首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
There is now convincing evidence that the human Tap protein plays a critical role in mediating the nuclear export of mRNAs that contain the Mason-Pfizer monkey virus constitutive transport element (CTE) and significant evidence that Tap also participates in global poly(A)(+) RNA export. Previously, we had mapped carboxy-terminal sequences in Tap that serve as an essential nucleocytoplasmic shuttling domain, while others had defined an overlapping Tap sequence that can bind to the FG repeat domains of certain nucleoporins. Here, we demonstrate that these two biological activities are functionally correlated. Specifically, mutations in Tap that block nucleoporin binding also block both nucleocytoplasmic shuttling and the Tap-dependent nuclear export of CTE-containing RNAs. In contrast, mutations that do not inhibit nucleoporin binding also fail to affect Tap shuttling. Together, these data indicate that Tap belongs to a novel class of RNA export factors that can target bound RNA molecules directly to the nuclear pore without the assistance of an importin beta-like cofactor. In addition to nucleoporins, Tap has also been proposed to interact with a cellular cofactor termed p15. Although we were able to confirm that Tap can indeed bind p15 specifically both in vivo and in vitro, a mutation in Tap that blocked p15 binding only modestly inhibited CTE-dependent nuclear RNA export. However, p15 did significantly enhance the affinity of Tap for the CTE in vitro and readily formed a ternary complex with Tap on the CTE. This result suggests that p15 may play a significant role in the recruitment of the Tap nuclear export factor to target RNA molecules in vivo.  相似文献   

3.
Nuclear export of mRNAs is mediated by the Tap/Nxt1 pathway. Tap moves its RNA cargo through the nuclear pore complex by direct interaction with nucleoporin phenylalanine-glycine repeats. This interaction is strengthened by the formation of a Tap/Nxt1 heterodimer. We now present evidence that Tap can form a multimeric complex with itself and with other members of the NXF family. We also show that the homotypic Tap complex can interact with both Nxt1 and nucleoporins in vitro. The region mediating this oligomerization is localized to the first 187 amino acids of Tap, which overlaps with its RNA-binding domain. Removal of this domain greatly reduces the ability of Tap to bind nucleoporins in vitro and in vivo. This is the first report showing that the Tap amino terminus modulates the interaction of Tap with nucleoporins. We speculate that this mechanism has a regulatory role for RNA export independent of RNA binding.  相似文献   

4.
NXF1-like members of the NXF (nuclear export factor) family orchestrate bulk nuclear export of mRNA, while functionally distinct NXF variant proteins carry out separate substrate-specific and tissue-specific RNA regulation. Metazoan organisms possess at least one NXF1-like gene and one or more NXF variant genes. Heterodimerization of both proteins with the NXT (NTF2-related export) protein is central to NXF family function; however, given the multiplicity of NXF/NXT complexes, the specificity and mechanism of heterodimerization remain unclear. Here, we report the structural and functional analyses of the Caenorhabditis elegans NXF variant ceNXF2 bound to ceNXT1. Contacts crucial for NXF/NXT heterodimer stability and specificity, including a probable site for phosphoregulation, have been identified. The ceNXF2 NTF2 domain bears at least two nucleoporin (Nup) binding pockets necessary for the colocalization of ceNXF2/ceNXT1 at the nuclear envelope. Unexpectedly, one Nup binding pocket is formed at the heterodimer interface of the ceNXF2/ceNXT1 complex, demonstrating that NXT binding directly regulates NXF function.  相似文献   

5.
Interactions between transport receptors and phenylalanine-glycine (FG) repeats on nucleoporins drive the translocation of receptor-cargo complexes through nuclear pores. Tap, a transport receptor that mediates nuclear export of cellular mRNAs, contains a UBA-like and NTF2-like folds that can associate directly with FG repeats. In addition, two nuclear export sequences (NESs) within the NTF2-like region can also interact with nucleoporins. The Tap-RNA complex was shown to bind to three nucleoporins, Nup98, p62, and RanBP2, and these interactions were enhanced by Nxt1. Mutations in the Tap-UBA region abolished interactions with all three nucleoporins, whereas the effect of point mutations within the NTF2-like domain of Tap known to disrupt Nxt1 binding or nucleoporin binding were nucleoporin dependent. A mutation in any of these Tap domains was sufficient to reduce RNA export but was not sufficient to disrupt Tap interaction with the NPC in vivo or its nucleocytoplasmic shuttling. However, shuttling activity was reduced or abolished by combined mutations within the UBA and either the Nxt1-binding domain or NESs. These data suggest that Tap requires both the UBA- and NTF2-like domains to mediate the export of RNA cargo, but can move through the pores independently of these domains when free of RNA cargo.  相似文献   

