首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptosis during preimplantation development has received much interest because of its potential role in eliminating defective cells. Although development in humans is characterised by a high degree of genetic abnormality, little is known of the regulation of apoptosis in embryos. By PolyA PCR we analysed expression of 11 BCL-2 genes in individual human embryos representative of normal development and in severely fragmented embryos. We demonstrate constitutive expression of BAX in virtually all embryos at all stages of development, and variable expression of BCL2, BCL-XL, BCL-W, MCL-1 BAK, BAD, BOKL, BID, BIK, and BCL-XS. The frequency of expression of pro- and anti-apoptotic BCL-2 members was similar throughout development, except at the two-cell stage where pro-apoptotic genes predominated. Protein expression was confirmed for BCL-2, MCL-1, BCL-X, BAX, BAD, and activated caspase 3. BCL-2 protein was associated with mitochondria but expressed inconsistently in the blastocyst inner cell mass. Consistent differences between morphologically intact and fragmented embryos included the expression of BAK in fragmented but not intact four-cell embryos. Our study addresses the importance of examining single human embryos representative of the viable population for a large number of genes, in order to establish meaningful expression profiles and provide information on overlapping function in a large gene family.  相似文献   

2.
Human BFK (BCL-2 family kin) is a novel pro-apoptotic BCL-2 family member specifically expressed in the gastrointestinal tract. BFK has the characteristic BH3 domain, which was shown to be essential for the apoptosis-inducing activity of pro-apoptotic BCL-2 family members. When overexpressed, BFK interacts with BCL-XL and BCL-W but not BCL-2 or BAD in co-immunoprecipitations studies. We find that BFK exhibits striking similarity to BID in the way it is activated through cleavage during apoptosis. The endogenous and cleaved versions of BFK are readily recognized by the rabbit and mouse sera raised against human BFK. An ideal caspase 3 or 7 target sequence, DEVD (amino acids 38–41), is evident N-terminal to the BH3 domain. A recombinant version of the protein containing all residues downstream of the putative caspase cleavage site induces apoptosis in human colon cancer cells, HCT116, and in wild-type mouse embryonic fibroblasts (MEFs), which can be reversed by co-expression of BCL-XL or BCL-W. BFK becomes activated through caspase-dependent cleavage during DNA damage-induced apoptosis. The cleaved form of the protein is dependent on the presence of BAX or BAK for its ability to induce apoptosis, since BAX–/–-BAK–/– double-knockout MEFs are completely resistant to BFK-induced apoptosis.  相似文献   

3.
Aveic S  Pigazzi M  Basso G 《PloS one》2011,6(10):e26097
BCL2 associated Athano-Gene 1 (BAG1) is a multifunctional protein that has been described to be involved in different cell processes linked to cell survival. It has been reported as deregulated in diverse cancer types. Here, BAG1 protein was found highly expressed in children with acute myeloid leukemia at diagnosis, and in a cohort of leukemic cell lines. A silencing approach was used for determining BAG1's role in AML, finding that its down-regulation decreased expression of BCL2, BCL-XL, MCL1, and phospho-ERK1/2, all proteins able to sustain leukemia, without affecting the pro-apoptotic protein BAX. BAG1 down-regulation was also found to increase expression of BAG3, whose similar activity was able to compensate the loss of function of BAG1. BAG1/BAG3 co-silencing caused an enhanced cell predisposition to death in cell lines and also in primary AML cultures, affecting the same proteins. Cell death was CASPASE-3 dependent, was accompanied by PARP cleavage and documented by an increased release of pro-apoptotic molecules Smac/DIABLO and Cytochrome c. BAG1 was found to directly maintain BCL2 and to protect MCL1 from proteasomal degradation by controlling USP9X expression, which appeared to be its novel target. Finally, BAG1 was found able to affect leukemia cell fate by influencing the expression of anti-apoptotic proteins crucial for AML maintenance.  相似文献   

