatory Th1-type cytokines. The presence of these inflammatory cytokines leads to the recruitment of alveolar macrophages, alveolitis, and subsequent granuloma development. It has been shown that chronic exposure to conventional Ags leads to up-regulation in the expression of negative regulators of T cells such as programmed death-1 (PD-1). Due to the persistence of beryllium in the lung after the cessation of exposure, aberrant regulation of the PD-1 pathway may play an important role in CBD development. In the present study, PD-1 expression was measured on blood and bronchoalveolar lavage (BAL) CD4+ T cells from beryllium-sensitized and CBD subjects. PD-1 expression was significantly higher on BAL CD4+ T cells compared with those cells in blood, with the highest expression on the beryllium-specific T cell subset. In addition, the expression of PD-1 on BAL CD4+ T cells directly correlated with the severity of the T cell alveolitis. Increased expression of the PD-1 ligands, PD-L1 and PD-L2, on BAL CD14+ cells compared with blood was also seen. The addition of anti-PD-1 ligand mAbs augmented beryllium-induced CD4+ T cell proliferation, and an inverse correlation was seen between PD-1 expression on beryllium-specific CD4+ T cells and beryllium-induced proliferation. Thus, the PD-1 pathway is active in beryllium-induced disease and plays a key role in controlling beryllium-induced T cell proliferation.  相似文献   

2.
3.
CD4+CD25+ immunoregulatory T cells (Tregs) can be administered to inhibit graft-vs-host disease (GVHD) while preserving graft-vs-leukemia activity after allogeneic bone marrow transplantation in mice. Preclinical studies suggest that it is necessary to infuse as many Tregs as conventional donor T cells to achieve a clinical effect on GVHD. Thus, it would be necessary to expand Tregs ex vivo before transplantation. Two strategies have been proposed: expansion of Tregs stimulated by anti-CD3/CD28-coated microbeads for polyclonal activation or by host-type allogeneic APCs for selecting Tregs specific for host Ags. In this study, we describe the mechanisms by which ex vivo-expanded Tregs act on donor T cells to prevent GVHD in mice. We demonstrate that expanded Tregs strongly inhibited the division, expansion, and differentiation of donor T cells, with a more pronounced effect with Tregs specific for host Ags. These latter cells permit the efficient and durable control of GVHD and favor immune reconstitution.  相似文献   

4.
5.
Interleukin-7 (IL-7) regulates T-cell homeostasis, and its availability is augmented in lymphopenic hosts. Naive CD8+ T cells transferred to lymphopenic mice acquire a memory-like phenotype, raising the possibility that IL-7 is the biological mediator of this effect. Here, we provide direct evidence that IL-7 induces the acquisition of memory-cell markers not only in CD8+ T cells but also in CD4+ T-cell subsets in immune-competent Indian rhesus macaques. The increase of these memory-like populations was dependent on the dose of the cytokine, and these cells were found in the blood as well as secondary lymphoid organs. Memory-like CD4+ and CD8+ T cells acquired the ability to secrete tumor necrosis factor alpha and, to a lesser extent, gamma interferon following stimulation with a cognate antigen. The phenotypic change observed in naive T cells was promptly reversed after discontinuation of IL-7. Importantly, IL-7 induced cycling of both CD4+ and CD8+ central memory and effector memory T cells, demonstrating its contribution to the maintenance of the entire T-cell pool. Thus, IL-7 may be of benefit in the treatment of iatrogenic or virus-induced T-cell depletion.  相似文献   

