共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of genes involved in biosynthesis of the lantibiotic subtilin. 总被引:11,自引:0,他引:11
Lantibiotics are peptide-derived antibiotics with high antimicrobial activity against pathogenic gram-positive bacteria. They are ribosomally synthesized and posttranslationally modified (N. Schnell, K.-D. Entian, U. Schneider, F. G?tz, H. Z?hner, R. Kellner, and G. Jung, Nature [London] 333:276-278, 1988). The most important lantibiotics are subtilin and the food preservative nisin, which both have a very similar structure. By using a hybridization probe specific for the structural gene of subtilin, spaS, the DNA region adjacent to spaS was isolated from Bacillus subtilis. Sequence analysis of a 4.9-kb fragment revealed several open reading frames with the same orientation as spaS. Downstream of spaS, no reading frames were present on the isolated XbaI fragment. Upstream of spaS, three reading frames, spaB, spaC, and spaT, were identified which showed strong homology to genes identified near the structural gene of the lantibiotic epidermin. The SpaT protein derived from the spaT sequence was homologous to hemolysin B of Escherichia coli, which indicated its possible function in subtilin transport. Gene deletions within spaB and spaC revealed subtilin-negative mutants, whereas spaT gene disruption mutants still produced subtilin. Remarkably, the spaT mutant colonies revealed a clumpy surface morphology on solid media. After growth on liquid media, spaT mutant cells agglutinated in the mid-logarithmic growth phase, forming longitudinal 3- to 10-fold-enlarged cells which aggregated. Aggregate formation preceded subtilin production and cells lost their viability, possibly as a result of intracellular subtilin accumulation. Our results clearly proved that reading frames spaB and spaC are essential for subtilin biosynthesis whereas spaT mutants are probably deficient in subtilin transport. 相似文献
2.
Lantibiotics are peptide-derived antibiotics with high antimicrobial activity against pathogenic gram-positive bacteria. They are ribosomally synthesized and posttranslationally modified (N. Schnell, K.-D. Entian, U. Schneider, F. Götz, H. Zähner, R. Kellner, and G. Jung, Nature [London] 333:276-278, 1988). The most important lantibiotics are subtilin and the food preservative nisin, which both have a very similar structure. By using a hybridization probe specific for the structural gene of subtilin, spaS, the DNA region adjacent to spaS was isolated from Bacillus subtilis. Sequence analysis of a 4.9-kb fragment revealed several open reading frames with the same orientation as spaS. Downstream of spaS, no reading frames were present on the isolated XbaI fragment. Upstream of spaS, three reading frames, spaB, spaC, and spaT, were identified which showed strong homology to genes identified near the structural gene of the lantibiotic epidermin. The SpaT protein derived from the spaT sequence was homologous to hemolysin B of Escherichia coli, which indicated its possible function in subtilin transport. Gene deletions within spaB and spaC revealed subtilin-negative mutants, whereas spaT gene disruption mutants still produced subtilin. Remarkably, the spaT mutant colonies revealed a clumpy surface morphology on solid media. After growth on liquid media, spaT mutant cells agglutinated in the mid-logarithmic growth phase, forming longitudinal 3- to 10-fold-enlarged cells which aggregated. Aggregate formation preceded subtilin production and cells lost their viability, possibly as a result of intracellular subtilin accumulation. Our results clearly proved that reading frames spaB and spaC are essential for subtilin biosynthesis whereas spaT mutants are probably deficient in subtilin transport. 相似文献
3.
Purification and characterization of EpiD, a flavoprotein involved in the biosynthesis of the lantibiotic epidermin. 下载免费PDF全文
The plasmid-encoded epidermin biosynthesis gene, epiD, of Staphylococcus epidermidis Tü3298 was expressed in Escherichia coli by using both the malE fusion system and the T7 RNA polymerase-promoter system. EpiD was identified by Western blotting (immunoblotting) with anti-maltose-binding protein (MBP)-EpiD antiserum. EpiD and the MBP-EpiD fusion protein, which were mainly present in the soluble protein fraction, were purified from the respective E. coli clones. Purified EpiD showed the typical absorption spectrum of an oxidized flavoprotein with maxima at 274, 382, and 453 nm. The coenzyme released from EpiD by heat treatment was identified as flavin mononucleotide. S. epidermidis Tü3298/EMS11, containing a mutation within epiD, was unable to synthesize active epidermin. This mutated gene, epiD*, was cloned in E. coli and expressed as an MBP-EpiD* fusion protein. DNA sequencing of epiD* identified a point mutation that led to replacement of Gly-93 with Asp. Unlike MBP-EpiD, the fusion protein MBP-EpiD* could not bind flavin mononucleotide. We propose that EpiD catalyzes the removal of two reducing equivalents from the cysteine residue of the C-terminal meso-lanthionine to form a --C==C-- double bond and is therefore involved in formation of the unusual S-[(Z)-2-aminovinyl[-D-cysteine structure in epidermin. 相似文献
4.
