首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Danish rainbow trout, Salmo gairdneri Richardson, (40–65 g) were transferred to 28%o sea water at intervals throughout the early spring and summer. Gill Na+/K+-ATPase of fish kept in fresh water surged distinctly during May. Simultaneously, a body silvering occurred and plasma concentrations of Cl, Na+ and total thyroxine (T4) decreased. The seawater transfer-induced adaptive response in plasma electrolytes comprised a biphasic change, i.e., an adjustive peak phase and a regulatory phase lasting for 2 days and 1 week after transfer, respectively. Further, gill Na+/K+-ATPase activity increased to a new level after an initial lag phase of 2–3 days, but electrolyte regulation was mostly initiated prior to the adaptive change in ATPase activity. In spite of increasing pre-transfer freshwater Na+/K+-ATPase activity during the spring, the electrolyte peak level, the degree of muscle dehydration and the mortality of fish transferred to sea water increased from April to July. The apparent uncoupling of freshwater Na+/K+-ATPase activity and plasma electrolyte regulation in sea water is discussed in relation to smelting and prediction of hypo-osmoregulatory performance.  相似文献   

2.
The metabolic response of juvenile coho salmon Oncorhynchus kisutch to different salinities was examined, using whole-animal oxygen consumption rates and gill Na+, K+-ATPase activities as indicators of osmoregulatory energetics. Coho salmon smolts were acclimated to fresh water (FW), isosmotic salinity (ISO, 10‰) and sea water (SW, 28‰) and were sampled for up to 6 weeks for plasma levels of cortisol, glucose and ions (Na+, K+, Cl), gill Na+, K+-ATPase activity and oxygen consumption rates. Following an initial adjustment period, plasma constituents in SW fish returned to near-FW values, indicating that the fish were acclimated to SW by day 21. Gill Na+, K+-ATPase activities on days 21 and 42 were lowest in ISO, higher in FW and highest in SW. This result is consistent with the idea that less energy would be required to maintain ion balance in an isosmotic environment, where the ionic gradients between extracellular fluid and water would be minimal. Oxygen consumption rates of swimming fish (1 body length s−1), however, did not differ significantly between the three test salinities after 6 weeks. The results of this study suggest that the metabolic response of juvenile salmonids to changes in salinity is dependent on life-history stage (e.g. fry v . smolt), and that oxygen consumption rates do not necessarily reflect osmoregulatory costs.  相似文献   

3.
When Notothenia neglecta was exposed to diluted, half strength, sea water for 6 h or 10 days, serum concentrations of Cl-, Na+, K+ and Mg2+ did not differ from those of sea water controls. This indicates that the fish were capable of both short- and long-term regulation. Renal Na+,K+-ATPase activity decreased after a 6 h exposure to diluted sea water, but there were no differences between diluted sea water and controls after 10 days of exposure.  相似文献   

4.
Atlantic salmon Salmo salar juveniles were fed either fishmeal-based diets (FM) or diets in which soybean meal (SBM) partly replaced the FM from first feeding on. The fish were kept at continuous daylight during the juvenile stage. During the last 3 weeks before reaching 100 g body mass, all fish were subjected to 12L:12D. Starting at 100 g body mass, groups of 60 fish from each feeding background were subjected to continuous light for 12 weeks (short winter), or a square-wave photoperiod cycle to stimulate parr to smolt transformation with 8L:16D during the first 6 weeks, and then continuous light during the last 6 weeks (long winter). After the 12 weeks, 20 fish from each treatment were subjected to 0, 24 or 96 h seawater exposure at a water salinity of 34. Hypo-osmoregulatory ability at seawater exposure was assessed by mortality, intestinal pathology, plasma ion concentrations and osmolality, gill Na+/K+-ATPase activity and element concentrations in the cytoplasm of distal intestinal enterocytes using X-ray microanalysis. The hypo-osmoregulatory capacity was higher in fish kept at short winter than at long winter, apparently due to more rapid development of gill Na+/K+-ATPase activity. Fish fed SBM suffered typical soybean meal-induced histological alterations of the distal intestine and apparent reductions in digestive function in the more proximal gastrointestinal regions. The net osmoregulatory capacity of these fish was maintained, as indicated by higher gill Na+/K+-ATPase activity and lower plasma Na+, Ca2+ and osmolality compared to the FM-fed fish. Thus, feeding SBM did not impair the hypo-osmoregulatory ability of the Atlantic salmon following seawater exposure.  相似文献   

