首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Betty Klepper  H. Greenway 《Planta》1968,80(2):142-146
Summary Tomato plants were treated for one hour in nutrient solutions at-10.4 atm. Roots were excised, transferred to solutions at-0.4 atm and put into a pressure chamber to induce rates of water flow similar to those in transpiring plants.For roots continuously at-0.4 atm, the xylem sap had much higher phosphorus concentrations than the external solution, which contained 6 p.p.m. phosphorus.Roots previously treated at-10.4 atm had much lower concentrations in the sylem sap than in the external solution and the amount of phosphorus transported and the water flow were linearly related. This phosphorus transport was due to passive movement as shown by measuring transport of both 32P and 14C mannitol. Thus transport to the xylem mediated by active processes was abolished even though uptake by the roots remained substantial. These results obtained after plasmolysis support the view that radial transport to the xylem includes uptake into and movement through the symplast.  相似文献   

2.
Lowering the water potential of culture solutions from ?0.4 to ?5.4 atm reduced both phosphorus and bromide transport to the shoot, hut the content in the roots was not affected. Reductions in phosphorus transport to the shoot were measured during the first four hours of treatment and were related to concurrent decreases in water flow and not to an impairment of active phosphorus transport. The effect of low water potential on phosphorus transport to shoots was similar at external phosphorus concentrations between 0.6 and 15 mg/l. Phosphorus transport was greater in the dark at ?0.4 atm than in the light at ?5.4 atm even when these treatments gave the same overall rates of water flow; this is attributed to a different pattern of water flow through the various root zones. The results suggest that the main effect of water flow on anion transport to shoots occurred after the ions had been actively adsorbed by the roots and was not due to mass flow increasing ion delivery to sites of active uptake.  相似文献   

3.
Phosphorus transport to the xylem and its regulation by water flow   总被引:1,自引:0,他引:1  
H. Greenway  Betty Klepper 《Planta》1968,83(2):119-136
Summary The effects of water flow on phosphorus uptake by roots and on its subsequent translocation to shoots were separated by giving short-term pulses of 32P-labelled nutrient to intact tomato plants. At the end of a 5 min pulse, all the 32P taken up by the plants was confined to the roots. Only about half of this 32P was later translocated to shoots; there was very little translocation after 4 hours.Experiments after long-term labelling showed that only a small part of the total P in the root is readily translocated to shoots. This P appears to be in part of the symplast and contributes about 75% of the P transported to the xylem sap. The rest is presumably derived by leakage from vacuoles.A slow rate of water flow reduced both uptake into the symplast and the translocation to the shoots of P which had already been absorbed by the roots. This was conclusively demonstrated by giving a 32P pulse before reducing the rate of water flow; 32P not translocated to shoots was partly retained by the roots and partly lost to the external solution. Water flow also accelerates transport to the xylem of previously-absorbed P in excised roots.It is concluded that the major effect of water flow on phosphorus transport to shoots occurs after phosphorus uptake by the roots, probably during radial transport to the xylem.  相似文献   

4.
 The influence of an arbuscular mycorrhizal (AM) fungus on phosphorus (P) and iron (Fe) uptake of peanut (Arachis hypogea L.) and sorghum (Sorghum bicolor L.) plants was studied in a pot experiment under controlled environmental conditions. The plants were grown for 10 weeks in pots containing sterilised calcareous soil with two levels of Fe supply. The soil was inoculated with rhizosphere microorganisms only or with rhizosphere microorganisms together with an AM fungus (Glomus mosseae [Nicol. & Gerd.] Gerdemann & Trappe). An additional small soil compartment accessible to hyphae but not roots was added to each pot after 6 weeks of plant growth. Radiolabelled P and Fe were supplied to the hyphae compartment 2 weeks after addition of this compartment. After a further 2 weeks, plants were harvested and shoots were analysed for radiolabelled elements. In both plant species, P uptake from the labelled soil increased significantly more in shoots of mycorrhizal plants than non-mycorrhizal plants, thus confirming the well-known activity of the fungus in P uptake. Mycorrhizal inoculation had no significant influence on the concentration of labelled Fe in shoots of peanut plants. In contrast, 59Fe increased in shoots of mycorrhizal sorghum plants. The uptake of Fe from labelled soil by sorghum was particularly high under conditions producing a low Fe nutritional status of the plants. These results are preliminary evidence that hyphae of an arbuscular mycorrhizal fungus can mobilise and/or take up Fe from soil and translocate it to the plant. Accepted: 6 March 1998  相似文献   