6.
In contrast to naive T cells, reactivation of memory cells is less dependent on CD28-mediated costimulation. We have shown that circulating beryllium-specific CD4(+) T cells from chronic beryllium disease patients remain CD28-dependent, while those present in the lung no longer require CD28 for T cell activation. In the present study, we analyzed whether other costimulatory molecules are essential for beryllium-induced T cell function in the lung. Enhanced proliferation of a beryllium-responsive, HLA-DP2-restricted T cell line was seen after the induction of 4-1BB ligand expression on the surface of HLA-DP2-expressing fibroblasts. Following beryllium exposure, CD4(+) T cells from blood and bronchoalveolar lavage of chronic beryllium disease patients up-regulate 4-1BB expression, and the majority of beryllium-responsive, IFN-gamma-producing CD4(+) T cells in blood coexpress CD28 and 4-1BB. Conversely, a significant fraction of IFN-gamma-producing bronchoalveolar lavage (BAL) T cells express 4-1BB in the absence of CD28. In contrast to blood, inhibition of the 4-1BB ligand-4-1BB interaction partially blocked beryllium-induced proliferation of BAL CD4(+) T cells, and a lack of 4-1BB expression on BAL T cells was associated with increased beryllium-induced cell death. Taken together, these findings suggest an important role of 4-1BB in the costimulation of beryllium-responsive CD4(+) T cells in the target organ.  相似文献   

7.
NY-ESO-1 is expressed by a broad range of human tumors and is often recognized by Abs in the sera of cancer patients with NY-ESO-1-expressing tumors. The NY-ESO-1 gene also encodes several MHC class I- and class II-restricted tumor epitopes recognized by T lymphocytes. In this study we report one novel pan-MHC class II-restricted peptide sequence, NY-ESO-1 87-111, that is capable of binding to multiple HLA-DR and HLA-DP4 molecules, including HLA-DRB1*0101, 0401, 0701, and 1101 and HLA-DPB1*0401 and 0402 molecules. We also demonstrate that peptide NY-ESO-1 87-111 stimulates Th1-type and Th-2/Th0-type CD4(+) T cells and clones when presented in the context of these HLA-DR and HLA-DP4 molecules. Both bulk CD4(+) T cells and CD4(+) T cell clones were capable of recognizing not only peptide-pulsed APCs, but also autologous dendritic cells, either loaded with the NY-ESO-1 protein or transfected with NY-ESO-1 cDNAs. Using IFN-gamma and IL-5 ELISPOT assays and PBL from patients with NY-ESO-1-expressing tumors, we observed the existence of Th1-type circulating CD4(+) T cells recognizing peptide NY-ESO-1 87-111 in the context of HLA-DP4 molecules. Taken together, these data represent the first report of an HLA-DR- and HLA-DP-restricted epitope from a tumor Ag. They also support the relevance of cancer vaccine trials with peptides NY-ESO-1 87-111 in the large number of cancer patients with NY-ESO-1-expressing tumors.  相似文献   

8.
9.
The repeated injection of low doses of bacterial superantigens (SAg) is known to induce specific T cell unresponsiveness. We show in this study that the spleen of BALB/c mice receiving chronically, staphylococcal enterotoxin B (SEB) contains SEB-specific CD4(+) TCRBV8(+) T cells exerting an immune regulatory function on SEB-specific primary T cell responses. Suppression affects IL-2 and IFN-gamma secretion as well as proliferation of T cells. However, the suppressor cells differ from the natural CD4(+) T regulatory cells, described recently in human and mouse, because they do not express cell surface CD25. They are CD152 (CTLA-4)-negative and their regulatory activity is not associated with expression of the NF Foxp3. By contrast, after repeated SEB injection, CD4(+)CD25(+) splenocytes were heterogenous and contained both effector as well as regulatory cells. In vivo, CD4(+)CD25(-) T regulatory cells prevented SEB-induced death independently of CD4(+)CD25(+) T cells. Nevertheless, SEB-induced tolerance could not be achieved in thymectomized CD25(+) cell-depleted mice because repeated injection of SEB did not avert lethal toxic shock in these animals. Collectively, these data demonstrate that, whereas CD4(+)CD25(+) T regulatory cells are required for the induction of SAg-induced tolerance, CD4(+)CD25(-) T cells exert their regulatory activity at the maintenance stage of SAg-specific unresponsiveness.  相似文献   