6.
Soluble factors are required to mediate nuclear export of protein and RNA through the nuclear pore complex (NPC). These soluble factors include receptors that bind directly to the transport substrate and regulators that determine the assembly state of receptor-substrate complexes. We recently reported the identification of NXT1, an NTF2-related export factor that stimulates nuclear protein export in permeabilized cells and undergoes nucleocytoplasmic shuttling in vivo (Black, B.E., L. Lévesque, J.M. Holaska, T.C. Wood, and B.M. Paschal. 1999. Mol. Cell. Biol. 19:8616-8624). Here, we describe the molecular characterization of NXT1 in the context of the Crm1-dependent export pathway. We find that NXT1 binds directly to Crm1, and that the interaction is sensitive to the presence of Ran-GTP. Moreover, mutations in NXT1 that reduce binding to Crm1 inhibit the activity of NXT1 in nuclear export assays. We show that recombinant Crm1 and Ran are sufficient to reconstitute nuclear translocation of a Rev reporter protein from the nucleolus to an antibody accessible site on the cytoplasmic side of the NPC. Further progress on the export pathway, including the terminal step of Crm1 and Rev reporter protein release, requires NXT1. We propose that NXT1 engages with the export complex in the nucleoplasm, and that it facilitates delivery of the export complex to a site on the cytoplasmic side of NPC where the receptor and substrate are released into the cytoplasm.  相似文献   

7.
RAT7/NUP159 was identified previously in a screen for genes whose products are important for nucleocytoplasmic export of poly(A)+ RNA and encodes an essential nucleoporin. We report here the identification of RSS1 (Rat Seven Suppressor) as a high-copy extragenic suppressor of the rat7-1 temperature-sensitive allele. Rss1p encodes a novel essential protein of 538 amino acids, which contains an extended predicted coiled-coil domain and is located both at nuclear pore complexes (NPCs) and in the cytoplasm. RSS1 is the first reported high-copy extragenic suppressor of a mutant nucleoporin. Overexpression of Rss1p partially suppresses the defects in nucleocytoplasmic export of poly(A)+ RNA, rRNA synthesis and processing, and nucleolar morphology seen in rat7-1 cells shifted to the nonpermissive temperature of 37 degrees C and, thus, restores these processes to levels adequate for growth at a rate approximately one-half that of wild-type cells. After a shift to 37 degrees C, the mutant Rat7-1p/Nup159-1p is lost from the nuclear rim of rat7-1 cells and NPCs, which are clustered together in these cells grown under permissive conditions become substantially less clustered. Overexpression of Rss1p did not result in retention of the mutant Rat7-1p/Nup159-1p in NPCs, but it did result in partial maintenance of the NPC-clustering phenotype seen in mutant cells. Depletion of Rss1p by placing the RSS1 open reading frame (ORF) under control of the GAL1 promoter led to cessation of growth and nuclear accumulation of poly(A)+ RNA without affecting nuclear protein import or nuclear pore complex distribution, suggesting that RSS1 is directly involved in mRNA export. Because both rat7-1 cells and cells depleted for Rss1p are defective in mRNA export, our data are consistent with both gene products playing essential roles in the process of mRNA export and suggest that Rss1p overexpression suppresses the growth defect of rat7-1 cells at 37 degrees C by acting to maintain mRNA export.  相似文献   

8.
The Tap protein of higher eukaryotes is implicated in the nuclear export of type D retroviral mRNA and some cellular mRNAs. Here we have developed an in vitro assay to study nuclear export mediated by the C-terminal shuttle domain of Tap involving the rapamycin-induced attachment of this transport domain to a nuclear green fluorescent protein-containing reporter. We found that export by the Tap transport domain does not involve cytosolic transport factors including the GTPase Ran. The transport domain directly binds to several nucleoporins positioned in different regions of the nuclear pore complex. These results argue that a direct interaction of the Tap transport domain with nucleoporins is responsible for its nucleocytoplasmic translocation. We found that the karyopherin beta-related export receptor CRM1 competes with the Tap transport domain for binding to Nup214 but not for binding to Nup62 or Nup153, suggesting that the Tap and CRM1 nuclear export pathways converge at the cytoplasmic periphery of the nuclear pore complex. Because the rates of in vitro nuclear import and export by the Tap transport domain are very similar, the directionality of mRNA export mediated by Tap probably is determined by mechanisms other than simple binding of the Tap transport domain to nucleoporins.  相似文献   