5.
H. Greenway  A. Gunn 《Planta》1966,71(1):43-67
Summary In Hordeum vulgare, phosphorus retranslocation was studied after it had been supplied to the roots for three days (experiment 1), and after foliar application (experiments 3–8). Phosphorus uptake by leaves of different ages was also measured 16 and 60 minutes after 32P addition to the medium (experiment 2).In experiment 1, treatments at 0.6 and 31 p.p.m. of phosphorus were applied when the first leaf had completed its rapid growth. The plants were then grown for three days in media labelled with 32P, and for a subsequent 10 days in non-labelled solutions. Retranslocation was measured by changes in total phosphorus and in 32P.Both root feeding, and foliar application of 32P, demonstrated three phases during leaf development: import (recently initiated leaf), export (mature leaf) and an intermediate phase with both export and import (leaf half developed).There was large transport of foliar applied 32P, from mature leaves to roots, and some of this 32P was re-exported to the shoots, including the mature leaves. Root feeding of 32P over short periods strongly suggested that phosphorus uptake by the shoots occurred via the xylem, even at low phosphorus.In experiment 1, there were distinct treatment differences in relative growth rates, growth of young organs and roots, and in phosphorus concentrations of all but the very young leaves. Mature leaves showed a large net phosphorus export at low phosphorus, but a large net import at high phosphorus. This was not due to treatment differences in export, because total export from the mature leaves was even somewhat smaller at low than at high phosphorus. The treatment differences, with net export at low but net import at high phosphorus, were thus due to the higher import in the mature leaves at high phosphorus. Total export remained at a high level throughout the experiment at high phosphorus, while it declined with time at low phosphorus.For phosphorus absorbed during early growth, both the export from the mature leaves, and the intake by the developing leaves, was independent of phosphorus treatment; i.e. for each individual organ the quantities of phosphorus involved were the same in the two phosphorus treatments. Thus, the higher phosphorus contents of developing organs at high phosphorus were obtained from phosphorus supplied to the roots during later growth, and not from phosphorus supplied during early growth of the whole plant.The data are consistent with the notion that phosphorus export is controlled in the source. It is suggested that at high phosphorus this control is due to a saturation of the sites transporting phosphorus into the phloem. At low phosphorus, on the other hand, release from individual leaf cells might have been the dominating factor.  相似文献   

6.
Summary Chlorella pyrenoidosa was subjected to low water potentials and the resulting changes in carbohydrate metabolism were measured.Water deficit reduced the incorporation of 14C-glucose into methanol insoluble compounds, principally starch and increased that into sucrose. Even moderate water deficit, for example potentials of -2.5 and -5 atm, greatly reduced the incorporation of 14C-glucose into uridine diphosphate glucose, while 14C levels of the hexose monophosphates changed little, indicating a direct stimulus of sucrose synthesis. This increased sucrose synthesis was one of the earliest effect of water deficit, because potentials of -2.5 and -5 atm did not reduce respiration and glucose uptake.At lower water potentials (-10 atm or less) there was reduced 14C incorporation into all sugar phosphates. This resulted from a combination of reduced 14C-glucose uptake and increased sucrose synthesis.Water potentials as low as -20 atm had little effect on acetate uptake, or on the 14C levels in the intermediates of the TCA cycle. This confirmed that low water potentials do not directly inhibit respiratory pathways in Chlorella.The results are discussed in relation to the effect of water deficit on levels of various metabolites in vascular plants, which have been reported by other workers.  相似文献   

7.
In excised tomato roots submerged in solution, mannitol at –2.8 atm increased the phosphorus uptake and decreased the loss of previously absorbed phosphorus. Separate collection of the xylem exudate demonstrated that these mannitol effects were due entirely to a reduced phosphorus flow via exudation. For example, in the case of previously absorbed phosphorus, the high loss of phosphorus at –0.3 atm could be contributed to phosphorus transport via the exudation stream, which was higher at –0.3 than at –2.8 atm. In contrast, loss from the root surface to the external medium was identical for the two different water potentials. The neglect in measuring ion flow in the exudate might have confounded ion transport studies by other workers. Some particular cases were re-examined, such as chloride uptake at high external concentrations and ion toss from different cell compartments.  相似文献   