10.
We have recently reported that NY-ESO-1-specific naive CD4+ T cell precursors exist in most individuals but are suppressed by CD4+CD25+ regulatory T cells (Tregs), while memory CD4+ T cell effectors against NY-ESO-1 are found only in cancer patients with spontaneous Ab responses to NY-ESO-1. In this study, we have analyzed mechanisms of CD4+ T cell induction following peptide vaccination in relation to susceptibility to Tregs. Specific HLA-DP4-restricted CD4+ T cell responses were elicited after vaccination with NY-ESO-1(157-170) peptide (emulsified in IFA) in patients with NY-ESO-1-expressing epithelial ovarian cancer. These vaccine-induced CD4+ T cells were detectable from effector/memory populations without requirement for in vitro CD4+CD25+ T cell depletion. However, they were only able to recognize NY-ESO-1(157-170) peptide but not naturally processed NY-ESO-1 protein and had much lower avidity compared with NY-ESO-1-specific pre-existing naive CD4+CD25- T cell precursors or spontaneously induced CD4+ T cell effectors of cancer patients with NY-ESO-1 Ab. We propose that vaccination with NY-ESO-1(157-170) peptide recruits low-avidity T cells with low sensitivity to Tregs and fails to modulate the suppressive effect of Tregs on high-avidity NY-ESO-1-specific T cell precursors.  相似文献   

11.
To determine the role of expanded CD4(+)CD28(null) T cells in multiple sclerosis and rheumatoid arthritis pathology, these cells were phenotypically characterized and their Ag reactivity was studied. FACS analysis confirmed that CD4(+)CD28(null) T cells are terminally differentiated effector memory cells. In addition, they express phenotypic markers that indicate their capacity to infiltrate into tissues and cause tissue damage. Whereas no reactivity to the candidate autoantigens myelin basic protein and collagen type II was observed within the CD4(+)CD28(null) T cell subset, CMV reactivity was prominent in four of four HC, four of four rheumatoid arthritis patients, and three of four multiple sclerosis patients. The level of the CMV-induced proliferative response was found to be related to the clonal diversity of the response. Interestingly, our results illustrate that CD4(+)CD28(null) T cells are not susceptible to the suppressive actions of CD4(+)CD25(+) regulatory T cells. In conclusion, this study provides several indications for a role of CD4(+)CD28(null) T cells in autoimmune pathology. CD4(+)CD28(null) T cells display pathogenic features, fill up immunological space, and are less susceptible to regulatory mechanisms. However, based on their low reactivity to the autoantigens tested in this study, CD4(+)CD28(null) T cells most likely do not play a direct autoaggressive role in autoimmune disease.  相似文献   

12.
CD4+ T cells, particularly Th2 cells, play a pivotal role in allergic airway inflammation. However, the requirements for interactions between CD4+ and CD8+ T cells in airway allergic inflammation have not been delineated. Sensitized and challenged OT-1 mice in which CD8+ T cells expressing the transgene for the OVA(257-264) peptide (SIINFEKL) failed to develop airway hyperresponsiveness (AHR), airway eosinophilia, Th2 cytokine elevation, or goblet cell metaplasia. OT-1 mice that received naive CD4+IL-4+ T cells but not CD4+IL-4- T cells before sensitization developed all of these responses to the same degree as wild-type mice. Moreover, recipients of CD4+IL-4+ T cells developed significant increases in the number of CD8+IL-13+ T cells in the lung, whereas sensitized OT-1 mice that received primed CD4+ T cells just before challenge failed to develop these responses. Sensitized CD8-deficient mice that received CD8+ T cells from OT-1 mice that received naive CD4+ T cells before sensitization increased AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged with allergen. In contrast, sensitized CD8-deficient mice receiving CD8+ T cells from OT-1 mice without CD4+ T cells developed reduced AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged. These data suggest that interactions between CD4+ and CD8+ T cells, in part through IL-4 during the sensitization phase, are essential to the development of CD8+IL-13+ T cell-dependent AHR and airway allergic inflammation.  相似文献   