9.
Nup159p/Rat7p is an essential FG repeat–containing nucleoporin localized at the cytoplasmic face of the nuclear pore complex (NPC) and involved in poly(A)+ RNA export and NPC distribution. A detailed structural–functional analysis of this nucleoporin previously demonstrated that Nup159p is anchored within the NPC through its essential carboxyl-terminal domain. In this study, we demonstrate that Nup159p specifically interacts through this domain with both Nsp1p and Nup82p. Further analysis of the interactions within the Nup159p/Nsp1p/Nup82p subcomplex using the nup82Δ108 mutant strain revealed that a deletion within the carboxyl-terminal domain of Nup82p prevents its interaction with Nsp1p but does not affect the interaction between Nup159p and Nsp1p. Moreover, immunofluorescence analysis demonstrated that Nup159p is delocalized from the NPC in nup82Δ108 cells grown at 37°C, a temperature at which the Nup82Δ108p mutant protein becomes degraded. This suggests that Nup82p may act as a docking site for a core complex composed of the repeat-containing nucleoporins Nup159p and Nsp1p. In vivo transport assays further revealed that nup82Δ108 and nup159-1/rat7-1 mutant strains have little if any defect in nuclear protein import and protein export. Together our data suggest that the poly(A)+ RNA export defect previously observed in nup82 mutant cells might be due to the loss from the NPCs of the repeat-containing nucleoporin Nup159p.  相似文献   

10.
Tap, a member of the evolutionarily conserved nuclear RNA export factor (NXF) family of proteins, has been implicated in the nuclear export of bulk poly(A)+ RNAs. cDNAs encoding the mouse NXF proteins (Tap, NXF7, NXF2, and NXF3) were prepared and the gene products were characterized in terms of their genomic organization, expression patterns, and biochemical properties. Mouse Tap was found to be ubiquitously expressed, whereas tissue- and developmental stage specific expression of mouse Nxf2, Nxf3, and Nxf7 was observed. Although mouse Tap and NXF2 bound to the phenylalanine-glycine repeat sequences of nucleoporins, NXF7 and NXF3 did not. GFP-tagged mouse Tap and NXF2 were localized predominantly in the nucleus. In contrast, GFP-tagged NXF7 and NXF3 were localized exclusively in the cytoplasm. As shown for the human counterpart, disruption of the leucine-rich nuclear export signal or leptomycin B treatment abolishes the cytoplasmic localization of mouse NXF3. p15/NXT1, an essential cofactor for human Tap in the export of mRNAs, was able to bind to mouse Tap, NXF2, and NXF3, but NXF7 did not form a stable heterodimeric complex. Transient transfection experiments indicated that only mouse Tap and NXF2 enhance the nuclear export of an otherwise inefficiently exported mRNA substrate. The orthologous relationship between human and mouse Nxf genes is discussed on the basis of these data.  相似文献   

11.
The export of mRNA from the nucleus to the cytoplasm involves interactions of proteins with mRNA and the nuclear pore complex. We isolated Crp79p, a novel mRNA export factor from the same synthetic lethal screen that led to the identification of spMex67p in Schizosaccharomyces pombe. Crp79p is a 710-amino-acid-long protein that contains three RNA recognition motif domains in tandem and a distinct C-terminus. Fused to green fluorescent protein (GFP), Crp79p localizes to the cytoplasm. Like Mex67p, Crp79-GFP binds poly(A)(+) RNA in vivo, shuttles between the nucleus and the cytoplasm, and contains a nuclear export activity at the C-terminus that is Crm1p-independent. All of these properties are essential for Crp79p to promote mRNA export. Crp79p import into the nucleus depends on the Ran system. A domain of spMex67p previously identified as having a nuclear export activity can functionally substitute for the nuclear export activity at the C-terminus of Crp79p. Although both Crp79p and spMex67p function to export mRNA, Crp79p does not substitute for all of spMex67p functions and probably is not a functional homologue of spMex67p. We propose that Crp79p is a nonessential mRNA export carrier in S. pombe.  相似文献   