5.
Effects of salinity on the ionic balance and growth of juvenile turbot   总被引:7,自引:0,他引:7  
The effects of salinity changes (27, 19 and 10‰) on seawater-adapted juvenile turbot were studied on their plasma osmolarity and ion concentrations, on oxygen consumption, on gill Na+,K+-ATPase activity after 3 months and on growth parameters. All plasma concentrations (except chloride) were unchanged, suggesting that fish were well adapted to their environment. Oxygen consumption was significantly decreased in the 19 and 10‰ groups, where fish weighed significantly more 105 days after transfer than fish maintained in sea water. These results, and the fact that apparent food conversion rates were lower in a diluted environment, suggest that on a long term schedule growth conditions could be improved by adaptation to brackish waters (salinities between 10 and 19‰). The effects of transfer from sea water to 27, 19, 10 and 5‰ were also followed during the first 3 weeks. With salinity 10‰ a steady state was reached on day 21 with all plasma values within the same range. The significant differences observed in osmolarity, plasma ion concentrations and Na+,K+-ATPase activity 3 weeks after transfer of juveniles to 5‰ salinity, compared with transfers in higher salinities, suggest that there is a threshold of acclimation of turbot to a hypotonic environment.  相似文献   

6.
Abstract: In primary cultures of cerebellar neurons glutamate neurotoxicity is mainly mediated by activation of the NMDA receptor, which allows the entry of Ca2+ and Na+ into the neuron. To maintain Na+ homeostasis, the excess Na+ entering through the ion channel should be removed by Na+,K+-ATPase. It is shown that incubation of primary cultured cerebellar neurons with glutamate resulted in activation of the Na+,K+-ATPase. The effect was rapid, peaking between 5 and 15 min (85% activation), and was maintained for at least 2 h. Glutamate-induced activation of Na+,K+-ATPase was dose dependent: It was appreciable (37%) at 0.1 µ M and peaked (85%) at 100 µ M . The increase in Na+,K+-ATPase activity by glutamate was prevented by MK-801, indicating that it is mediated by activation of the NMDA receptor. Activation of the ATPase was reversed by phorbol 12-myristate 13-acetate, an activator of protein kinase C, indicating that activation of Na+,K+-ATPase is due to decreased phosphorylation by protein kinase C. W-7 or cyclosporin, both inhibitors of calcineurin, prevented the activation of Na+,K+-ATPase by glutamate. These results suggest that activation of NMDA receptors leads to activation of calcineurin, which dephosphorylates an amino acid residue of the Na+,K+-ATPase that was previously phosphorylated by protein kinase C. This dephosphorylation leads to activation of Na+,K+-ATPase.  相似文献   

7.
In stream-reared Atlantic salmon Salmo salar , plasma androgens were significantly greater in mature male parr than immature males and females in October, but had declined by January and did not differ significantly from immature fish throughout the spring. Immature fish in March were significantly larger and had greater gill Na+, K+-ATPase activity than their previously mature counterparts. Bimodal growth distribution was seen in hatchery-reared Atlantic salmon and a proportion of the male fish in the lower mode matured. Plasma testosterone (T) and 11-ketotestosterone (11-KT) were significantly elevated from September to December in mature male (1+ year) parr. In January, plasma androgens had declined in mature males and did not differ significantly from immature fish. By May all the hatchery fish were large enough to smolt and a proportion of the previously mature males had increased gill Na+, K+-ATPase activity. Therefore elevated androgens in the previous autumn do not prevent smolting. Parr with higher plasma T and 11-KT in April and May, that are presumably beginning to mature, had lower gill Na+, K+-ATPase activity, indicating that future maturation and associated increases in androgens may inhibit smolting.  相似文献   

