首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rearrangement of Fusarium oxysporum retro- transposon skippy was induced by growth in the presence of potassium chlorate. Three fungal strains, one sensitive to chlorate (Co60) and two resistant to chlorate and deficient for nitrate reductase (Co65 and Co94), were studied by Southern analysis of their genomic DNA. Polymorphism was detected in their hybridization banding pattern, relative to the wild type grown in the absence of chlorate, using various enzymes with or without restriction sites within the retrotransposon. Results were consistent with the assumption that three different events had occurred in strain Co60: genomic amplification of skippy yielding tandem arrays of the element, generation of new skippy sequences, and deletion of skippy sequences. Amplification of Co60 genomic DNA using the polymerase chain reaction and divergent primers derived from the retrotransposon generated a new band, corresponding to one long terminal repeat plus flanking sequences, that was not present in the wild-type strain. Molecular analysis of nitrate reductase-deficient mutants showed that generation and deletion of skippy sequences, but not genomic amplification in tandem repeats, had occurred in their genomes.  相似文献   

2.
A retrotransposon from the fungal plant pathogen Fusarium oxysporum f. sp. lycopersici has been isolated and characterized. The element, designated skippy (skp) is 7846 by in length, flanked by identical long terminal repeats (LTR) of 429 by showing structural features characteristic of retroviral and retrotransposon LTRs. Target-site duplications of 5 bp were found. Two long overlapping open reading frames (ORF) were identified. The first ORF, 2562 by in length, shows homology to retroviral gag genes. The second ORF, 3888 bp in length, has homology to the protease, reverse transciptase. RNase H and integrase domains of retroelement pol genes in that order. Sequence comparisons and the order of the predicted proteins from skippy indicate that the element is closely related to the gypsy family of LTR-retrotransposons. The element is present in similar copy numbers in the two races investigated, although RFLP analysis showed differences in banding patterns. The number of LTR sequences present in the genome is higher than the number of copies of complete elements, indicating excision by homologous recombination between LTR sequences.  相似文献   

3.
A high copy, tandemly repeated, sequence (Bd49) specific to the B chromosome and located near the centromere in Brachycome dichromosomatica was used to identify lambda genomic clones from DNA of a 3B plant. Only one clone of those analysed was composed entirely of a tandem array of the B-specific repeat unit. In other clones, the Bd49 repeats were linked to, or interspersed with, sequences that are repetitious and distributed elsewhere on the A and B chromosomes. One such repetitious flanking sequence has similarity to retrotransposon sequences and a second is similar to chloroplast DNA sequences. Of the four separate junctions analysed of Bd49-like sequence with flanking sequence, three were associated with the same A/T-rich region in Bd49 and the fourth was close to a 25 bp imperfect dyadic sequence. No novel B-specific sequences were detected within the genomic clones. Received: 31 December 1995; in revised form: 1 May 1996 / Accepted: 10 May 1996  相似文献   

4.
S.typhimurium can form nitrate reductase A, chlorate reductase C, thiosulfate reductase, tetrathionate reductase and formic dehydrogenase. None of these enzymes are formed in chlorate-resistant mutants. Conjugation experiments showed the presence of a strong linkage between thechl andgal markers of the bacterial chromosome. By deletion mapping the gene ordernic A aro G gal bio chl D uvr B chl A was found. Strains with deletions terminating betweenbio anduvr B or betweenuvr B andchl A have a number of aberrant properties. Though resistant against chlorate they reduce nitrate and form gas. After growth with nitrate they form less nitrate reductase than the wild type which may explain the resistance against chlorate. After growth with thiosulfate they form small amounts of thiosulfate reductase and chlorate reductase C. In crosses between anE.coli Hfrchl + strain and aS.typhimurium chl A strain recombinants were obtained, forming nitrate reductase A and chlorate reductase C. These recombinants do not form gas, which indicates that thechl + gene fromE.coli does not function normally inS.typhimurium.The author is very gratefull to Miss C. W. Bettenhaussen, Miss W. M. C. Kapteijn and Mr. K. Pietersma for technical assistance. Helpfull suggestions of Dr. P. van de Putte (Medical Biological Laboratory of the National Defence Organization TNO, Rijswijk) are gratefully acknowledged.  相似文献   