13.
CD4(+)CD25(+) regulatory T (T(reg)) cells have a crucial role in maintaining immune tolerance. Mice and humans born lacking T(reg) cells develop severe autoimmune disease, and depletion of T(reg) cells in lymphopenic mice induces autoimmunity. Interleukin (IL)-2 signaling is required for thymic development, peripheral expansion and suppressive activity of T(reg) cells. Animals lacking IL-2 die of autoimmunity, which is prevented by administration of IL-2-responsive T(reg) cells. In light of the emerging evidence that one of the primary physiologic roles of IL-2 is to generate and maintain T(reg) cells, the question arises as to the effects of IL-2 therapy on them. We monitored T(reg) cells during immune reconstitution in individuals with cancer who did or did not receive IL-2 therapy. CD4(+)CD25(hi) cells underwent homeostatic peripheral expansion during immune reconstitution, and in lymphopenic individuals receiving IL-2, the T(reg) cell compartment was markedly increased. Mouse studies showed that IL-2 therapy induced expansion of existent T(reg) cells in normal hosts, and IL-2-induced T(reg) cell expansion was further augmented by lymphopenia. On a per-cell basis, T(reg) cells generated by IL-2 therapy expressed similar levels of FOXP3 and had similar potency for suppression compared to T(reg) cells present in normal hosts. These studies suggest that IL-2 and lymphopenia are primary modulators of CD4(+)CD25(+) T(reg) cell homeostasis.  相似文献   

14.
15.
Using transgenic mice that express a constitutively active version of STAT5b, we demonstrate that STAT5 plays a key role in governing B cell development and T cell homeostasis. STAT5 activation leads to a 10-fold increase in pro-B, but not pro-T, cells. Conversely, STAT5 signaling promotes the expansion of mature alphabeta T cells (6-fold increase) and gammadelta and NK T cells (3- to 4-fold increase), but not of mature B cells. In addition, STAT5 activation has dramatically divergent effects on CD8(+) vs CD4(+) T cells, leading to the selective expansion of CD8(+) memory-like T cells and CD4(+)CD25(+) regulatory T cells. These results establish that activation of STAT5 is the primary mechanism underlying both IL-7/IL-15-dependent homeostatic proliferation of naive and memory CD8(+) T cells and IL-2-dependent development of CD4(+)CD25(+) regulatory T cells.  相似文献   

16.
CD4+CD25+调节性T细胞是一个具有独特免疫调节功能的T细胞亚群,人体主要通过CD4+CD25+调节性T细胞以免疫负向调节的方式来抑制自身反应性T细胞的作用,减少免疫性疾病的发生,从而维持机体内环境的稳定,维持免疫耐受。CD4+CD25+Treg已被证实其与肿瘤、感染、自身免疫病、移植免疫等多种疾病的发生、发展及转归均相关。随着社会的进步和人民生活水平的提高冠状动脉粥样硬化性病变作为一种慢性病变,其发病率越来越高,已经成为严重危害人类健康的常见病,近年来越来越多的证据表明炎症及免疫反应机制在冠状动脉粥样硬化性心脏病的发生、发展及预后过程中具有重要的作用。而CD4+CD25+调节性T细胞在冠状动脉粥样硬化性病变中所起的作用也受到越来越多的关注。本文就CD4+CD25+调节性T细胞与冠状动脉粥样硬化病变之间的关联做一综述。  相似文献   

17.
Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells   总被引:15,自引:0,他引:15  
Despite expression of the high-affinity IL-2R, CD4(+)CD25(+) regulatory T cells (Tregs) are hypoproliferative upon IL-2R stimulation in vitro. However the mechanisms by which CD4(+)CD25(+) T cells respond to IL-2 signals are undefined. In this report, we examine the cellular and molecular responses of CD4(+)CD25(+) Tregs to IL-2. IL-2R stimulation results in a G(1) cell cycle arrest, cellular enlargement and increased cellular survival of CD4(+)CD25(+) T cells. We find a distinct pattern of IL-2R signaling in which the Janus kinase/STAT pathway remains intact, whereas IL-2 does not activate downstream targets of phosphatidylinositol 3-kinase. Negative regulation of phosphatidylinositol 3-kinase signaling and IL-2-mediated proliferation of CD4(+)CD25(+) T cells is inversely associated with expression of the phosphatase and tensin homologue deleted on chromosome 10, PTEN.  相似文献   

