首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heparan sulfate proteoglycans (HS-PGs) are associated with important cell functions, for example, cell motility, cell adhesion, and oncogenesis. We examined the localization of HS-PGs in normal and carcinoma tissues of the gastrointestinal tract to help elucidate their roles in these organs. Fresh surgical materials from 134 patients with carcinoma of the stomach or large intestine and 26 patients with various diseases of the small intestine were immunostained after fixation with 10E4 (an antibody against the HS of HS-PG) as a primary antibody. Immunoelectron microscopy (immunogold method) was also performed. The basolateral surfaces of normal tissues of the large and small intestines were strongly stained with antibody confirmed by electron microscopy. In the stomach, lesions with intestinal metaplasia showed the same staining as the intestines, although normal gastric tissue showed staining only in some parts of the basal layer of fundic and pyloric glands. Carcinoma tissues in all cases examined showed staining with antibody. Better results were obtained after fixation in acetic alcohol or zinc-containing solutions than in ordinary formalin. These characteristic localizations of HS-PG in intestines and stomachs suggest that this kind of HS-PG staining could be a hallmark characteristic of the intestine.  相似文献   

2.
Summary Heparan sulphate proteoglycan is the predominant proteoglycan synthesized by the parenchymal cells of the rat submandibular gland. A polyclonal antibody was used to localize this proteoglycan in the adult rat submandibular gland. Localization was accomplished by indirect immunoperoxidase cytochemistry at the light and electron microscopic levels. Heparan sulphate proteoglycan was localized in a continuous, linear pattern in the lamina densa of the basement membrane surrounding all of the epithelial components of the gland as well as the basement membrane of the capillaries and small arterioles in the glandular stroma. In addition, heparan sulphate proteoglycan was seen in vesicles and pits along the acinar cell basal plasmalemma adjacent to the basement membrane and in the endoplasmic reticulum and Golgi apparatus of the acinar cells.  相似文献   

3.
After 24 h of continuous labeling with radioactive precursors, a high molecular weight heparan sulfate proteoglycan (HS-PG) was isolated from both the medium and cell layer of human colon carcinoma cells (WiDr) in culture. The medium HS-PG eluted from a diethylaminoethyl anion exchange column with 0.45-0.50 M NaCl, had an average density of 1.46-1.49 g/ml on dissociative CsCl density-gradient ultracentrifugation, and eluted from Sepharose CL-2B with a Kav = 0.57. This proteoglycan had an estimated Mr of congruent to 8.5 X 10(5), with glycosaminoglycan chains of Mr = 3 X 10(4) which were all susceptible to HNO2 deaminative cleavage. Deglycosylation of the HS-PG with polyhydrogen fluoride resulted in a 3H-core protein with Mr congruent to 2.4 X 10(5). The cell layer contained a population of HS-PG with characteristics almost identical to that released into the medium but with a larger Mr = 9.5 X 10(5). Furthermore, an intracellular pool contained smaller heparan sulfate chains (Mr congruent to 1 X 10(4)) which were mostly devoid of protein core. In pulse chase experiments, only the large cell-associated HS-PG was released (approximately 58%) into the medium as intact proteoglycan and/or internalized and degraded (approximately 42%), with a t1/2 = 6 h. However, the small intracellular component was never released into the medium and was degraded at a much slower rate. When the cells were subjected to mild proteolytic treatment, only the large cell-associated HS-PG, but none of the small component, was displaced. Addition of exogenous heparin did not displace any HS-PG into the medium. Both light and electron microscopic immunocytochemistry revealed that the cell surface reacted with antibody against an HS-PG isolated from a basement membrane-producing tumor. Electron microscopic histochemistry using ruthenium red and/or cuprolinic blue revealed numerous 10-50-nm diam granules and 70-220-nm-long electron-dense filaments, respectively, on the surface of the tumor cells. The results indicate that colon carcinoma cells synthesize HS-PGs with distinct structural and metabolic characteristics: a large secretory pool with high turnover, which appears to be synthesized as an integral membrane component and localized primarily at the cell surface, and a small nonsecretory pool with low turnover localized predominantly within the cell interior. This culture system offers an opportunity to investigate in detail the mechanisms involved in the regulation of proteoglycan metabolism, and in the establishment of the neoplastic phenotype.  相似文献   