5.
Little is known about the origin and evolution of supernumerary (B) chromosomes. This study utilizes molecular markers to examine the evolutionary history and microstructural organization of the supernumerary paternal-sex-ratio (PSR) chromosome of the parasitic wasp Nasonia vitripennis. Copies of the retrotransposon NATE were previously isolated from PSR and the genomes of N. vitripennis and related wasp species. A phylogenetic analysis of sequences representing 29 elements from PSR and seven wasp species, coupled with a hybridization analysis of elements in genomic DNA provides evidence that PSR was recently transferred into N. vitripennis from a species in the genus Trichomalopsis. A linear region of the PSR chromosome was compared by Southern blot analysis with genomic DNA from N. vitripennis, Nasonia longicornis, Trichomalopsis americanus, and Trichomalopsis dubius. A region organized similarly to the region on PSR was not evident in any of the species, thus a progenitor region was not identified. However, the hybridizations revealed that this region of PSR is primarily composed of repetitive sequences that appear dispersed in these wasp genomes, and might represent additional mobile elements. At least three different dispersed repeats are present in the 18 kb region of PSR. The abundance of tandem and dispersed repetitive sequences in this relatively small region provides additional evidence for the degenerate structure of the PSR chromosome. Received: 19 December 1996; in revised form: 14 April 1997 / Accepted: 24 April 1997  相似文献   

6.
Several commercially improved strains of Penicillium chrysogenum have been shown to carry amplifications of the entire penicillin biosynthesis gene cluster. Analysis previously carried out using the strain BW 1890 has here been extended to the characterisation of other members of the SmithKline Beecham strain improvement series. We have determined the length of the amplicon to be 57.4 kb and shown a general increase in copy number and penicillin titre through the series. Sequence analyses of the promoter regions of the acvA, ipnA and aat genes in the high titre strain BW 1901, and comparisons with wild-type sequences have not identified any potentially titre-enhancing mutations. In addition, cDNA screening has failed to identify any further transcribed elements within the co-amplified region. The homogeneity of hybridisation patterns and the identification and analysis of a single copy revertant has shown that the amplification is of a direct tandem nature and we propose a model of chromatid misalignment and recombination as its mode of generation. Hybridisation analysis of penicillin non-producing mutants has indicated the loss, in all those investigated, of the entire penicillin biosynthesis gene cluster, similarities between the deletion junctions in these strains and comparison with previously published data indicating the presence of recombinogenic regions flanking the penicillin biosynthesis gene cluster. Received 05 November 1996/ Accepted in revised form 25 April 1997  相似文献   

7.
The response behavior of three dissimilatory perchlorate-reducing bacteria to different electron acceptors (nitrate, chlorate, and perchlorate) was investigated with two different assays. The observed response was species-specific, dependent on the prior growth conditions, and was inhibited by oxygen. We observed attraction toward nitrate when Dechloromonas aromatica strain RCB and Azospira suillum strain PS were grown with nitrate. When D. aromatica and Dechloromonas agitata strain CKB were grown with perchlorate, both responded to nitrate, chlorate, and perchlorate. When A. suillum was grown with perchlorate, the organism responded to chlorate and perchlorate but not nitrate. A gene replacement mutant in the perchlorate reductase subunit (pcrA) of D. aromatica resulted in a loss of the attraction response toward perchlorate but had no impact on the nitrate response. Washed-cell suspension studies revealed that the perchlorate grown cells of D. aromatica reduced both perchlorate and nitrate, while A. suillum cells reduced perchlorate only. Based on these observations, energy taxis was proposed as the underlying mechanism for the responses to (per)chlorate by D. aromatica. To the best of our knowledge, this study represents the first investigation of the response behavior of perchlorate-reducing bacteria to environmental stimuli. It clearly demonstrates attraction toward chlorine oxyanions and the unique ability of these organisms to distinguish structurally analogous compounds, nitrate, chlorate, and perchlorate and respond accordingly.  相似文献   