8.
A marked increase in the Na+, K+-ATPase activity of sea urchin embryos occurred following an elevation of its mRNA level, revealed by Northern blotting analysis, in developmental period between the swimming blastula and the late gastrula stage. cDNA clone of Na+, K+-ATPase α-subunit, obtained from γgt10 cDNA library of sea urchin gastrulae, was digested with EcoRl ad Hindlll. The obtained 268 bp cDNA fragment, hybridized to a 4.6 Kb RNA, was used as probe for Northern blotting analysis. The level of Na+, K+-ATPase mRNA was higher in embryo-wall cell fraction isolated from late gastrulae (ectoderm cells) than the level in the bag fraction, containing mesenchyme cells (mesoderm cells) and archenteron (endoderm cells). The activity of Na+, K+-ATPase and the level of its mRNA were higher in animalized embryos obtained by pulse treatment with A23187 for 3 hr, starting at the 8–16 cell stage and were considerably lower in vegetalized embryos induced by 3 hr treatment with Li+ than that in normal embryos at the post gastrula corresponidng stage. Augmentation of Na+, K+-ATPase gene expression can be regarded as a marker for ectoderm cell differentiation at the post gastrula stage, which results from determination of cell fate in prehatching period.  相似文献   

9.
Silvering of the skin, reduced condition factor, elevated gill Na+, K+-ATPase activity and well-developed capacity to regulate the osmotic and ionic balance in sea water were observed in 1 and 2 year old hatchery-reared Saimaa landlocked salmon Salmo salar m. sebago during April-June. Loss of hypoosmoregulatory ability and gill Na+K+-ATPase activity was observed earlier in 2 year than 1 year old fish. Coincident with changes associated with smolting both age groups showed diminished osmoregulatory capacity in fresh water. Slow growth during May-June may also be attributed to osmoregulatory difficulties in fresh water. These results support the suggestion that the developmental changes at smolting are seasonal and unrelated to any salinity changes and the idea of smolting as evidence of maladaptation of the fish to fresh water.  相似文献   

10.
During low-water period, freshwater stingray Paratrygon aiereba collected in the whitewater (WW) of the River Amazon showed higher urea content, osmolality, Na+ and Cl concentrations in plasma and perivisceral fluid than those caught in blackwater (BW) of the River Negro. Gills and kidney Na+–K+-ATPase activities were significantly lower in WW than in BW fish. The high level of kidney Na+–K+-ATPase activity in P. aiereba may minimize ion loss and generate diluted solute-free urine in ion-poor BW environment.  相似文献   

11.
12.
In the present study, glass eels Anguilla anguilla in the Minho River estuary (41·5° N, 8·5° W) decreased in size (standard length, L S and mass, M ) from the beginning (autumn) to the end of the sampling season (summer). On the other hand elvers increased in L S and M from spring to summer and were significantly larger than glass eels in paired comparisons. Branchial Na+/K+-ATPase and vacuolar (V-type) proton ATPase ( in vitro activities), two important ion transporting pumps, did not show significant seasonal changes in either glass eels or elvers although in glass eels Na+/K+-ATPase (activity) expression was significantly higher than in elvers. In a single month comparison Na+/K+-ATPase branchial mRNA expression was also higher in glass eels as was the protein level expression of both Na+/K+-ATPase and NKCC (Na+:K+:2Cl co-transporter). Immunofluorescence microscopy indicated apical CFTR Cl channel labelling in Na+/K+-ATPase positive chloride cell in glass eels which was absent in elvers. Whole body sodium concentration and percentage water did not show significant seasonal differences in either glass eels or elvers although there were significant differences between these two groups during some months.  相似文献   