Analysis of the Staphylococcus epidermidis genes epiF, -E, and -G involved in epidermin immunity. 总被引:1,自引:0,他引:1 下载免费PDF全文
The lantibiotic epidermin is produced by Staphylococcus epidermidis Tü3298. The known genes involved in epidermin biosynthesis and regulation are organized as operons (epiABCD and epiQP) that are encoded on the 54-kb plasmid pTü32. Here we describe the characterization of a DNA region that mediates immunity and increased epidermin production, located upstream of the structural gene epiA. The sequence of a 2.6-kb DNA fragment revealed three open reading frames, epiF, -E, and -G, which may form an operon. In the cloning host Staphylococcus carnosus, the three genes mediated an increased tolerance to epidermin, and the highest level of immunity (sevenfold) was achieved with S. carnosus carrying epiFEG and epiQ. The promoter of the first gene, epiF, responded to the activator protein EpiQ and contained a palindromic sequence similar to the EpiQ binding site of the epiA promoter, which is also activated by EpiQ. Inactivation of epiF, -E, or -G resulted in the complete loss of the immunity phenotype. An epidermin-sensitive S. epidermidis Tü3298 mutant was complemented by a DNA fragment containing all three genes. When the epiFEG genes were cloned together with plasmid pTepi14, containing the biosynthetic genes epiABCDQP, the level of epidermin production was approximately fivefold higher. The proteins EpiF, -E, and -G are similar in deduced sequence and proposed structure to the components of various ABC transporter systems. EpiF is a hydrophilic protein with conserved ATP-binding sites, while EpiE and -G have six alternating hydrophobic regions and very likely constitute the integral membrane domains. When EpiF was overproduced in S. carnosus, it was at least partially associated with the cytoplasmic membrane. A potential mechanism for how EpiFEG mediates immunity is discussed. 相似文献
5.
Expression, purification, and characterization of EpiC, an enzyme involved in the biosynthesis of the lantibiotic epidermin, and sequence analysis of Staphylococcus epidermidis epiC mutants. 下载免费PDF全文
The plasmid-encoded epidermin biosynthetic gene epiC of Staphylococcus epidermidis Tü3298 was expressed in Escherichia coli by using the T7 RNA polymerase-promoter system, and the gene product EpiC was identified by Western blotting (immunoblotting) with an anti-EpiC-peptide antiserum. EpiC was a hydrophobic but soluble protein. EpiC was purified by hydrophobic-interaction chromatography. The determined amino-terminal amino acid sequence was M I N I N N I .... The electrophoretic migration behavior of EpiC depended on the oxidation state of the enzyme, indicating the formation of an intramolecular disulfide bridge between C-274 and C-321. The cysteine residues in the motifs WC-274YG and C-321HG of EpiC are conserved in all lantibiotic enzymes of the C type (so-called LanC proteins) and in the CylM protein. Mutated epiC genes from S. epidermidis epiC mutants were cloned and expressed in E. coli. Sequence analysis revealed that the mutations occurred in the two motifs -S-X-X-X-G-X-X-G- and -N-X-G-X-A-H-G-X-X-G-, which are conserved in all LanC proteins. For the investigation of EpiC-EpiA interactions, precursor peptide EpiA was coupled to N-hydroxysuccinimide-activated Sepharose High Performance Material (HiTrap). Under reducing conditions, EpiC was retarded on the EpiA-HiTrap column. In the incubation experiments, EpiC did not react with EpiA, with proepidermin, or with oxidative decarboxylated peptides. 相似文献
6.