8.
A retrotransposon from the fungal plant pathogen Fusarium oxysporum f. sp. lycopersici has been isolated and characterized. The element, designated skippy (skp) is 7846 by in length, flanked by identical long terminal repeats (LTR) of 429 by showing structural features characteristic of retroviral and retrotransposon LTRs. Target-site duplications of 5 bp were found. Two long overlapping open reading frames (ORF) were identified. The first ORF, 2562 by in length, shows homology to retroviral gag genes. The second ORF, 3888 bp in length, has homology to the protease, reverse transciptase. RNase H and integrase domains of retroelement pol genes in that order. Sequence comparisons and the order of the predicted proteins from skippy indicate that the element is closely related to the gypsy family of LTR-retrotransposons. The element is present in similar copy numbers in the two races investigated, although RFLP analysis showed differences in banding patterns. The number of LTR sequences present in the genome is higher than the number of copies of complete elements, indicating excision by homologous recombination between LTR sequences.  相似文献   

9.
Roldán  M. D.  Reyes  F.  Moreno-Vivián  C.  Castillo  F. 《Current microbiology》1994,29(4):241-245
Chlorate or trimethylamine-N-oxide (TMAO) added to phototrophic cultures ofRhodobacter sphaeroides DSM 158 increased both the growth rate and the growth yield although this stimulation was not observed in the presence of tungstate. This strain, exhibited basal activities of nitrate, chlorate, and TMAO reductases independently of the presence of these substrates in the culture medium, and nitrate reductase (NR) activity was competitively inhibited by chlorate. Phototrophic growth ofRhodobacter capsulatus B10, a strain devoid of NR activity, was inhibited only by 100 mM chlorate. However, growth of the nitrate-assimilatingR. capsulatus strains E1F1 and AD2 was sensitive to 10mm chlorate, and their NR activities were not inhibited by chlorate. Both NR and chlorate reductase (CR) activities of strain E1F1 were induced in the presence of nitrate or chlorate respectively, whereas strain AD2 showed basal levels of these activities in the absence of the substrates. A basal TMAO reductase (TR) activity was also observed when these strains ofR. capsulatus were cultured in the absence of this electron acceptor. These results suggest that chlorate and TMAO can be used as ancillary oxidants byRhodobacter strains and that a single enzyme could be responsible for nitrate and chlorate reduction inR. sphaeroides DSM 158, whereas these reactions are catalyzed by two different enzymes inR. capsulatus E1F1 and AD2.  相似文献   

10.
LTR-retrotransposons contribute substantially to the structural diversity of plant genomes. Recent models of genome evolution suggest that retrotransposon amplification is offset by removal of retrotransposon sequences, leading to a turnover of retrotransposon populations. While bursts of amplification have been documented, it is not known whether removal of retrotransposon sequences occurs continuously, or is triggered by specific stimuli over short evolutionary periods. In this work, we have characterized the evolutionary dynamics of four populations of copia-type retrotransposons in allotetraploid tobacco (Nicotiana tabacum) and its two diploid progenitors Nicotiana sylvestris and Nicotiana tomentosiformis. We have used SSAP (Sequence-Specific Amplification Polymorphism) to evaluate the contribution retrotransposons have made to the diversity of tobacco and its diploid progenitor species, to quantify the contribution each diploid progenitor has made to tobacco's retrotransposon populations, and to estimate losses or amplifications of retrotransposon sequences subsequent to tobacco's formation. Our results show that the tobacco genome derives from a turnover of retrotransposon sequences with removals concomitant with new insertions. We have detected unique behaviour specific to each retrotransposon population, with differences likely reflecting distinct evolutionary histories and activities of particular elements. Our results indicate that the retrotransposon content of a given plant species is strongly influenced by the host evolutionary history, with periods of rapid turnover of retrotransposon sequences stimulated by allopolyploidy.  相似文献   

11.
Summary A strain of E. coli carrying a Mudl insertion leading to chlorate resistance was found to lack nitrate reductase and formate dehydrogenase activities, but to synthesize b-type cytochrome constitutively. Introduction of this insertion mutation into a strain bearing a fusion between the nitrate reductase operon (chl C, chl I) and the lac structural genes resulted in the constitutive expression of the lac genes of this last fusion. Identical results were found when the Mudl was eliminated promoting a deletion in the original insertion site. This mutation was located midway between gal and aro A, at the chl E locus. Study of a chl E strain already described revealed similar behaviour. Absence of nitrate reductase activity in these strains which constitutively express the structural genes of the nitrate reductase operon was tentatively attributed to the simultaneous lack of a cofactor of the nitrate reductase terminal enzyme, possibly cofactor Mo-X, and of a repressor of the operon.  相似文献   