13.
Abstract: We have previously reported that insulin/insulin-like growth factor (IGF)-I induced the α1 isoform of Na+,K+-ATPase in cultured astrocytes. In this study the effects of insulin/IGF-I on Na+,K+-ATPase activity and cell proliferation were examined in astrocytes cultured under the various conditions, to test the possible involvement of the enzyme activity in the mitogenic action of IGF-I on astrocytes. Insulin increased Na+,K+-ATPase activity and stimulated cell proliferation in subconfluent astrocytes (cultured for 7–14 days in vitro). In contrast, these effects were not observed in confluent cells (cultured for 28 days). Furthermore, insulin stimulated neither the enzyme activity nor [3H]thymidine incorporation in astrocytes preincubated in fetal calf serum-free medium for 2 days (quiescent cells) and treated with dibutyryl cyclic AMP (differentiated cells). The increases in Na+,K+-ATPase activity and expression of the α1 mRNA preceded the mitogenic effect. 125I-IGF-I binding experiment showed that all the cells used here had similar binding characteristics. The insulin-induced increase in enzyme activity was not affected by 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), and it was observed even in Ca2+-free medium. The stimulation by IGF-I of [3H]thymidine incorporation was attenuated by ouabain and a low external K+ level. These findings suggest that stimulation of Na+,K+-ATPase activity is involved in the mitogenic action of IGF-I on cultured astrocytes.  相似文献   

14.
Out of five strains of Atlantic salmon Salmo salar of 1+ years released upstream of a fyke net in the River Gudenaa in 1996, three, Lagan, Ätran and Corrib, migrated immediately, 50% of the recaptured fish reaching the net in 3–6 days. Burrishoole and Conon fish migrated with a 15–19 day delay. Smolt development in 1997 at the hatchery showed a spring surge in gill Na+, K+-ATPase activity in all strains which was correlated with increased seawater tolerance. Differences in the timing of gill enzyme development matched the observed migration pattern well. Lagan, Ätran and Corrib strains reached high enzyme activity earlier than the Burrishoole and Conon strains, and strains with delayed enzyme development and migration showed a delayed regression of seawater tolerance compared with the early strains. Inter-strain differences in plasma growth hormone profiles could not be related to the observed patterns of Na+, K+-ATPase and seawater tolerance development. The study gives evidence of genetic influence on the timing and intensity of smolting and subsequent migration in Atlantic salmon.  相似文献   

15.
The intensity and duration of the period of osmotic disturbance during introduction of brook charr into sea water were decreased by introducing the fish according to a gradient of salinity over a period of 6 days. Survival in summer increased from 25 to 90% with the use of a salinity gradient. However, kinetics and levels of activation of the gill Na+, K+-ATPase were not affected by the mode used for introducing brook charr into sea water. Neither was its level of activity modified by the use of a salted diet when the fish were in fresh water. The addition of 8 and 12% of salt to the diet prevented the plasma electrolyte surge of concentrations during the first days in sea water. In very cold water, survival rate was also drastically improved by giving an 8% salted diet during the 6 weeks preceding the introduction into sea water. These results show that both salty diets and exposure to brackish water during 6 days help brook charr face osmotic stress and improve their survival rate when introduced into full-strength sea water. The combined use of these preconditioning strategies might facilitate rearing this species in sea cages or silos.  相似文献   

16.
Abstract: The excitatory amino acid glutamate was previously shown to stimulate aerobic glycolysis in astrocytes by a mechanism involving its uptake through an Na+-dependent transporter. Evidence had been provided that Na+,K+-ATPase might be involved in this process. We have now measured the activity of Na+,K+-ATPase in cultured astrocytes, using ouabain-sensitive 86Rb uptake as an index. l -Glutamate increases glial Na+,K+-ATPase activity in a concentration-dependent manner with an EC50 = 67 µ M . Both l - and d -aspartate, but not d -glutamate, produce a similar response, an observation that is consistent with an uptake-related effect rather than a receptor-mediated one. Under basal conditions, concentration-dependent inhibition of Na+,K+-ATPase activity in astrocytes by ouabain indicates the presence of a single catalytic site with a low affinity for ouabain ( K 0.5 = 113 µ M ), compatible with the presence of an α1 isozyme. On stimulation with glutamate, however, most of the increased activity is inhibited by low concentrations of ouabain ( K 0.5 = 20 n M ), thus revealing a high-affinity site akin to the α2 isozyme. These results suggest that astrocytes possess a glutamate-sensitive isoform of Na+,K+-ATPase that can be mobilized in response to increased neuronal activity.  相似文献   