4.
Abstract. The radiosensitivity of pronuclear mouse (B6D2 F1 x ICR) embryos has been measured in vitro as a function of time during the cell cycle. This was done by measuring the dose of X-rays (LD50) required to prevent development of 50% of the pronuclear embryos to the blastocyst stage in 5 days of culture. The LD50 was found to vary from 1 to 2 Gy during the period from G1 to the first cleavage. The cell cycle in the pronuclear embryo was analysed by [3H]thymidine autoradiography. Compared with earlier studies on two-cell mouse embryo radiosensitivity, the pronuclear embryos appear to be more sensitive to radiation than the two-cell embryos. If, however, one considers the radiation sensitivity on a blastomere basis, the pronuclear embryos are not different in their radiation sensitivity from the two-cell embryos. Thus, during the early cleavage stages of mice, radiosensitivity is mainly governed by the content of cells of various cell cycle ages in the embryo.  相似文献   

5.
Several recent studies have proposed a model that the organization of the mouse blastocyst is determined by the pattern of early cleavages: the plane of first cleavage divides the two-cell embryo into embryonic (Em) and abembryonic (Ab) halves, while the timing of the second cleavages specifies which blastomere becomes the Em half. This model is still controversial because of conflicting observations in various studies. Here, we investigated the possibility that the difference between mouse strains contributed to the discrepancy of the findings of different experiments regarding the relationship between the first two cleavages and the blastocyst axial pattern. First, we showed by using a lipophilic, fluorescent tracer that the plane of the first cleavage bears no consistent spatial relationship to the Em-Ab axis of the blastocyst regardless of the genotypic background. Secondly, the order of the second cleavage does not correlate with the Em-Ab polarity of the blastocyst. This was demonstrated by tracing the lineage of the early- and later-dividing two-cell stage blastomeres in the whole embryo as well as by comparing the developmental potential of isolated early- and later-dividing blastomeres and chimeras made entirely of early- or later-dividing blastomeres. These results suggest that contrary to recent studies, the differences between the early- and later-dividing blastomeres of the two-cell embryo are not functionally evident and do not define the Em-Ab polarity of the blastocyst. The significance of these findings is discussed in relation to human assisted reproduction and preimplantation genetic diagnosis.  相似文献   

6.
7.
In the present study, we investigated whether vascular endothelial growth factor A (VEGFA) plays a critical intraovarian survival role in gonadotropin-dependent folliculogenesis. The effect of an intrabursal administration of a VEGFA antagonist on follicular development, apoptosis, and levels of pro- and antiapoptotic proteins of BCL2 family members (BAX, BCL2, and BCL2L1), as well as of TNFRSF6 (also known as FAS) and FAS ligand (FASLG), was examined. To inhibit VEGFA, a soluble FLT1/Fc Chimera (Trap) was administered to prepubertal eCG-treated rats. Injection of 0.5 mug of Trap per ovary did not change the number of preantral follicles (PFs) or early antral follicles (EAFs); however, it significantly decreased the number of periovulatory follicles 48 h after surgery and significantly increased the number of atretic follicles. No significant differences were found in any stage of the follicles either 12 or 24 h after injection. Cells undergoing DNA fragmentation were quantified by performing TUNEL on ovarian sections. Trap treatment caused a twofold increase in the number of apoptotic cells in EAFs. DNA isolated from antral follicles incubated for 24 h exhibited the typical apoptotic DNA pattern. Follicles obtained from Trap-treated ovaries showed a significant increase in the spontaneous onset of apoptotic DNA fragmentation. The injection of Trap significantly increased the levels of BAX and decreased the levels of BCL2 protein. The ratio of BCL2L1L:BCL2L1s was significantly diminished in follicles obtained from ovaries treated with Trap. No changes in the levels of TNFRSF6 or FASLG were observed after treatment. We concluded that the local inhibition of VEGFA activity appears to produce an increase in ovarian apoptosis through an imbalance among the BCL2 family members, thus leading a larger number of follicles to atresia.  相似文献   