12.
Summary Spontaneous chlorate-resistant (CR) mutants have been isolated from Chlamydomonas reinhardtii wildtype strains. Most of them, 244, were able to grow on nitrate minimal medium, but 23 were not. Genetic and in vivo complementation analyses of this latter group of mutants indicated that they were defective either at the regulatory locus nit-2, or at the nitrate reductase (NR) locus nit-1, or at very closely linked loci. Some of these nit-1 or nit-2 mutants were also defective in pathways not directly related to nitrate assimilation, such as those of amino acids and purines. Chlorate treatment of wild-type cells resulted in both a decrease in cell survival and an increase in mutant cells resistant to a number of different chemicals (chlorate, methylammonium, sulphanilamide, arsenate, and streptomycin). The toxic and mutagenic effects of chlorate in minimal medium were not found when cells were grown either in darkness or in the presence of ammonium, conditions under which nitrate uptake is drastically inhibited. Chlorate was also able to induce reversion of nit mutants of C. reinhardtii, but failed to produce His + revertants or Arar mutants in the BA-13 strain of Salmonella typhimurium. In contrast, chlorate treatment induced mutagenesis in strain E1F1 of the phototrophic bacterium Rhodobacter capsulatus. Genetic analyses of nitrate reductase-deficient CR mutants of C. reinhardtii revealed two types of CR, to low (1.5 mM) and high (15 mM) chlorate concentrations. These two traits were recessive in heterozygous diploids and segregated in genetic crosses independently of each other and of the nit-1 and nit-2 loci. Three her loci and four lcr loci mediating resistance to high (HC) and low (LC) concentrations of chlorate were identified. Mutations at the nit-2 locus, and deletions of a putative locus for nitrate transport were always epistatic to mutations responsible for resistance to either LC or HC. In both nit + and nit chlorate-sensitive (CS) strains, nitrate and nitrite gave protection from the toxic effect of chlorate. Our data indicate that in C. reinhardtii chlorate toxicity is primarily dependent on the nitrate transport system and independent of the existence of an active NR enzyme. At least seven loci unrelated to the nitrate assimilation pathway and mediating CR are thought to control indirectly the efficiency of the nitrate transporter for chlorate transport. In addition, chlorate appears to be a mutagen capable of inducing a wide range of mutations unrelated to the nitrate assimilation pathway.  相似文献   

13.
One of the four glutathione-S-transferases (GST) that is overproduced in the insecticide-resistant Cornell-R strain of the housefly (Musca domestica) produces an activity that degrades the insecticide dimethyl parathion and conjugates glutathione to lindane. In earlier work, it was shown that the resistant Cornell-R carries an amplification, probably a duplication, of one or more of its GST loci and that this amplification is directly related to resistance. Using polymerase chain reaction (PCR) amplification with genomic DNA, multiple copies of the gene encoding the parathion-degrading activity (called MdGst-3) were subcloned from both the ancestral, insecticide-susceptible strain BPM and from the insecticide-resistant Cornell-R. In BPM, three different MdGst-3 genes were identified while in Cornell-R, 12 different MdGst-3 sequences were found that, though closely related to ancestral genes, had diverged by a few nucleotides. This diversity in MdGst-3 genomic sequences in Cornell-R is reflected in the expressed sequences, as sampled through a cDNA bank. Population heterozygosity cannot account for these multiple GST genes. We suggest that selection for resistance to insecticides has resulted in not only amplification of the MdGst-3 genes but also in the divergence of sequence between the amplified copies. Received: 22 November 1995 / Accepted: 23 February 1996  相似文献   

14.
We have devised an improved method of genome walking, named rolling circle amplification of genomic templates for Inverse PCR (RCA–GIP). The method is based on the generation of circular genomic DNA fragments, followed by rolling circle amplification of the circular genomic DNA using ϕ29 DNA polymerase without need for attachment of anchor sequences. In this way from the circular genomic DNA fragments, after RCA amplification, a large amount of linear concatemers is generated suitable for Inverse PCR template that can be amplified, sequenced or cloned allowing the isolation of the 3′- and 5′- of unknown ends of genomic sequences. To prove the concept of the proposed methodology, we used this procedure to isolate the promoter regions from different species. Herein as an example we present the isolation of four promoter regions from Crocus sativus, a crop cultivated for saffron production.  相似文献   