4.
A discontinuous basement membrane of variable width that surrounds spongiotrophoblast cells of rat placenta was examined for the presence of type IV collagen, laminin, a heparan sulfate proteoglycan, entactin, and fibronectin using monospecific antibodies or antisera and the indirect peroxidase technique. At the level of the light microscope, the basement membrane was immunostained for type IV collagen, laminin, entactin, and fibronectin. Heparan sulfate proteoglycan immunostaining, however, was virtually absent even after pretreatment of sections with 0.1 N acetic acid, pepsin (0.1 microgram/ml) or 0.13 M sodium borohydride. Examination in the electron microscope confirmed the lack of immunostaining for heparan sulfate proteoglycan, whereas the other substances were mainly localized to the lamina densa part of the basement membrane. The absence of heparan sulfate proteoglycan in this discontinuous and irregular basement membrane even though type IV collagen, laminin, entactin, and fibronectin are present, suggests that heparan sulfate proteoglycan may have a structural role in the formation of basement membrane.  相似文献   

5.
We provide direct evidence for the presence of unsulfated, but fully elongated heparan glycosaminoglycans covalently linked to the protein core of a heparan sulfate proteoglycan synthesized by human colon carcinoma cells. Chemical and enzymatic studies revealed that a significant proportion of these chains contained glucuronic acid and N-acetylated glucosamine moieties, consistent with N-acetylheparosan, an established precursor of heparin and heparan sulfate. The presence of unsulfated chains was not dependent upon the exogenous supply of sulfate since their synthesis, structure, or relative amount did not vary with low exogenous sulfate concentrations. Culture in sulfate-free medium also failed to generate undersulfated heparan sulfate-proteoglycan, but revealed an endogenous source of sulfate which was primarily derived from the catabolism of the sulfur-containing amino acids methionine and cysteine. Furthermore, the presence of unsulfated chains was not due to a defect in the sulfation process because pulse-chase experiments showed that they could be converted into the fully sulfated chains. However, their formation was inhibited by limiting the endogenous supply of hexosamine. The results also indicated the coexistence of the unsulfated and sulfated chains on the same protein core and further suggested that the sulfation of heparan sulfate may occur as an all or nothing phenomenon. Taken together, the results support the current biosynthetic model developed for the heparin proteoglycan in which unsulfated glycosaminoglycans are first elongated on the protein core, and subsequently modified and sulfated. These data provide the first evidence for the presence of such an unsulfated precursor in an intact cellular system.  相似文献   

6.
Proteoglycans (PGs) are composed of a protein moiety and a complex glycosaminoglycan (GAG) polysaccharide moiety. GAG chains are responsible for various biological activities. GAG chains are covalently attached to serine residues of the core protein. The first step in PG biosynthesis is xylosylation of certain serine residues of the core protein. A specific linker tetrasaccharide is then assembled and serves as an acceptor for elongation of GAG chains. If the production of endogenous GAG chains is selectively inhibited, one could determine the role of these endogenous molecules in physiological and developmental functions in a spatiotemporal manner. Biosynthesis of PGs is often blocked with the aid of nonspecific agents such as chlorate, a bleaching agent, and brefeldin A, a fungal metabolite, to elucidate the biological roles of GAG chains. Unfortunately, these agents are highly lethal to model organisms. Xylosides are known to prime GAG chains. Therefore, we hypothesized that modified xylose analogs may able to inhibit the biosynthesis of PGs. To test this, we synthesized a library of novel 4-deoxy-4-fluoroxylosides with various aglycones using click chemistry and examined each for its ability to inhibit heparan sulfate and chondroitin sulfate using Chinese hamster ovary cells as a model cellular system.  相似文献   

7.
8.
A number of transmembrane proteins have been recently reported to be modified by the covalent addition of saturated fatty acids which may contribute to membrane targeting and specific protein-lipid interactions. Such modifications have not been reported in cell-associated heparan sulfate proteoglycans, although these macromolecules are known to be hydrophobic. Here, we report that a cell surface heparan sulfate proteoglycan is acylated with both myristate and palmitate, two long-chain saturated fatty acids. When colon carcinoma cells were labeled with [3H]myristic acid, a significant proportion of the label was shown to be specifically incorporated into the protein core of the proteoglycan. Characterization of fatty acyl moiety in the purified proteoglycan by reverse-phase high pressure liquid chromatography revealed that approximately 60% of the covalently bound fatty acids was myristate. We further show that this relatively rare 14-carbon fatty acid was bound to the protein core via a hydroxylamine- and alkali-resistant amide bond. The remaining 40% was the more common 16-carbon palmitate, which was bound via a hydroxylamine- and alkali-sensitive thioester bond. Palmitate appeared to be added post-translationally and derived in part from intracellular elongation of myristate, a process that occurred within the first two hours and was insensitive to inhibition of protein synthesis. Acylation of heparan sulfate proteoglycan represents a novel modification of this gene product and could play a role in a number of biological functions including specific interactions with membrane receptors and ligand stabilization.  相似文献   