8.
9.
The South American plains vizcacha, Lagostomus maximus, displays an exceptional ovulation rate of up to 800 eggs per cycle, the highest rate recorded for a mammal. Massive polyovulation arises from the overexpression of the apoptosis-inhibiting BCL2 gene leading to a suppression of apoptotic pathways responsible for follicular atresia in mammals. We analyzed the ovarian histology, ovarian apoptosis, and apoptosis-related protein expression with special emphasis in corpora lutea throughout the 5-mo-long gestation period, at parturition day and early postpartum, in L. maximus. Corpora lutea were abundant throughout gestation with no sign of structural regression even at the end of gestation. Both immunohistochemistry and Western blot analysis showed strong signals for apoptosis-inhibiting BCL2 protein, whereas the proapoptotic BAX protein was just detected in isolated luteal cells in gestating females and postpartum females. Apoptosis-associated DNA fragmentation detected by TUNEL was very scarce and occasional and correlated with BAX detection in luteal cells. Marked expression of progesterone and alpha-estrogen receptors in luteal cells was found at early, mid-, and late gestation as well as at parturition day and early postpartum samples. Additionally, serum level of progesterone increased markedly to reach maximal values at late gestation and decreasing at parturition to levels found at early gestation, suggesting that corpora lutea remained functional throughout gestation. These results point out that the unusual ovarian environment of L. maximus in which germ cell demise is abolished through antiapoptotic BCL2 gene overexpression also preserves structural integrity and functionality of corpora lutea during the whole gestation. Overexpression of antiapoptotic BCL2 gene may represent a strategy for an essential need of ovary and corpora lutea in order to maintain pregnancy until term.  相似文献   

10.
BCL2 and BCL-x(L) facilitate G(0) quiescence by decreasing RNA content and cell size and up-regulating p27 protein, but the precise mechanism is not understood. We investigated the relationship between cell cycle regulation and the anti-apoptosis function of BCL2 and BCL-x(L). Neither caspase inhibition nor abrogation of mitochondria-dependent apoptosis by BAX and BAK deletion fully recapitulated the G(0) effects of BCL2 or BCL-x(L), suggesting that mechanisms in addition to anti-apoptosis are involved in the cell cycle arrest function of BCL2 or BCL-x(L). We found that BCL2 and BCL-x(L) expression in bax(-/-) bak(-/-) cells did not confer cell cycle effects, consistent with the G(0) function of BCL2 and BCL-x(L) being mediated through BAX or BAK. Stabilization of p27 in G(0) in BCL2 or BCL-x(L) cells was due to phosphorylation of p27 at Ser(10) by the kinase Mirk. In bax(-/-) bak(-/-) cells, total p27 and p27 phosphorylated at Ser(10) were elevated. Re-expression of BAX in bax(-/-) bak(-/-) cells and silencing of BAX and BAK in wild type cells confirmed that endogenous BAX and BAK modulated p27. These data revealed a novel role for BAX and BAK in the regulation of G(0) quiescence.  相似文献   

11.
利用小鼠抗5-甲基胞嘧啶(5MeC)单克隆抗体检测了体外培养小鼠四倍体早期胚胎的基因组甲基化模式。结果表明: 利用电融合方法制备的小鼠四倍体胚胎在体外培养体系中经历细胞质融合、细胞核融合及细胞继续分裂发育直到囊胚期的过程, 在细胞质融合的时候胚胎卵裂球同体内体外培养二倍体胚胎一样, 呈现高度甲基化状态; 在细胞核开始融合的时候, 甲基化水平急速下降, 在细胞核完全融合的时候甲基化水平达到最低点; 随着胚胎继续分裂, 胚胎甲基化水平逐渐增加, 在桑葚胚期甲基化水平最高; 但是囊胚期四倍体胚胎内细胞团同滋养层细胞甲基化荧光信号没有差别, 这与体内体外培养二倍体囊胚内细胞团细胞甲基化荧光强度高于滋养层细胞甲基化荧光强度不同。因此, 小鼠体外培养四倍体胚胎的甲基化模式是不正常的, 这可能是四倍体小鼠难以发育到妊娠足月的原因之一。这是对小鼠四倍体早期胚胎基因组甲基化模式的首次报道。  相似文献   