Purification and characterization of EpiA, the peptide substrate for post-translational modifications involved in epidermin biosynthesis 总被引:3,自引:0,他引:3
Thomas Kupke Stefan Stevanovic Birgit Ottenwälder Jörg W. Metzger Günther Jung Friedrich Götz 《FEMS microbiology letters》1993,112(1):43-48
Abstract For the investigation of enzymes involved in epidermin biosynthesis it is necessary to produce sufficient amounts of preepidermin (EpiA) as a substrate and to design EpiA detection systems. Therefore, EpiA was expressed in Escherichia coli using a malE-epiA fusion. The identity of purified EpiA was confirmed by ion spray mass spectrometry and amino acid sequencing. For EpiA detection, anti-EpiA antisera were raised. Upon prolonged incubation, factor Xa not only cleaved EpiA from the fusion protein, but also less efficiently cleaved EpiA internally between R−1 and I+1 . The internal factor Xa cleavage site of EpiA was masked by altering the sequence -A−4 -E-P-R−1 - to -A−4 -E-P-Q−1 - by site-directed mutagenesis. 相似文献
7.
Streptomyces genes involved in biosynthesis of the peptide antibiotic valinomycin. 总被引:1,自引:0,他引:1 下载免费PDF全文
J B Perkins S K Guterman C L Howitt V E Williams nd J Pero 《Journal of bacteriology》1990,172(6):3108-3116
We have identified genes from Streptomyces levoris A-9 involved in the biosynthesis of the peptide antibiotic valinomycin. Two segments of chromosomal DNA were recovered from genomic libraries, constructed by using the low-copy-number plasmid pIJ922, by complementation of valinomycin-deficient (vlm) mutants of S. levoris A-9. One set of plasmids restored valinomycin production to only one mutant, that carrying vlm-1, whereas a second set of plasmids restored productivity to seven vlm mutants, those carrying vlm-2 through vlm-8. Additional complementation studies using subcloned restriction enzyme fragments showed that the vlm-1+ gene was contained within a 2.5-kilobase (kb) DNA region, whereas alleles vlm-2+ through vlm-8+ were contained in a 12-kb region, representing at least three genes. Physical mapping experiments based on the isolation of cosmid clones showed that the two vlm loci were 50 to 70 kb apart. Southern hybridization experiments demonstrated that the vlm-2+ gene cluster was highly conserved among other valinomycin-producing Streptomyces strains, whereas the vlm-1+ gene was ubiquitous among Streptomyces species tested. Increasing the copy number of the vlm-2+ gene cluster in S. levoris A-9 by the introduction of low-copy-number recombinant plasmids resulted in a concomitant increase in the level of valinomycin production. 相似文献
8.
9.
Growth phase-dependent regulation and membrane localization of SpaB, a protein involved in biosynthesis of the lantibiotic subtilin. 总被引:8,自引:2,他引:8 下载免费PDF全文
Z Gutowski-Eckel C Klein K Siegers K Bohm M Hammelmann K D Entian 《Applied microbiology》1994,60(1):1-11
The information responsible for biosynthesis of the lantibiotic subtilin is organized in an operon-like structure that starts with the spaB gene. The spaB gene encodes an open reading frame consisting of 1,030 amino acid residues, and it was calculated that a protein having a theoretical molecular mass of 120.5 kDa could be produced from this gene. This is consistent with the apparent molecular weight for SpaB of 115,000 which was estimated after sodium dodecyl sulfate-gel electrophoresis and identification with SpaB-specific antibodies. The SpaB protein is very similar to proteins EpiB and NisB, which were identified previously as being involved in epidermin and nisin biosynthesis. Upstream from SpaB a characteristic sigma A promoter sequence was identified. An immunoblot analysis revealed that SpaB expression was strongly regulated. No SpaB protein was detected in the early logarithmic growth phase, and maximum SpaB expression was observed in the early stationary growth phase. The expression of SpaB was strongly correlated with subtilin biosynthesis. Deletion mutations in either of two recently identified regulatory genes, spaR and spaK, which act as a "two-component" regulatory system necessary for growth phase-dependent induction of subtilin biosynthesis (C. Klein, C. Kaletta, and K. D. Entian, Appl. Environ. Microbiol. 59:296-303, 1993), also resulted in failure of SpaB expression. To investigate the intracellular localization of SpaB, vesicles of Bacillus subtilis were prepared. The SpaB protein cosedimented with the vesicle fraction and was released only after vigorous resuspension of the vesicles. Our results suggest that SpaB is membrane associated and that subtilin biosynthesis occurs at the cytoplasmic membrane of B. subtilis. 相似文献
10.