8.
Brassica oleracea L. was rather insensitive to atmospheric H2S: growth was only negatively affected at ≥0.4 μl I?1. Shoots formed a sink for H2S and the uptake rate showed saturation kinetics with respect to the atmospheric concentration. The H2S uptake rate was high in comparison with other species, which may reflect the high sulfur need of Brassica. The net uptake of sulfate by roots of hydroponically grown plants was substantially reduced after one week of exposure to 0.25 μl l?1 H2S, indicating that plants switched in part from sulfate to H2S as sulfur source for plant growth. Plants were sulfur deficient after two weeks of sulfur deprivation, illustrated by reduced growth, which was more pronounced for shoots than for roots, and in enhanced shoot dry matter content. The latter could for the greater part be attributed to enhanced levels of soluble sugars and starch. Sulfur deficiency was further characterized by a low pigment content, extremely low levels of sulfate and water-soluble non-protein thiols, and by enhanced levels of nitrate and free amino acids, particularly in the shoots. Furthermore, sulfur deficient plants contained a lower total lipid content in shoots, whereas its content in roots was unaffected. The level of sulfolipids was decreased in both roots and shoots. When sulfur deprived plants were exposed to 0.25 μl I?1 H2S for one week, all sulfur deficiency symptoms were abolished and growth was restored. Furthermore, plants were able to grow with 0.4 μl I?1 H2S as the sole sulfur source. Water-soluble non-protein thiol content was enhanced in both shoots and roots of H2S exposed plants, irrespective of the sulfate supply to the roots, whereas plants grown with H2S as sole sulfur source contained very low sulfate levels. The interaction between atmospheric and pedospheric sulfur nutrition in plants is discussed.  相似文献   

9.
Zhang  Xike  Zhang  Fusuo  Mao  Daru 《Plant and Soil》1999,209(2):187-192
Under anaerobic conditions, ferric hydroxide deposits on the surface of rice roots have been shown to affect the uptake of some nutrients. In the present experiment, different amount of this iron plaque were induced on the roots of rice (Oryza sativa L. cv. TZ88-145) by supplying different Fe(OH)3 concentrations in nutrient solutions, and the effect of the iron plaque on phosphorus uptake was investigated. Results showed that 1) iron plaque adsorbed phosphorus from the growth medium, and that the amount of phosphorus adsorbed by the plaque was correlated with the amount of plaque; 2) the phosphorus concentration in the shoot increased by up to 72% after 72 h at concentration of Fe(OH)3 in the nutrient solution from 0 to 30 mg Fe/L, corresponding with amounts of iron plaque from 0.2 to 24.5 mg g-1 (root d. wt); 3) the phosphorus concentration in the shoots of rice with iron plaque was higher than that without iron plaque though the concentration in the shoot decreased when Fe(OH)3 was added at 50 mg Fe/L producing 28.3 mg g-1 (root d. wt) of plaque; and 4) the phosphorus concentrations in Fe-deficient and Fe-sufficient rice plants with iron plaque were the same, although phytosiderophores were released from the Fe-deficient roots. The phytosiderophores evidently did not mobilise phosphorus adsorbed on plaque. The results suggest that iron plaque on rice plant roots might be considered a phosphorus reservoir. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Summary In excised roots of barley and tomato plants, lowering the water potential of nutrient solutions to-10.4 and-20.4 atm decreased the uptake of bromide and phosphorus while increasing the loss of these ions to the external solutions.Lowering the water potential greatly increased the rate of loss of potassium and bromide from the cytoplasm, but the increases in loss from the vacuoles were much smaller. The results suggest that the mechanisms of ion uptake are not affected by low water potential and that the decrease in ion accumulation is caused by the increased leakage from the cells.  相似文献   

