首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
The encroachment of bracken (Pteridium aquilinum (L.) Kuhn) into areas previously dominated by heather represents a threat to the ecology, agricultural economy and landscape value of many UK upland areas, including the moorland of the North York Moors National Park. The morphology of bracken, within a mature stand and at several bracken-heather interfaces, has been studied at a number of sites within the National Park. Differences have been found in the frond growth of bracken in a mature stand, at stationary stand margins, and at advancing stand margins where bracken is encroaching into heather. Frequency of fronds present on bracken rhizome growing at a stationary stand margin close to the interface with heather (1–2 m behind the boundary) are approximately the same as those found within a mature stand. At advancing margins (again 1–2 m behind the boundary), maximum frond densities were often found to exceed those present in either a mature stand or at a stationary margin. Frond numbers decline rapidly at the stand margins as distance from the stand increases. This is especially true where the front is stationary and bracken is not encroaching into heather at a significant rate. Maximum frond heights in a mature stand consistently exceed those at stand margins (even 1–2 m into the stand) and are greater at stationary margins than at advancing margins. Outlying fronds at the edges of bracken stands are generally present in greater numbers, and further into the area dominated by heather, where the margin is advancing. Heights of outlying fronds fall as distance from the bracken stand increases, as does stipe length. Fronds at the edges of bracken stands emerge each spring before those further into the stand and are therefore particularly vulnerable to frost damage. Outlying fronds are not, however, the first to emerge. Early emerging fronds reach their maximum height and eventually become senescent before later emerging fronds. Whilst most fronds emerge before the end of June a few fronds continue to emerge throughout the summer. Frond densities close to the edges of bracken stands (1–2 m into the stand) are comparable to those in a mature stand. At advancing stand margins frond densities generally exceed those in a mature stand, suggesting that a large number of potential entry points for foliage-applied herbicides are available for bracken control at the stand margins. The ratio of potential uptake points to biomass of rhizome is also greatest at the edges of the stand, and the canopy 1–2 m into the stand is usually almost completely closed. It is possible therefore, the efficacy of herbicides could be improved by the use of small scale applications, using tractors or hand-held sprayers, close to the margins of bracken stands.  相似文献   

2.
This paper examines the initial effects of bracken control on frond numbers and biomass, and the biomass, carbohydrate reserves and bud densities of bracken stands cut once per year, twice per year, subject to a single application of asulam or left untreated. The seasonal dynamics of these parameters are displayed; carbohydrate and biomass are both removed from the rhizome system to produce frond tissue, and are replenished at the end of the growing season. Asulam application reduced densities of both active and dormant buds, and both frond biomass and density. It did not significantly reduce rhizome biomass or carbohydrate reserves in the two years after treatment. Cutting, either once or twice per year reduced both rhizome biomass and rhizome carbohydrate reserves, as well as bud densities, though the latter were reduced in proportion to biomass. Cutting twice a year reduced the production of fronds, both in numbers and biomass. The collected data were used to evaluate a model of bracken growth, and subsequently to improve estimates of some of the model parameters. The model simulations of control treatments were compared to field data. The effects of cutting once per year and spraying with asulam were predicted accurately, but the bracken stand was more resilient to cutting twice per year than would be expected from model predictions. The combination of cutting and spraying is discussed as a potential tool in land management and the deficiencies of the model are discussed in relation to the need for future research into the biology of bracken.  相似文献   

3.
4.
运用柱层析等分离纯化方法,从蕨菜乙醇提取物的乙酸乙酯萃取部位中分离得到4个黄酮类化合物:3,4,6,2’,4’-五羟基高黄烷醇(1)、槲皮素3-O-β-D-葡萄糖苷(2)、芦丁(3)、槲皮素3-O-β-D-葡萄糖苷(4),其中化合物1为新化合物,也是从蕨类植物中分离出的第一个高黄烷酮,化合物2为首次从该植物中分离得到。采用MTT法对获得的黄酮类化合物的细胞毒活性测定结果表明化合物1具有明显的细胞毒活性。  相似文献   