18.
Prior reports have shown that CD4(+)CD25(+) regulatory T cells suppress naive T cell responses by inhibiting IL-2 production. In this report, using an Ag-specific TCR transgenic system, we show that naive T cells stimulated with cognate Ag in the presence of preactivated CD4(+)CD25(+) T cells also become refractory to the mitogenic effects of IL-2. T cells stimulated in the presence of regulatory T cells up-regulated high affinity IL-2R, but failed to produce IL-2, express cyclins or c-Myc, or exit G(0)-G(1). Exogenous IL-2 failed to break the mitotic block, demonstrating that the IL-2 production failure was not wholly responsible for the proliferation defect. This IL-2 unresponsiveness did not require the continuous presence of CD4(+)CD25(+) regulatory T cells. The majority of responder T cells reisolated after coculture with regulatory cells failed to proliferate in response to IL-2, but were not anergic and proliferated in response to Ag. The mitotic block was also dissociated from the antiapoptotic effects of IL-2, because IL-2 still promoted the survival of T cells that had been cocultured with CD4(+)CD25(+) T cells. IL-2-induced STAT5 phosphorylation in the cocultured responder cells was intact, implying that the effects of the regulatory cells were downstream of receptor activation. Our results therefore show that T cell activation in the presence of CD4(+)CD25(+) regulatory T cells can induce an alternative stimulation program characterized by up-regulation of high affinity IL-2R, but a failure to produce IL-2, and uncoupling of the mitogenic and antiapoptotic effects of IL-2.  相似文献   

19.
We have previously shown that CD4(+) T cells are required to optimally expand viral-specific memory CD8(+) CTL responses using a human dendritic cell-T cell-based coculture system. OX40 (CD134), a 50-kDa transmembrane protein of the TNFR family, is expressed primarily on activated CD4(+) T cells. In murine models, the OX40/OX40L pathway has been shown to play a critical costimulatory role in dendritic cell/T cell interactions that may be important in promoting long-lived CD4(+) T cells, which subsequently can help CD8(+) T cell responses. The current study examined whether OX40 ligation on ex vivo CD4(+) T cells can enhance their ability to "help" virus-specific CTL responses in HIV-1-infected and -uninfected individuals. OX40 ligation of CD4(+) T cells by human OX40L-IgG1 enhanced the ex vivo expansion of HIV-1-specific and EBV-specific CTL from HIV-1-infected and -uninfected individuals, respectively. The mechanism whereby OX40 ligation enhanced help of CTL was independent of the induction of cytokines such as IL-2 or any inhibitory effect on CD4(+) T regulatory cells, but was associated with a direct effect on proliferation of CD4(+) T cells. Thus, OX40 ligation on CD4(+) T cells represents a potentially novel immunotherapeutic strategy that should be investigated to treat and prevent persistent virus infections, such as HIV-1 infection.  相似文献   

20.
CD4+CD25+ regulatory T cells in HIV infection   总被引:9,自引:0,他引:9  
The immune system faces the difficult task of discerning between foreign, potentially pathogen-derived antigens and self-antigens. Several mechanisms, including deletion of self-reactive T cells in the thymus, have been shown to contribute to the acceptance of self-antigens and the reciprocal reactivity to foreign antigens. Over the last decade it has become increasingly clear that CD4(+)CD25(+) T(Reg) cells are crucial for maintenance of T cell tolerance to self-antigens in the periphery, and to avoid development of autoimmune disorders. Recently, evidence has also emerged that demonstrates that CD4(+)CD25(+) T(Reg) cells can also suppress T cell responses to foreign pathogens, including viruses such as HIV. In this article we review the current knowledge and potential role of CD4(+)CD25(+) T(Reg) cells in HIV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号