12.
The angiopoietin (ANGPT) receptor (TEK) system plays a crucial role in blood vessel development and regression. To date, no reports have addressed the actions of the anti-ANGPT1 antibody on gonadotropin-stimulated follicular development and atresia in the ovary. Therefore, in this study we specifically investigated whether ANGPT1 plays a critical intraovarian survival role for gonadotropin-dependent folliculogenesis. In particular, we examined the effect of local administration of anti-ANGPT1 antibody on follicular development, apoptosis, and expression of BCL2 protein family members (BAX, BCL2, and BCL2L1), TNFRSF6, and FASLG in ovarian follicles from prepubertal eCG-treated rats. The inhibition of ANGPT1 caused an increase in the number of atretic follicles and a decrease in the number of both antral follicles (AFs) and preovulatory follicles in gonadotropin-treated rat ovaries. Taking into account that follicular atresia is mediated by apoptosis, we analyzed the effect of the antibody against ANGPT1 on programmed cell death. The inhibition of the action of ANGPT1 caused an increase both in the number of apoptotic granulosa cells in AFs and in the spontaneous DNA fragmentation of AFs cultured in serum-free medium. Besides, AFs obtained from rats treated with intraovarian antibodies against ANGPT1 showed both a decrease in BCL2 and an increase in BAX protein levels. Moreover, a reduction in the BCL2L1(L)/BCL2L1(S) ratio was observed in this group, with a reduction of BCL2L1(L) greater than that of BCL2L1(S), thus showing that the expression of these antiapoptotic proteins is lower in follicles from treated rats than in those from untreated ones. Our findings suggest that the inhibition of ANGPT1 activity causes an increase in the number of atretic follicles mediated by ovarian apoptosis through an imbalance in the ratio of antiapoptotic to proapoptotic proteins. This could take place through a paracrine effect on granulosa cells mediated by the TEK receptor in theca cells. Therefore, these data clearly indicate that ANGPT1 is necessary for follicular development induced by gonadotropins.  相似文献   

13.
Activation of Akt/Protein Kinase B (PKB) by phosphatidylinositol-3-kinase (PI3K) controls several cellular functions largely studied in mammalian cells, including preimplantation embryos. We previously showed that early mouse embryos inherit active Akt from oocytes and that the intracellular localization of this enzyme at the two-cell stage depends on the T-cell leukemia/lymphoma 1 oncogenic protein, Tcl1. We have now investigated whether Akt isoforms, namely Akt1, Akt2 and Akt3, exert a specific role in blastomere proliferation during preimplantation embryo development. We show that, in contrast to other Akt family members, Akt2 enters male and female pronuclei of mouse preimplantation embryos at the late one-cell stage and thereafter maintains a nuclear localization during later embryo cleavage stages. Depleting one-cell embryos of single Akt family members by microinjecting Akt isoform-specific antibodies into wild-type zygotes, we observed that: (a) Akt2 is necessary for normal embryo progression through cleavage stages; and (b) the specific nuclear targeting of Akt2 in two-cell embryos depends on Tcl1. Our results indicate that preimplantation mouse embryos have a peculiar regulation of blastomere proliferation based on the activity of the Akt/PKB family member Akt2, which is mediated by the oncogenic protein Tcl1. Both Akt2 and Tcl1 are essential for early blastomere proliferation and embryo development.  相似文献   

14.
This report studied the identification and sequence of a full-length cDNA for the bovine BCL2 antiapoptotic family member, BCL2-related protein A1 (BCL2A1), and its localized and quantitative expression in the placenta to clarify the regulatory mechanism of trophoblast cell proliferation and differentiation during implantation and placental development. We cloned a full-length bovine BCL2A1 cDNA with 725 nucleotides and an open-reading frame corresponding to a protein of 175 amino acids. The predicted amino acid sequence shared 78% homology with human BCL2A1. All BCL2 homology domains (BH1, BH2, BH3, and BH4) in bovine BCL2A1 were conserved as well as in other mammalian BCL2A1. In the placentomes, in situ hybridization demonstrated that the BCL2A1 was limited in binucleate cells expressing various pregnancy-specific molecules like placental lactogen. BCL2-associated X protein (BAX) was also expressed in binucleate cells. Quantitative real-time RT-PCR detection exhibited a high-level expression of BCL2A1 in the conceptus at Day 21 of gestation, and it was expressed and increased in the extraembryonic membrane, cotyledon, and intercotyledon from implantation to term. BAX expression intensity increased with progression of gestation and remained elevated in postpartum. Caspase-3 protein (CASP3) and mRNA (CASP3) were detected from late gestation to postpartum in placenta as well as in the results of TUNEL detection. We believe that the apoptosis of binucleate cells may be regulated by the balance of the BCL2A1 and BAX. BCL2A1 genes produced a BCL2A1 protein in the mammalian cell-expression system. This molecule is a new candidate for antiapoptotic maintenance of the binucleate cells that support placental functions throughout gestation in bovine.  相似文献   