9.
Glycosaminoglycan (GAG) was extracted from the porcine thyroid gland with a buffer containing 5.3 M guanidine-HCl and proteolytic enzyme inhibitors and was fractionated by subsequent isodensity CsCl centrifugation. 60% of uronic acid positive materials was accumulated in the bottom one-fourth fraction with high buoyant density. More than 90% of this uronic acid positive material in the thyroid tissue was heparin or heparan sulfate (sensitive to nitrous acid treatment) and the rest was chondroitin sulfate or dermatan sulfate (sensitive to chondroitinase ABC treatment). When the accumulated high buoyant density GAG was analyzed on a Sepharose CL-6-B column, approximately 14% of the heparin sulfate were in the macromolecular portion as a form of proteoglycan because it was destroyed by the papain digestion or alkaline borohydride treatment which extensively digests protein or releases GAG from protein by the elimination reaction, respectively. This study demonstrates the existence of heparin sulfate proteoglycan in thyroid tissue for the first time.  相似文献   

10.
The effects of cell surface heparan sulfate proteoglycan (HSPG) prepared from log and confluent monolayers of a rat hepatoma cell line on hepatoma cell growth were studied. When HSPG isolated from confluent cells was added exogenously to log phase cells, it was internalized and free heparan sulfate (HS) chains appeared transiently in the nucleus. Concurrently, the growth of the treated cells was inhibited, but the cells resumed logarithmic growth as the level of nuclear HS fell, and the cells grew to confluence and became contact inhibited. When HSPG prepared from log-phase hepatoma cells was added exogenously to log phase cells, it was internalized but very little of the internalized HS appeared in the nucleus, and there was no change in the rate of cell growth. However, when the rate of cell growth was reduced by culture of the cells in serum- and insulin-deficient medium, HSPG prepared from log-phase cells stimulated the growth rate of these slow-growing cells. The cell cycle dependency of HSPG uptake and growth inhibition was studied in cultures synchronized by a thymidine/aphidicolin double block. When [35SO4]HSPG from confluent cells was added to synchronized cells just as they were released from the second block, a portion of the [35SO4]HSPG was internalized and [35SO4]HS appeared in the nucleus. However, at mitosis the [35SO4]HS disappeared almost completely from all of the cellular pools, and after mitosis, more of the [35SO4]HSPG was taken up and [35SO4]HS reappeared in the nucleus and remained in the nucleus until the cells divided again. When cultures were released from the aphidicolin block, both control and HSPG-treated cells progressed through the S, the G2, and the M phases of the cell cycle. However, the length of the G1 phase of the cycle was increased in the HSPG-treated cells. The treated cultures then progressed through the second S, G2, and M phases. Thus, the inhibition of cell division occurred in the G1 phase of the cell cycle, prior to the G1/S boundary. Addition of the HSPG to the synchronized cultures just after the first mitosis resulted in an immediate arrest of the cell cycle in G1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Cell surface glycosaminoglycans (GAGs) play an important role in the attachment and invasion process of a variety of intracellular pathogens. We have previously demonstrated that heparan sulfate proteoglycans (HSPG) mediate the invasion of trypomastigote forms of Trypanosoma cruzi in cardiomyocytes. Herein, we analysed whether GAGs are also implicated in amastigote invasion. Competition assays with soluble GAGs revealed that treatment of T. cruzi amastigotes with heparin and heparan sulfate leads to a reduction in the infection ratio, achieving 82% and 65% inhibition of invasion, respectively. Other sulfated GAGs, such as chondroitin sulfate, dermatan sulfate and keratan sulfate, had no effect on the invasion process. In addition, a significant decrease in infection occurred after interaction of amastigotes with GAG-deficient Chinese Hamster Ovary (CHO) cells, decreasing from 20% and 28% in wild-type CHO cells to 5% and 9% in the mutant cells after 2 h and 4 h of infection, respectively. These findings suggest that amastigote invasion also involves host cell surface heparan sulfate proteoglycans. The knowledge of the mechanism triggered by heparan sulfate-binding T. cruzi proteins may provide new potential candidates for Chagas disease therapy.  相似文献   