15.
The Chlamydomonas reinhardtii strain Tx11-8 is a transgenic alga that bears the nitrate reductase gene (Nia1) under control of the CabII-1 gene promoter (CabII-1-Nia1). Approximately nine copies of the chimeric CabII-1-Nia1 gene were found to be integrated in this strain and to confer a phenotype of chlorate sensitivity in the presence of ammonium. We have used this strain for the isolation of spontaneous chlorate resistant mutants in the presence of ammonium that were found to be defective at loci involved in MoCo metabolism and light-dependent growth in nitrate media. Of a total of 45 mutant strains analyzed first, 44 were affected in the MoCo activity (16 Nit, unable to grow in nitrate, and 28 Nit+, able to grow in nitrate). All the Nit strains lacked MoCo activity. Diploid complementation of Nit, MoCo strains with C. reinhardtii MoCo mutants and genetic analysis indicated that some strains were defective at known loci for MoCo biosynthesis, while three strains were defective at two new loci, hereafter named Nit10 and Nit11. The other 28 Nit+ strains showed almost undetectable MoCo activity or activity was below 20% of the parental strain. Second, only one strain (named 23c+) showed MoCo and NR activities comparable to those in the parental strain. Strain 23c+ seems to be affected in a locus, Nit12, required for growth in nitrate under continuous light. It is proposed that this locus is required for nitrate/chlorate transport activity. In this work, mechanisms of chlorate toxicity are reviewed in the light of our results.  相似文献   

16.
Summary It had previously been held that chlorate is not itself toxic, but is rendered toxic as a result of nitrate reductase-catalysed conversion to chlorite. This however cannot be the explanation of chlorate toxicity in Aspergillus nidulans, even though nitrate reductase is known to have chlorate reductase activity. Among other evidence against the classical theory for the mechanism of chlorate toxicity, is the finding that not all mutants lacking nitrate reductase are clorate resistant. Both chlorate-sensitive and resistant mutants lacking nitrate reductase, also lack chlorate reductase. Data is presented which implicates not only nitrate reductase but also the product of the nirA gene, a positive regulator gene for nitrate assimilation, in the mediation of chlorate toxicity. Alternative mechanisms for chlorate toxicity are considered. It is unlikely that chlorate toxicity results from the involvement of nitrate reductase and the nirA gene product in the regulation either of nitrite reductase, or of the pentose phosphate pathway. Although low pH has an effect similar to chlorate, chlorate is not likely to be toxic because it lowers the pH; low pH and chlorate may instead have similar effects. A possible explanation for chlorate toxicity is that it mimics nitrate in mediating, via nitrate reductase and the nirA gene product, a shut-down of nitrogen catabolism. As chlorate cannot act as a nitrogen source, nitrogen starvation ensures.  相似文献   

17.
对8个节瓜(Benincasa hispida var.chieh-qua How)品系基因组DNA中的Ty1-copia类逆转座子逆转录酶核苷酸序列进行扩增,并对品系A39FA的29个克隆产物的核苷酸序列及翻译的氨基酸序列的系统进化和同源性进行了分析,还对29条氨基酸序列进行了比对。扩增结果表明:8个节瓜品系的基因组DNA中均包含长度约260 bp的逆转录酶核苷酸片段;从品系A39FA中获得的29条Ty1-copia类逆转座子逆转录酶核苷酸序列(CqRt1至CqRt29)的长度为247~267 bp,同源率为46.2%~98.1%,而它们的氨基酸序列同源率为26.7%~98.8%。序列分析结果表明:节瓜Ty1-copia类逆转座子逆转录酶核苷酸序列中碱基A、T、G和C的数量分别为65~96、47~92、45~74和32~49,所有序列均富含碱基A和T,AT/GC比为1.35~2.33;缺失突变是造成节瓜Ty1-copia类逆转座子逆转录酶核苷酸序列长度差异的主要因素,在序列长度和碱基组成方面的明显差异表明节瓜Ty1-copia类逆转座子逆转录酶核苷酸序列具有高度异质性。翻译后的氨基酸序列中有21条序列存在终止密码子突变、12条序列存在移框突变,表明Ty1-copia类逆转座子是节瓜基因组内序列重组的热点。通过聚类分析可将29个逆转录酶核苷酸序列分为5个家族(Family),分别包括16、4、4、4和1条序列,其中Family 1可能是具有转座活性的逆转座子家族,但存在转录活性的逆转录酶序列仅占全部序列数量的20.69%。将每一家族中的1~2条序列与其他15种植物的Ty1-copia类逆转座子逆转录酶的氨基酸序列进行比对,显示出较高的同源性。研究结果表明:节瓜与其他植物的Ty1-copia类逆转座子可能有相同起源,而且Ty1-copia类逆转座子可在不同类群间横向传递。  相似文献   