15.
16.
17.
18.
A high level of the BCL2 protein and the lack of apoptosis promoting protein BAX are beginning to be treated as markers of cellular resistance to anti-neoplastic drugs. The object of the study were specimens from stereotactic biopsy of Astrocytoma fibrillare in the central brain area, inaccessible to conventional surgery. The cytological preparations have been evaluated with histopathological and immunohistochemical methods in order to determine the origin of the tumour and assess cell proliferation activity. The molecular analysis conducted in order to determine the sensitivity of the tumour to radio- or chemotherapy included the determination of the number of mRNA BCL2 alpha and beta molecules and of BAX in 1 microg total RNA obtained from microscope slides. A higher expression of BAX than of BCL2-alpha is a prognosis for a positive result of chemo- or radiotherapy. A trace number of mRNA BCL2-beta molecules and a smaller number of mRNA BCL2-alpha molecules than mRNA BAX is a good prognosis for therapy.  相似文献   

19.
Apoptosis of skeletal muscle fibers is a well-known event occurring in patients suffering from muscular dystrophies. In this study, we hypothesized that functional polymorphisms in genes involved in the mitochondrial apoptotic pathway might modulate the apoptotic capacity underlying the muscle loss and contributing to intrafamilial and interfamilial variable phenotypes in LGMD2C (Limb Girdle Muscular Dystrophy type 2C) patients sharing the same c.521delT mutation in SGCG gene. Detection of apoptosis was confirmed on muscle biopsies taken from LGMD2C patients using the TUNEL method. We genotyped then ten potentially functional SNPs in TP53, BCL-2 and BAX genes involved in the mitochondrial apoptotic pathway. Potential genotype-dependent Bcl-2 and p53 protein expressed in skeletal muscle was investigated using western blot and ELISA assays. The result showed that muscle cells carrying the TP53-R72R and TP53-16?bp del/del genotypes displayed an increased p53 level which could be more effective in inducing apoptosis by activation of the pro-apoptotic gene expression. In addition, the BCL2-938 AA genotype was associated with increased Bcl-2 protein expression in muscle from LGMD2C patients compared to -938CC genotype, while there was no evidence of significant difference in the BAX haplotype. Our findings suggest that increased Bcl-2 protein expression may counteract pro-apoptotic pathways and thus reduce the muscle loss. To the best of our knowledge, this is a pioneer study evaluating the role of apoptotic BCL-2 and TP53 genes in contributing to the phenotypic manifestation of c.521delT mutation in LGMD2C patients. Larger studies are needed to validate these findings.  相似文献   

20.
We studied alterations in the mRNA expression levels of BCL2 (Bcl-2), BCL2L12, BAX, FAS and CASPASE-9 genes in the MCF-7 breast cancer cell line in response to treatment with two anticancer drugs. Cell toxicity was evaluated by the MTT method, trypan blue staining and DNA laddering, whereas the expression levels of the apoptosis-related genes were analysed by RT-PCR using gene-specific primers. In the case of etoposide, down-regulation of the BCL2L12-A gene variant and of CASPASE-9, as well as upregulation of BAX, was observed, whereas treatment of MCF-7 cells with taxol led to down-regulation of the mRNA levels of all genes examined. Our results support the idea that after long-term clinical studies, mRNA expression analysis of BCL2L12 and other members of the BCL2 gene family may serve as useful molecular markers predicting chemotherapy response in breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号