11.
The development of phosphate deficiency (P-stress) was observed in rooted sprouts of Solanum tuberosum L. cv. Desiree growing in solutions without phosphate. Shoot growth was inhibited by P-stress within 3 to 5 days of terminating the phosphate supply, while significant effects on root growth were not recorded until 7 to 9 days. Thus, the shoot:root dry weight ratio decreased from 4.3 to 2.6 over a 10-day period. Growth in the absence of an exogenous phosphate supply progressively diluted the phosphorus in the plant. The proportional decrease in concentration was similar in roots and shoots over a 7-day period, even though the former were growing more quickly. The potential for phosphate uptake per unit weight of root increased rapidly during the first 3 days of P-stress. When the plants were provided subsequently with a labelled, 1 mol m?3 phosphate solution, the absorption rate was 3 to 4-fold greater than that of control plants which had received a continuous phosphate supply. The increased rate of uptake by P-stressed plants was accounted for by an increase (3-fold) in the Vmax of system 1 for phosphate transport and by a marked increase in the affinity of the system for phosphate (decrease in Km). In the early stages of P-stress, before marked changes in growth were measured, the proportion of labelled phosphate translocated to the shoots increased slightly relative to the controls when a phosphate supply was restored. In the later stages of stress a greater proportion was retained in the root system of P-stressed plants than in that of controls. In plants with roots divided between solutions containing or lacking a phosphate supply, the increased absorption rate was determined by the general demand for phosphate in the plant and not by the P-status of the particular root where uptake was measured. By contrast, the poportion translocated was strongly dependent on the P-status of the root. The restoration of a phosphate supply to P-stressed plants was marked by a rapid increase in the P concentration in snoots and roots which returned to levels similar to unstressed controls within 24 h. The enhanced uptake rate persisted for at least 5 days, resulting in supra-normal concentrations of P in both shoots and roots, and in the formation of extensive necrotic areas between the veins of mature leaves. Autoradiographs showed accumulations of 32P in these lesions and at the points where guttation droplets formed on leaves.  相似文献   

12.
The relationship between uptake by barley roots and translocationto shoots has been examined under different conditions for sixherbicides and a systemic fungicide (four triazines, diuron,2,4-dichlorophenoxyacetic acid and ethirimol). For all thesecompounds a large proportion of the material taken up by rootsdoes not appear to move readily to the shoots. Elution withwater of the roots of intact plants which had previously beenplaced in labelled solutions of these compounds enabled thematerial released to be separated into three fractions differingin their rates of diffusion out of the roots. There was reasonablygood correlation between the concentration of the most readilydiffusible fraction in the roots and the concentration in thetranspiration stream. The results obtained were consistent withthe postulate that lipophilic compounds can diffuse into thevacuoles of the cortical cells where they are available fortransport to the shoots, whereas for lipophobic compounds materialreaching the shoots originates largely from the free space inthe roots.  相似文献   

13.
Abstract Young willow plants (Salix‘aquatica gigantea’) were grown in hydroponic culture media, and 14C–labelled sodium bicarbonate was fed to the roots. Uptake of 14C-label in the leaves and shoots was assayed after two different feeding periods (6 h, 48 h). Even during the shortest feeding period, 14C-label had been transferred to the leaves and shoots. Compared with the longer feeding period, after the 6 h feeding period more label was in the form of acid-labile products, whereas after the 48 h feeding period most of the label was in acid-stable products. A second experiment was designed to test whether carbon uptake by roots affects the growth of young willow plants. Uniform rooted cuttings were grown in hydroponic cultures at five different levels of bicarbonate: 0, 0.015, 0.147 0.737, and 1.473 mol m?3 NaHCO3. After a 4-week growing period we determined the biomass of leaves, shoots, roots and cuttings. Production of total dry matter (shoots, leaves and roots) increased with increasing bicarbonate concentration. Saturation of dry matter production was reached at 0.737 mol m?3 NaHCO3, but a higher concentration of NaHCO3 (1.470 mol m?3) caused a slight decrease in the dry matter production. At 0.737 mol m?3 NaHCO3 the total dry weight increased by 31.1%, which suggests that uptake of dissolved carbon dioxide through the roots might affect carbon budgeting in young willow plants.  相似文献   

14.
Intact Myriophyllum spicatum plants were grown in compartmentalized containers in a growth room so that the roots were separated from the shoots by a watertight partition. Nitrogen 15N was added to the water or sediment to trace the uptake of inorganic N by the plant shoots or roots. Myriophyllum spicatum is capable of taking up inorganic N through both roots and shoots. Plant N requirements can apparently be met by root uptake alone. However, when about 0·1 mg/l of NH4-N were present in the water, foliar uptake supplied more N to the plants than did root uptake. Foliar uptake of NH4-N was found to be several times faster than that of NO3-N when both forms of N were present in the water. Only about 1% of the N taken up by the roots was subsequently released to the water through the foliage.  相似文献   