12.
13.
In the light of accumulating data that implicate cell surface heparan sulfate proteoglycans (HSPGs) with a role in cell interactions with extracellular matrix molecules such as fibronectin, we have compared the properties of these molecules in wild-type BHK cells and an adhesion-defective ricin-resistant mutant (RicR14). Our results showed that the mutant, unlike BHK cells, cannot form focal adhesions when adherent to planar substrates in the presence of serum. Furthermore, while both cell lines possess similar amounts of cell surface HSPG with hydrophobic properties, that of RicR14 cells had decreased sulfation, reduced affinity for fibronectin and decreased half-life on the cell surface when compared to the normal counterpart. Our conclusions based on this data are that these altered properties may, in part, account for the adhesion defect in the ricin-resistant mutant. Whether this results from the known alteration in assembly of N-linked glycans affecting the carbohydrate chains on the proteoglycan or some other combination of factors is discussed.  相似文献   

14.
The cell surface proteoglycan fraction isolated by mild trypsin treatment of NMuMG mouse mammary epithelial cells contains largely heparan sulfate, but also 15-24% chondroitin sulfate glycosaminoglycans. We conclude that this fraction contains a unique hybrid proteoglycan bearing both heparan sulfate and chondroitin sulfate glycosaminoglycans because (i) the proteoglycan behaves as a single species by sizing, ion exchange and collagen affinity chromatography, and by isopycnic centrifugation, even in the presence of 8 M urea or 4 M guanidine hydrochloride, (ii) the behavior of the chondroitin sulfate in these separation techniques is affected by heparan sulfate-specific probes and vice versa, and (iii) proteoglycan core protein bearing both heparan sulfate and chondroitin sulfate is recognized by a single monoclonal antibody. Removal of both types of glycosaminoglycan reduces the proteoglycan to a core protein of approximately 53 kDa. The proteoglycan fraction is heterogeneous in size, largely due to a variable number and/or length of the glycosaminoglycan chains. We estimate that one or two chondroitin sulfate chains (modal Mr of 17,000) exist on the proteoglycan for every four heparan sulfate chains (modal Mr of 36,000). Synthesis of these chains is reportedly initiated on an identical trisaccharide that links the chains to the same amino acid residues on the core protein. Therefore, some regulatory information, perhaps residing in the amino acid sequence of the core protein, must determine the type of chain synthesized at any given linkage site. Post-translational addition of these glycosaminoglycans to the protein may provide information affecting its ultimate localization. It is likely that the protein is directed to specific sites on the cell surface because of the ability of the glycosaminoglycans to recognize and bind extracellular components.  相似文献   

15.
We have previously isolated mutants of the major-group human rhinovirus type 89 that grow in cells deficient in intercellular adhesion molecule 1 (ICAM-1), the receptor used by the wild-type virus for cell entry [A. Reischl, M. Reithmayer, G. Winsauer, R. Moser, I. Goesler, and D. Blaas., J. Virol. 75:9312-9319, 2001]. We now demonstrate that one of these variants utilizes heparan sulfate proteoglycan (HSPG) as a cellular receptor. Adaptation to ICAM-1-deficient cells not only resulted in the newly acquired receptor specificity but also rendered the virus less stable at low pH and at elevated temperatures. This instability might compensate for the absence of the uncoating activity of ICAM-1. Whereas wild-type virus infection via ICAM-1 proceeded in the presence of the vesicular H(+)-ATPase inhibitor bafilomycin A1, infection by the mutant via HSPG was prevented by the drug. This suggests that the low pH prevailing in endosomal compartments is required for uncoating in the absence of the catalytic activity of ICAM-1.  相似文献   

16.
Cell surface heparan sulfate proteoglycan and the neoplastic phenotype   总被引:3,自引:0,他引:3  
Cell surface proteoglycans are strategically positioned to regulate interactions between cells and their surrounding environment. Such interactions play key roles in several biological processes, such as cell recognition, adhesion, migration, and growth. These biological functions are in turn necessary for the maintenance of differentiated phenotype and for normal and neoplastic development. There is ample evidence that a special type of proteoglycan bearing heparan sulfate side chains is localized at the cell surface in a variety of epithelial and mesenchymal cells. This molecule exhibits selective patterns of reactivity with various constituents of the extracellular matrix and plasma membrane, and can act as growth modulator or as a receptor. Certainly, during cell division, membrane constituents undergo profound rearrangement, and proteoglycans may be intimately involved in such processes. The present work will focus on recent advances in our understanding of these complex macromolecules and will attempt to elucidate the biosynthesis, the structural diversity, the modes of cell surface association, and the turnover of heparan sulfate proteoglycans in various cell systems. It will then review the multiple proposed roles of this molecule, with particular emphasis on the binding properties and the interactions with various intracellular and extracellular elements. Finally, it will focus on the alterations associated with the neoplastic phenotype and will discuss the possible consequences that heparan sulfate may have on the growth of normal and transformed cells.  相似文献   