12.
The mRNA export pathway is highly conserved throughout evolution. We have used RNA interference (RNAi) to functionally characterize bona fide RNA export factors and components of the exon-exon junction complex (EJC) in Caenorhabditis elegans. RNAi of CeNXT1/p15, the binding partner of CeNXF1/TAP, caused early embryonic lethality, demonstrating an essential function of this gene during C. elegans development. Moreover, depletion of this protein resulted in nuclear accumulation of poly(A)(+) RNAs, supporting a direct role of NXT1/p15 in mRNA export in C. elegans. Previously, we have shown that RNAi of CeSRm160, a protein of the EJC complex, resulted in wild-type phenotype; in the present study, we demonstrate that RNAi of CeY14, another component of this complex, results in embryonic lethality. In contrast, depletion of the EJC component CeRNPS1 results in no discernible phenotype. Proteins of the REF/Aly family act as adaptor proteins mediating the recruitment of the mRNA export factor, NXF1/TAP, to mRNAs. The C. elegans genome encodes three members of the REF/Aly family. RNAi of individual Ref genes, or codepletion of two Ref genes in different combinations, resulted in wild-type phenotype. Simultaneous suppression of all three Ref genes did not compromise viability or progression through developmental stages in the affected progeny, and only caused a minor defect in larval mobility. Furthermore, no defects in mRNA export were observed upon simultaneous depletion of all three REF proteins. These results suggest the existence of multiple adaptor proteins that mediate mRNA export in C. elegans.  相似文献   

13.
Nuclear export of mRNA requires several key mRNA-binding proteins that recognize and remodel the mRNA and target it for export via interactions with the nuclear pore complex. In Saccharomyces cerevisiae, the shuttling heterogeneous nuclear ribonucleoprotein, Nab2, which is essential for mRNA export, specifically recognizes poly(A) RNA and binds to the nuclear pore-associated protein, myosin-like protein 1 (Mlp1), which functions in mRNA export and quality control. Specifically, the N-terminal domain of Nab2 (Nab2-N; residues 1-97) interacts directly with the C-terminal globular domain of Mlp1 (CT-Mlp1: residues 1490-1875). Recent structural and binding studies focused on Nab2-N have shown that Nab2-N contains a hydrophobic patch centered on Phe(73) that is critical for interaction with Mlp1. Engineered amino acid changes within this patch disrupt the Nab2/Mlp1 interaction in vitro. Given the importance of Nab2 and Mlp1 to mRNA export, we have examined the Nab2/Mlp1 interaction in greater detail and analyzed the functional consequences of disrupting the interaction in vivo. We find that the Nab2-binding domain of Mlp1 (Mlp1-NBD) maps to a 183-residue region (residues 1586-1768) within CT-Mlp1, binds directly to Nab2 with micromolar affinity, and confers nuclear accumulation of poly(A) RNA. Furthermore, we show that cells expressing a Nab2 F73D mutant that cannot interact with Mlp1 exhibit nuclear accumulation of poly(A) RNA and that this nab2 F73D mutant genetically interacts with alleles of two essential mRNA export genes, MEX67 and YRA1. These data provide in vivo evidence for a model of mRNA export in which Nab2 is important for targeting mRNAs to the nuclear pore for export.  相似文献   

14.
To better characterize the mechanisms responsible for RNA export from the nucleus, we developed an in vitro assay based on the use of permeabilized HeLa cells. This new assay supports nuclear export of U1 snRNA, tRNA, and mRNA in an energy- and Xenopus extract-dependent manner. U1 snRNA export requires a 5' monomethylated cap structure, the nuclear export signal receptor CRM1, and the small GTPase Ran. In contrast, mRNA export does not require the participation of CRM1. We show here that NXT1, an NTF2-related protein that binds directly to RanGTP, strongly stimulates export of U1 snRNA, tRNA, and mRNA. The ability of NXT1 to promote export is dependent on its capacity to bind RanGTP. These results support the emerging view that NXT1 is a general export factor, functioning on both CRM1-dependent and CRM1-independent pathways of RNA export.  相似文献   