Mavaro A Abts A Bakkes PJ Moll GN Driessen AJ Smits SH Schmitt L 《The Journal of biological chemistry》2011,286(35):30552-30560
Nisin is a posttranslationally modified antimicrobial peptide containing the cyclic thioether amino acids lanthionine and methyllanthionine. Although much is known about its antimicrobial activity and mode of action, knowledge about the nisin modification process is still rather limited. The dehydratase NisB is believed to be the initial interaction partner in modification. NisB dehydrates specific serine and threonine residues in prenisin, whereas the cyclase NisC catalyzes the (methyl)lanthionine formation. The fully modified prenisin is exported and the leader peptide is cleaved off by the extracellular protease NisP. Light scattering analysis demonstrated that purified NisB is a dimer in solution. Using size exclusion chromatography and surface plasmon resonance, the interaction of NisB and prenisin, including several of its modified derivatives, was studied. Unmodified prenisin binds to NisB with an affinity of 1.05 ± 0.25 μm, whereas the dehydrated and the fully modified derivatives bind with respective affinities of 0.31 ± 0.07 and 10.5 ± 1.7 μm. The much lower affinity for the fully modified prenisin was related to a >20-fold higher off-rate. For all three peptides the stoichiometry of binding was 1:1. Active nisin, which is the equivalent of fully modified prenisin lacking the leader peptide did not bind to NisB, nor did prenisin in which the highly conserved FNLD box within the leader peptide was mutated to AAAA. Taken together our data indicate that the leader peptide is essential for initial recognition and binding of prenisin to NisB. 相似文献
11.
Ralph Jack Gabriele Bierbaum Christoph Heidrich Hans-Georg Sahl 《BioEssays : news and reviews in molecular, cellular and developmental biology》1995,17(9):793-802
The lantibiotics are a rapidly expanding group of biologically active peptides produced by a variety of Gram-positive bacteria, and are so-called because of their content of the thioether amino acids lanthionine and β-methyllanthionine. These amino acids, and indeed a number of other unusual amino acids found in the lantibiotics, arise following post-translational modification of a ribosomally synthesised precursor peptide. A number of genes involved in the biosynthesis of these highly modified peptides have been identified, including genes encoding the precursor peptide, enzymes responsible for specific amino acid modifications, proteases able to remove the leader peptide, ABC-superfamily transport proteins involved in lantibiotic translocation, regulatory proteins controlling lantibiotic biosynthesis and proteins that protect the producing strain from the action of its own lantibiotic. Analysis of these genes and their products is allowing greater understanding of the complex mechanism(s) of the biosynthesis of these unique peptides. 相似文献
12.
Regulation of epidermin biosynthetic genes by EpiQ 总被引:13,自引:1,他引:13
Andreas Peschel Johannes Augustin Thomas Kupke Stefan Stevanovic Friedrich Götz 《Molecular microbiology》1993,9(1):31-39
13.
M. A. Peñalva E. Espeso B. Pérez-Esteban M. Orejas J. M. Fernández-Cañón H. Martínez-Blanco 《World journal of microbiology & biotechnology》1993,9(4):461-467
Carbon catabolite repression and pH regulation are regulatory circuits with a wide domain of action in the Plectomycetes. Penicillin biosynthesis is one of the pathways which are under their control. The conclusions obtained so far, which are based on studies of the genetic and molecular regulation of the penicillin pathway of Aspergillus nidulans, would have been much harder to produce using an organism such as Penicillium chrysogenum (the industrial penicillin producer). However, A. nidulans and P. chrysogenum are close in terms of their phylogeny and one can reasonably predict that the conclusions about A. nidulans, which are summarized in this review and which are of unquestionable biotechnological relevance, will be extrapolable to the industrial organism. 相似文献
14.
Staphylococcin 1580 is identical to the lantibiotic epidermin: implications for the nature of bacteriocins from gram-positive bacteria. 总被引:1,自引:1,他引:1 下载免费PDF全文
H G Sahl 《Applied microbiology》1994,60(2):752-755
Staphylococcin 1580 was purified to homogeneity from culture supernatants of Staphylococcus epidermidis 1580 by means of adsorption to XAD 2, cation exchange chromatography, and high-performance liquid chromatography on reversed-phase C18. The purified active substance migrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent M(r) of approximately 2,000. Amino acid analysis, mass determination (2,165 Da) and N-terminal sequencing (Ile-Ala-Xaa-Lys-Phe-Ile-Xaa-Xaa-Pro-Gly-Xaa-Ala-Lys-block) demonstrated that staphylococcin 1580 is identical to epidermin, a lanthionine-containing antibiotic peptide (lantibiotic). 相似文献
15.