5.
Bracken control field experiments were conducted at six locations across Great Britain. The effects of various cutting and herbicide management regimes upon the seasonal dynamics of bracken fronds and rhizomes were examined over a three year period. This enabled a national overview towards bracken control to be constructed. Initially, spraying with asulam was the most effective treatment in reducing frond biomass and density but was least effective in reducing rhizome biomass. Differential reductions in rhizome biomass were observed in relation to cutting frequency, with cutting twice yearly giving superior control. The national trends confirmed a number of previous observations from independent single-site studies; however, others were contradicted. Comparable management options were ranked consistently between the current and former investigation, however, the initial importance of differences in cutting frequencies did not agree between studies. This multiple-site study improves understanding of the consequences of a national bracken control programme by reducing the influence of confounding site-specific factors, and recommendations for the most appropriate bracken control techniques are made. The extent to which individual sites reflect a national trend in response to bracken control is considered and sites are compared. The hierarchy of treatments identified at the national scale was found to apply generally within individual sites. However, several responses which proved significant at the countrywide level were not so clearly defined at the site scale. Cutting once yearly was the only management regime which appeared to give different bracken control between sites. All other treatments gave similar responses between sites. This result was found in the Scottish Borders, during the second year of control, when frond biomass and density (relative to untreated plots) were greater than that recorded at other sites. This contrast was not found in subsequent monitoring. In terms of rhizome biomass depletion, poorer control was achieved following cutting once yearly at the northern sites (Mull, Scottish Borders, Lake District) compared with the southern sites (Clwyd, Breckland, Devon). The implications of experimental results are discussed in relation to increased cost effectiveness of national bracken control programmes.  相似文献   

6.
7.
A nationwide bracken control experiment provided data over a three-year period for testing the accuracy of a bracken growth model (BRACON). Objective assessments of model validity identified the model as a reasonably accurate predictor of bracken stand dynamics given the range of environmental conditions currently prevailing in Great Britain, in relation to (1) cutting regimes and (2) spraying asulam. Ranking of treatment efficacy at individual sites was closely reflected in model predictions. Predicted response of the rhizome system to cutting treatments underestimated bracken resilience. Failure to consider the consequences of frond regrowth in the latter portion of the growing season as a means to offsetting energy loss was identified as a potential explanation for this discrepancy. The role of the model as a practical management tool is discussed with particular reference to relating model predictions, based upon generalised environmental data (40 km plusmn; 40 km grid cells), to bracken management at individual sites.  相似文献   

8.
In a spatially explicit simulation model of vegetation dynamics (VegeTate), I labelled the initial mass of Pteridium aquilinum in each of 225 cells as a single, unique genet or clone. The physical environment was homogeneous and all genets shared the same phenotype. The aim was to discover whether and how the success of each genet was affected by its initial position relative to other genets and a competing grass species. In a scenario in which grazing generated a grass-bracken mosaic with complex spatial dynamics, the amount of growth of each genet ranged widely, from frequent extinction to mass increase by over 300 times. The main factor in the impact of position on genet growth was shown to be a benefit from the initial presence or proximity of a large mass of P. aquilinum. This was because a high density of P. aquilinum reduced local grazing intensity, allowing plant mass to accumulate and shifting the balance of competition in favour of P. aquilinum. Thus variations between cells in initial mass of P. aquilinum were greatly amplified. The implications of this amplification of initial differences between sites for population genetics are briefly discussed. Qualitative features of the spatial distribution of genets at the end of simulations matched reported observations on patchily distributed field populations of P. aquilinum. These features included dominance of a large population by a small minority of genets, widespread mixtures of a dominant genet and one or more subordinate genets, and the presence of patches of P. aquilinum formed both by agglomeration from neighbouring foci and by spread of dominant genets. Under less intense grazing, which allowed little or no development of vegetation mosaics, genet growth varied relatively little and initial variations in relative mass between genets were little changed. Based on this study, I hypothesize that any processes that generate non-linear spatial dynamics will also generate complex genet dynamics.  相似文献   

9.
10.
Considerable areas dominated by bracken Pteridium aquilinum (L.) Kuhn occur worldwide and are associated with arrested forest recovery. How forest recovery is impeded in these areas remains poorly understood, especially in the African highlands. The component processes that can lead to recruitment limitation—including low seed arrival, availability and persistence—are important determinants of plant communities and offer a potential explanation for bracken persistence. We investigated key processes that can contribute to recruitment limitation in bracken‐dominated clearings in the Bwindi Impenetrable National Park, Uganda. We examined if differences in seed rain (dispersal limitation), soil seed bank, or seed removal (seed viability and persistence) can, individually or in combination, explain the differences in tree regeneration found between bracken‐dominated areas and the neighboring forest. These processes were assessed along ten 50‐m transects crossing the forest–bracken boundary. When compared to the neighboring forest, bracken clearings had fewer seedlings (bracken 11,557 ± 5482 vs. forest 34,515 ± 6066 seedlings/ha), lower seed rain (949 ± 582 vs. 1605 ± 335 tree seeds m?2 year?1), comparable but sparse soil seed bank (304 ± 236 vs. 264 ± 99 viable tree seeds/m2), higher seed removal (70.1% ± 2.4% vs. 40.6% ± 2.4% over a 3‐day interval), and markedly higher rodent densities (25.7 ± 5.4 vs. 5.0 ± 1.6 rodents per 100 trapping sessions). Camera traps revealed that rodents were the dominant animals visiting the seeds in our seed removal study. Synthesis: Recruitment limitation contributes to both the slow recovery of forest in bracken‐dominated areas, and to the composition of the tree species that occur. Low seed arrival and low persistence of unburied seeds can both explain the reduced density of seedlings found in bracken versus neighboring forest. Seed removal, likely due to rodents, in particular appears sufficient to constrain forest recovery and impacts some species more severely than others.  相似文献   