15.
Recent studies of mRNA export factors have provided additional evidence for a mechanistic link between mRNA 3'-end formation and nuclear export. Here, we identify Nab2p as a nuclear poly(A)-binding protein required for both poly(A) tail length control and nuclear export of mRNA. Loss of NAB2 expression leads to hyperadenylation and nuclear accumulation of poly(A)(+) RNA but, in contrast to mRNA export mutants, these defects can be uncoupled in a nab2 mutant strain. Previous studies have implicated the cytoplasmic poly(A) tail-binding protein Pab1p in poly(A) tail length control during polyadenylation. Although cells are viable in the absence of NAB2 expression when PAB1 is overexpressed, Pab1p fails to resolve the nab2Delta hyperadenylation defect even when Pab1p is tagged with a nuclear localization sequence and targeted to the nucleus. These results indicate that Nab2p is essential for poly(A) tail length control in vivo, and we demonstrate that Nab2p activates polyadenylation, while inhibiting hyperadenylation, in the absence of Pab1p in vitro. We propose that Nab2p provides an important link between the termination of mRNA polyadenylation and nuclear export.  相似文献   

16.
The export of bulk poly(A)(+) mRNA is blocked under heat-shocked (42 degrees C) conditions in Saccharomyces cerevisiae. We found that an mRNA export factor Gle2p rapidly dissociated from the nuclear envelope and diffused into the cytoplasm at 42 degrees C. However, in exponential phase cells pretreated with mild heat stress (37 degrees C for 1 h), Gle2p did not dissociate at 42 degrees C, and the export of bulk poly(A)(+) mRNA continued. Cells in stationary phase also continued with the export of bulk poly(A)(+) mRNA at 42 degrees C without the dissociation of Gle2p from the nuclear envelope. The dissociation of Gle2p was caused by increased membrane fluidity and correlated closely with blocking of the export of bulk poly(A)(+) mRNA. Furthermore, the mutants gle2Delta and rip1Delta could not induce such an adaptation of the export of bulk poly(A)(+) mRNA to heat shock. Our findings indicate that Gle2p plays a crucial role in mRNA export especially under heat-shocked conditions. Our findings also indicate that the nuclear pore complexes that Gle2p constitutes need to be stabilized for the adaptation and that the increased membrane integrity caused by treatment with mild heat stress or by survival in stationary phase is likely to contribute to the stabilization of the association between Gle2p and the nuclear pore complexes.  相似文献   

17.
Vertebrate TAP (also called NXF1) and its yeast orthologue, Mex67p, have been implicated in the export of mRNAs from the nucleus. The TAP protein includes a noncanonical RNP-type RNA binding domain, four leucine-rich repeats, an NTF2-like domain that allows heterodimerization with p15 (also called NXT1), and a ubiquitin-associated domain that mediates the interaction with nucleoporins. Here we show that TAP belongs to an evolutionarily conserved family of proteins that has more than one member in higher eukaryotes. Not only the overall domain organization but also residues important for p15 and nucleoporin interaction are conserved in most family members. We characterize two of four human TAP homologues and show that one of them, NXF2, binds RNA, localizes to the nuclear envelope, and exhibits RNA export activity. NXF3, which does not bind RNA or localize to the nuclear rim, has no RNA export activity. Database searches revealed that although only one p15 (nxt) gene is present in the Drosophila melanogaster and Caenorhabditis elegans genomes, there is at least one additional p15 homologue (p15-2 [also called NXT2]) encoded by the human genome. Both human p15 homologues bind TAP, NXF2, and NXF3. Together, our results indicate that the TAP-p15 mRNA export pathway has diversified in higher eukaryotes compared to yeast, perhaps reflecting a greater substrate complexity.  相似文献   

18.
19.
Metazoan Tap-p15 (also called Nxf1-Nxt1) and yeast Mex67-Mtr2 heterodimers are the general mRNA export receptors. The RNA binding activity of Tap-p15, which is essential for mRNA nuclear export, has been attributed to the amino-terminal RNA binding module of Tap consists of RNA recognition motif (RRM) and leucine-rich repeat. In this study, we identified a novel RNA interaction surface in the NTF2-like (NTF2L) domain of Tap, which is analogous to the rRNA binding platform of Mex67-Mtr2. Tap-p15 uses the three domains to tightly bind the retroviral constitutive transport element. The RNA binding through the NTF2L domain is functionally relevant as introduction of mutations in this region reduced CTE-containing mRNA export activity. In contrast, only when the RRM and NTF2L domains were mutated simultaneously, bulk poly (A)+ RNA export and in vivo poly (A)+ RNA binding activities of Tap-p15 were significantly attenuated. Moreover, an engineered human cell line harboring the NTF2L domain mutation in the NXF1 gene showed a synthetic growth phenotype and severe mRNA export defect under Aly/REF and Thoc5 depleted condition. These data suggest that Tap-p15 recognizes bulk mRNAs through combinatorial use of the distinct RNA binding domains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号