17.
Snakeheads were adapted to fresh water (1 mOsm kg−1), 25% sea water (230 mOsm kg−1), 33% sea water (320 mOsm kg−1) and 40% sea water (380 mOsm kg−1) for 20 days. Exposure to salt water resulted in tissue dehydration, elevations of plasma osmolality, Na+, Mg2+, Cland protein concentrations and stimulation of branchial Na+-K+-ATPase activity. These changes were accompanied by concomitant decline of the hepatosomatic index and liver glycogen concentration. The routine rate of oxygen consumption was increased in snake-heads adapted to 33% sea water. These data were taken to indicate a stressful effect of salinity to the snakehead despite documentation of its ability to penetrate into brackish waters.  相似文献   

18.
The interaction of temperature and fish size on growth of juvenile halibut   总被引:3,自引:0,他引:3  
Growth rate of individually tagged juvenile halibut was influenced significantly by the interaction of temperature and fish size. The results suggest an optimum temperature for growth of juvenile halibut in the size range 5–70 g between 12 and 15° C. Overall growth rate was highest at 13° C (1·62% day −1). At c. 5 g at the beginning of the experiment, fish at 16° C had the highest growth rate (3·2% day −1), but reduced this rate as they grew bigger. At 9 and 11°p C, growth rates were equal or only slightly lower during the later stages of the experiment, while the fish at 6° C showed significantly lower overall growth rate (0·87% day−1). Optimal temperature for growth decreased rapidly with increasing size, indicating an ontogenetic reduction in optimum temperature for growth. Moreover, a more flattened parabolic regression curve between growth and temperature as size increased indicated reduced temperature dependence with size. Although individual growth rates varied significantly at all times within the experimental temperatures, significant size rank correlations were maintained during the experiment. This indicated an early establishment of a stable size hierarchy within the fish groups. Haematocrit was highest at the highest temperature while Na+/K+-ATPase activity was inversely related to temperature. There was no difference in plasma Na+, Cl and K+ concentrations among the temperature groups.  相似文献   

19.
Abstract: Rat brain microsomes were preincubated with S -adenosylmethionine (SAM), MgCl2, and CaCl2, then re-isolated, and the activity of Na+,K+-ATPase determined. SAM inhibited the Na+,K+-ATPase activity compared with microsomes subjected to similar treatment in the absence of SAM. A biphasic inhibitory effect was observed with a 50% decrease at a SAM concentration range of 0.4 μ M -3.2 μ M and a 70% reduction at a concentration range above 100 μ M . Inclusion of either S- adenosylhomocysteine or 3-deazaadenosine in the preincubations prevented the SAM inhibition of Na+,K+-ATPase activity. The inhibition by SAM appeared to be Mg2+- or Ca2+-dependent.  相似文献   

20.
Abstract Unidirectional fluxes of Na+, Cl and 3-O-methyl-D-glucose (3-MG) were measured in vitro across Campylobacter jejuni live culture-infected and control rat ileal short-circuited tissues by the Using Chamber technique. Net secretion of Na+ and enhanced secretion of Cl ions was observed in the infected animals ( P < 0.001, n =6) as compared to the net absorption of Na+ and marginal secretion of Cl ions in the control animals. There was a significant decrease in the mucosal-to-serosal fluxes of 3-MG in C. jejuni -infected rat ileum. The specific Na+,K+-ATPase activity when measured biochemically in the membrane-rich fraction of enterocytes was found to be significantly lower (58%) in the infected group as compared to the control group ( P < 0.001). Our results therefore suggest that infection with an enterotoxigenic C. jejuni inhibits the Na+,K+-ATPase activity in rat enterocytes. The impairment of Na+,K+-ATPase activity thus appears to induce a secondary change in Na+,Cl and 3-MG transport in vitro in rat ileum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号