Novel Vibrio cholerae O139 genes involved in lipopolysaccharide biosynthesis. 总被引:2,自引:0,他引:2 下载免费PDF全文
The sequence of part of the rfb region of Vibrio cholerae serogroup O139 and the physical map of a 35-kb region of the O139 chromosome have been determined. The O139 rfb region presented contains a number of open reading frames which show similarities to other rfb and capsular biosynthesis genes found in members of the Enterobacteriaceae family and in V. cholerae O1. The cloned and sequenced region can complement the defects in O139 antigen biosynthesis in transposon insertions within the O139 rfb cluster. Linkage is demonstrated among IS1358 of V. cholerae O139, the rfb region, and the recently reported otnA and otnB genes (E. M. Bik, A. E. Bunschoten, R. D. Gouw, and F. R. Mooi, EMBO J. 14:209-216, 1995). In addition, the whole of this region has been linked to the rfaD gene. Furthermore, determination of the sequence flanking IS1358 has revealed homology to other rfb-like genes. The exact site of insertion with respect to rfaD is defined for the novel DNAs of both the Bengal and the Argentinian O139 isolates. 相似文献
16.
Analysis of genes involved in 6-deoxyhexose biosynthesis and transfer in Saccharopolyspora erythraea 总被引:3,自引:0,他引:3
Doumith M Weingarten P Wehmeier UF Salah-Bey K Benhamou B Capdevila C Michel JM Piepersberg W Raynal MC 《Molecular & general genetics : MGG》2000,264(4):477-485
Glycosylation represents an attractive target for protein engineering of novel antibiotics, because specific attachment of one or more deoxysugars is required for the bioactivity of many antibiotic and antitumour polyketides. However, proper assessment of the potential of these enzymes for such combinatorial biosynthesis requires both more precise information on the enzymology of the pathways and also improved Escherichia coli-actinomycete shuttle vectors. New replicative vectors have been constructed and used to express independently the dnmU gene of Streptomyces peucetius and the eryBVII gene of Saccharopolyspora erythraea in an eryBVII deletion mutant of Sac. erythraea. Production of erythromycin A was obtained in both cases, showing that both proteins serve analogous functions in the biosynthetic pathways to dTDP-L-daunosamine and dTDP-L-mycarose, respectively. Over-expression of both proteins was also obtained in S. lividans, paving the way for protein purification and in vitro monitoring of enzyme activity. In a further set of experiments, the putative desosaminyltransferase of Sac. erythraea, EryCIII, was expressed in the picromycin producer Streptomyces sp. 20032, which also synthesises dTDP-D-desosamine. The substrate 3-alpha-mycarosylerythronolide B used for hybrid biosynthesis was found to be glycosylated to produce erythromycin D only when recombinant EryCIII was present, directly confirming the enzymatic role of EryCIII. This convenient plasmid expression system can be readily adapted to study the directed evolution of recombinant glycosyltransferases. 相似文献
17.
Self-protection of the epidermin-producing strain Staphylococcus epidermidis Tü3298 against the pore-forming lantibiotic epidermin is mediated by an ABC transporter composed of the EpiF, EpiE, and EpiG proteins. We developed a sensitive assay based on HPLC analysis to investigate the capacity of the EpiFEG transporter to release epidermin and analogues from the cell surface to the external fluid. Our results indicate that the EpiFEG transporter works by expelling the lantibiotic from the cytoplasmic membrane into the surrounding medium. Analysis of transporter efficacy using nisin and gallidermin derivatives as substrates revealed a high substrate specificity. Furthermore, we showed that the activity of the gallidermin derivative L6G is enhanced by the presence of EpiE. 相似文献
18.
19.
Novel aceQ and aceR genes involved in the acetan biosynthesis of Acetobacter xylinum were newly isolated. The homology search with DNA Data Bank of Japan indicated that aceQ and aceR were glycosyltransferases. Their gene-disrupted mutants were obtained by homologous recombination using the tetracycline resistance gene and the electroporation method. By NMR and ESI-MS analyses, aceQ-disrupted mutant DQ was found to secrete a water-soluble polysaccharide harboring the -Man-GlcUA side chain and the aceR-disrupted mutant DR was found to secrete an acetan analog, lacking the terminal Rha residue. These results suggested that aceQ and aceR encode a glucosyltransferase and a rhamnosyltransferase, respectively. It was indicated that acetan analogs harboring various side chains can be generated easily by genetic engineering. 相似文献