11.
Some ploidy plants demonstrate environmental stress tolerance. Tetraploid (4×) black locust (Robinia pseudoacacia L.) exhibits less chlorosis in response to high CO2 than do the corresponding diploid (2×) plants of this species. We investigated the plant growth, anatomy, photosynthetic ability, chlorophyll (chl) fluorescence, and antioxidase activities in 2× and 4× black locusts cultivated under high CO2 (0.5%). Elevated CO2 (0.5%) induced a global decrease in the contents of total chl, chl a, and chl b in 2× leaves, while few changes were found in the chl content of 4× leaves. Analyses of the chl fluorescence intensity, maximum quantum yield of photosystem II (PSII) photochemistry (Fv/Fm), K‐step (Vk), and J‐step (VJ) revealed that 0.5% CO2 had a negative effect on the photosynthetic capacity and growth of the 2× plants, especially the performance of PSII. In contrast, there was no significant effect of high CO2 on the growth of the 4× plants. These analyses indicate that the decreased inhibition of the growth of 4× plants by high CO2 (0.5%) may be attributed to an improved photosynthetic capacity, pigment content, and ultrastructure of the chloroplast compared to 2× plants.  相似文献   

12.
The specific activity of cytokinin oxidase/dehydrogenase (EC 1.5.99.12) (CKX) was determined in leaves of wild type (wt) and ethylene-insensitive mutant (eti5) of Arabidopsis thaliana (L.) Heynh plants. Comparative studies showed that this mutation has lower basal CKX activity than wt. Application of 4PU-30 (N1-(2-chloro-4-pyridyl)-N2-phenylurea) resulted in decreased CKX activity in both wt and mutant plants. The treatment increased leaf blade thickness and the volume of chlorophyll-containing cells per unit leaf area in wt but these changes were not observed in the eti5 mutant. The reduction in chlorophyll “a” and “b”, as well as in carotenoids content in the treated wt tissues resulting from altered leaf morphology was not detected in eti5 plants.  相似文献   

13.
The Adh and αGpdh allozyme loci (both located on the second chromosome) showed considerable fluctuations in allele frequencies in a seminatural population of Drosophila melanogaster during 1972–97. Both long-term and short-term fluctuations were observed. The short-term fluctuations occurred within almost all years and comparison of allele frequencies between winters and summers showed significantly higher AdhS (P < 0.001) and αGpdhF (P < 0.01) allele frequencies in summers. Frequencies of these alleles were significantly positively correlated with environmental temperature, suggesting the adaptive significance of these allozyme polymorphisms. Frequency changes of the Odh locus (located on the third chromosome) showed no seasonal pattern and were not correlated with environmental temperature. Almost all short-term and long-term increases in AdhS frequency were accompanied by a corresponding decrease in αGpdhS frequency (r = –0.82, P < 0.001) and vice versa. Further analysis showed that gametic disequilibria between the Adh and αGpdh loci, which frequently occurred, were due to the presence of inversion In(2L)t located on the same chromosome arm and In(2L)t frequencies were positively correlated with environmental temperature. Gametic disequilibria between Adh and Odh and between Odh and αGpdh were hardly observed. Because In(2L)t is exclusively associated with the AdhS/αGpdhF allele combination, the observed correlated response in Adh/αGpdh allele frequencies is (at least partly) explained by hitchhiking effects with In(2L)t. This means that the adaptive value of the allozyme polymorphisms has been overestimated by ignoring In(2L)t polymorphism. Fluctuations in Adh allele frequencies are fully explained by selection on In(2L)t polymorphism, whereas we have shown that αGpdh frequency fluctuations are only partly explained by chromosomal hitchhiking, indicating the presence of selective differences among αGpdh genotypes in relation with temperature and independent of In(2L)t. Frequency fluctuations of αGpdh and In(2L)t are consistent with their latitudinal distributions, assuming that temperature is the main environmental factor varying with latitude that causes directly or indirectly these frequency distributions. However, the results of the tropical greenhouse population show no correlation of Adh (independent of In(2L)t) and Odh allele frequencies with environmental temperature, which may indicate that the latitudinal distribution in allele frequencies for these loci is not the result of selection on the F/S polymorphism in a direct way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号