17.
A simple procedure using human basic fibroblast growth factor (FGF) was utilized for the selection of COS cell mutants with defects in the biosynthesis or expression of heparan sulfate proteoglycan (HSPG). Our approach was based on the strong binding affinity exhibited by COS cells to human basic FGF that had been adsorbed to plastic dishes. Cell binding to basic FGF could be inhibited by heparin and heparan sulfate (HS), but not by chondroitin sulfate, dermatan sulfate, keratan sulfate, or hyaluronic acid, suggesting that the cell binding involved an interaction between basic FGF and cell surface heparin-like molecules. COS cells were treated with ethyl methanesulfonate and four stable mutants were subsequently isolated that did not bind strongly to basic FGF adsorbed to plastic. These mutants cell lines (CM-2, CM-8, CM-9, and CM-15) exhibited significantly reduced 35SO4 incorporation into HS (40-70% depending on the cellular pool analyzed). In one of these cell lines, CM-15, the incorporation of [6-3H]glucosamine into HS was unaltered, suggesting that the extent of oligosaccharide polymerization was equivalent to that observed for the wild-type cells. Structural analysis revealed that N-sulfated glucosamine residues were present much less frequently in HS derived from these cells as compared with that derived from wild-type cells. Furthermore, CM-15 was found to be three-fold deficient in HS N-sulfotransferase activity, but contained wild-type levels of HS O-sulfotransferase activities.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
Heparan sulfate proteoglycans (HSPGs) and dermatan sulfate/chondroitin sulfate proteoglycans may be extracted from the uterine epithelium of immature mice by a 1-min exposure of the luminal surface of excised uteri to 1% Nonidet P-40 detergent. In mice that are treated with estradiol there is a marked increase in free heparan sulfate glycosaminoglycan in the extract. (a) By Sepharose exclusion chromatography the [35S]sulfate-labeled major HSPG had a nominal Mr of 200-250 X 10(3), consisting of a core protein of about 80-90 X 10(3) Mr with about 8-10 heparan sulfate glycosaminoglycan chains (Mr = 13 X 10(3)). The HSPG had a lower bouyant density (less than 1.45 g/ml) than the dermatan sulfate/chondroitin sulfate proteoglycan and was heterogeneous, as was evident in the fact that HSPG attained equilibrium over a wide range of CsCl densities and also showed nonuniform interaction with octyl-Sepharose. (b) Virtually all of the major HSPG was removed when the epithelium was isolated by proteolysis, indicating a cell surface localization. A smaller, less prominent HSPG (nominal Mr = 80 X 10(3)) was synthesized during the first 2 h after isolation. (c) Label and chase experiments with and without chloroquine showed that virtually all of the free heparan sulfate glycosaminoglycan chains derived from endocytosis and lysosomal degradation of the plasma membrane-associated HSPG. We conclude that estradiol stimulates endocytosis of HSPG, predominantly from the basolateral epithelial surface and suggest that this HSPG turnover may reflect changes associated with blastocyst attachment and invasion of the endometrium.  相似文献   

20.
《The Journal of cell biology》1990,111(6):3165-3176
Two mAbs raised against the 64-kD core protein of a membrane heparan sulfate proteoglycan from human lung fibroblasts also recognize a nonhydrophobic proteoglycan which accumulates in the culture medium of the cells. Pulse-chase studies suggest that the hydrophobic cell- associated forms act as precursors for the nonhydrophobic medium- released species. The core proteins of the medium-released proteoglycans are slightly smaller than those of the hydrophobic cell- associated species, but the NH2-terminal amino acid sequences of both forms are identical. The characterization of human lung fibroblast cDNAs that encode the message for these core proteins and the effect of bacterial phosphatidylinositol-specific phospholipase C suggest that the hydrophobic proteoglycan is membrane-anchored through a phospholipid tail. These data identify a novel membrane proteoglycan in human lung fibroblasts and imply that the shedding of this proteoglycan may be related to the presence of the phospholipid anchor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号