18.
Mutant plants defective in the assimilation of nitrate can be selected by their resistance to the herbicide chlorate. In Arabidopsis thaliana, mutations at any one of nine distinct loci confer chlorate resistance. Only one of the CHL genes, CHL3, has been shown genetically to be a nitrate reductase (NR) structural gene (NIA2) even though two NR genes (NIA1 and NIA2) have been cloned from the Arabidopsis genome. Plants in which the NIA2 gene has been deleted retain only 10% of the wildtype shoot NR activity and grow normally with nitrate as the sole nitrogen source. Using mutagenized seeds from the NIA2 deletion mutant and a modified chlorate selection protocol, we have identified the first mutation in the NIA1 NR structural gene. nia1, nia2 double mutants have only 0.5% of wild-type shoot NR activity and display very poor growth on media with nitrate as the only form of nitrogen. The nial-1 mutation is a single nucleotide substitution that converts an alanine to a threonine in a highly conserved region of the molybdenum cofactor-binding domain of the NR protein. These results show that the NIA1 gene encodes a functional NR protein that contributes to the assimilation of nitrate in Arabidopsis.  相似文献   

19.
A search for noncanonical variants of the gypsy retrotransposon ( MDG4 ) in the genome of the Drosophila melanogaster strain G32 led to the cloning of four copies of the poorly studied 7411-bp gtwin element. Sequence analysis showed that gtwin belongs to a family of endogeneous retroviruses, which are widespread in the Drosophila genome and have recently been termed insect erantiviruses. The gtwin retrotransposon is evolutionarily closest to MDG4, as evident from a good alignment of their nucleotide sequences including ORF2 (the pol gene) and ORF3 (the env gene), as well as the amino acid sequences of their protein products. These regions showed more than 75% homology. The distribution of gtwin was studied in several strains of the genus Drosophila. While strain G32 contained more than 20 copies of the element, ten other D. melanogaster strains carried gtwin in two to six copies per genome. The gtwin element was not detected in D. Hydei or D. Virilis. Comparison of the cloned gtwin sequences with the gtwin sequence available from the D. melanogaster genome database showed that the two variants of the mobile element differ by the presence or absence of a stop codon in the central region of ORF3. Its absence from the gtwin copies cloned from the strain G32 may indicate an association between the functional state of ORF3 and amplification of the element.Translated from Genetika, Vol. 41, No. 1, 2005, pp. 23–29.Original Russian Text Copyright © 2005 by Kotnova, Karpova, Feoktistova, Lyubomirskaya, Kim, Ilyin.  相似文献   

20.
A bacterial artificial chromosome (BAC) library constructed from the short arm of rye (Secalecereale L.) chromosome 1R has been screened for clones containing copies of the pSc200 tandem repeat family, most abundant in rye subtelomeric heterochromatin. The molecular organization of the monomer array and adjacent sequences has been studied in BAC-126/C20. Digestion of the array with various restriction endonucleases reveals no higher-order organization. The DNA adjacent to the pSc200 array consists of different repeats, including retrotransposon derivatives and another tandemly repeated family, termed XbaI, with a monomer length of 576 bp, 475 of which show 82% similarity to the long terminal repeat of the known Cereba retrotransposon. Sequencing of the 13 kb long genomic region in BAC-126/C20 revealed a direct junction of the pSc200 and XbaI monomers. The arrays of both families terminate at the same AT-rich sequence CAAAAAT. Another recombination signal is the presence of palindromes in the close proximity to the junction site. The presence of microhomologies promotes the action of proteins involved in double-strand DNA break repair. To our knowledge, it is the first discovery of the direct junction of monomers that are longer than 100 bp and belong to different families of plant tandem repeats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号