15.
The pho2 mutant of Arabidopsis thaliana (L.) Heynh. accumulates excessive Pi (inorganic phosphate) concentrations in shoots compared to wild-type plants (E. Delhaize and P. Randall, 1995, Plant Physiol. 107: 207–213). In this study, a series of experiments was conducted to compare the uptake and translocation of Pi by pho2 with that of wild-type plants. The pho2 mutants had about a twofold greater Pi uptake rate than wild-type plants under P-sufficient conditions and a greater proportion of the Pi taken up accumulated in shoots of pho2. When shoots were removed, the uptake rate by roots was found to be similar for both genotypes, suggesting that the greater Pi uptake by the intact pho2 mutant is due to a greater shoot sink for Pi. Although pho2 mutants could recycle 32Pi from shoots to roots through phloem the proportion of 32Pi translocated to roots was less than half of that found in wild-type plants. When transferred from P-sufficient to P-deficient solutions, Pi concentrations in pho2 roots had a similar depletion rate to wild-type roots despite pho2 shoots having a fourfold greater Pi concentration than wild-type shoots throughout the experiment. We suggest that the pho2 phenotype could result from a partial defect in Pi transport in the phloem between shoots and roots or from an inability of shoot cells to regulate internal Pi concentrations. Received: 20 August 1997 / Accepted: 4 October 1997  相似文献   

16.
D. J. Linehan 《Plant and Soil》1978,50(1-3):625-632
Summary The uptake of14C labelled polymaleic acid (PMA) by tomato and wheat plants cultured under axenic conditions was estimated during 48 d growth for tomato and 17 d for wheat seedlings. The concentrations of PMA, calculated from14C data, reached values of over 1 mg g−1 FW for root tissue and over 0.2 mg g−1 FW for shoots. Freeze-dried roots were shown to take up a substantial amount of PMA over short periods demonstrating a major non-metabolic adsorption. PMA was adsorbed by carboxymethyl cellulose, used as a model system for plant roots, in amounts comparable with freeze-dried roots. The adsorptive capacity of carboxymethyl cellulose was increased by treatment with solutions of metal ions. Especially effective in this respect were Cu, Fe and Al. It is suggested that at least two mechanisms are involved in the adsorption of PMA by polysaccharides and by plant roots. One, possibly hydrogen bonding, being independent of the presence of metal ions and another depending on the presence of multivalent cations.  相似文献   

17.

Background and aims

Iron plaque on roots has been hypothesized to be an effective restraint on the uptake of arsenic (As) by rice plants. Evaluating the formation of iron plaque and its effect on As uptake by various rice cultivars is valuable because selecting low As uptake rice cultivars results in reduced risks associated with rice consumption. This study examines iron plaque formation and its effect on As uptake by different genotypes of rice cultivars.

Methods

Hydroponic cultures were conducted in phytotron at day 25/night 20°C and the rice seedlings in fifth-leaf age were treated with Fe (II) at the levels of 0 and 100 mg L?1 in the Kimura B nutrient solutions for 14 days. The amount of iron plaque formation of 28 rice cultivars was determined by using the DCB extractable Fe of roots. Four cultivars representing high and low iron plaque formation capability, from indica and japonica respectively, were selected out of the 28 cultivars and processed for Fe and As treatments. After Fe treatments for 4 days, the seedlings were fed with As (III) at levels of 0, 0.5, and 1 mg L?1 for another 10 days. We were thus able to determine the amounts of iron plaque formation and the As content in iron plaque, roots, and shoots of the four tested cultivars.

Results

Iron plaque formation capability differed among tested twenty-eight rice cultivars. Feeding As to four tested cultivars enhanced iron plaque formation on roots; the As uptake by roots and shoots was decreased by the addition of Fe. Both the retention of As on iron plaque and the decrease of As uptake by the addition of Fe varied among tested cultivars and were not correlated with the iron plaque formation capability.

Conclusions

Iron plaque can sequestrate As on the roots and reduce rice’s As uptake. However, other factors also influence the As uptake, namely the differences in binding affinity of iron plaque to As, the existent As species in the rhizosphere, and the uptake capability of various As species by rice plants. These factors should also be considered when selecting low As uptake rice cultivars.  相似文献   

18.
H. Greenway  R. G. Hiller 《Planta》1967,75(3):253-274
Summary Chlorella pyrenoidosa was subjected to a range of water potentials and the effects of these treatments on endogenous respiration and on the uptake and respiration of glucose and acetate were measured.For a given water potential the reductions were greatest for glucose, less for acetate, and least for endogenous respiration. At intermediate water potentials of about-10 atm, glucose respiration was depressed strongly at first, but this respiration approached control levels after two to three hours at low water potentials.The reduced respiration of substrates was caused by inhibition of glucose and acetate uptake, as demonstrated by 14C uptake experiments over short periods. These effects on uptake are attributed to low water potentials, rather than to any possible competition between the molecules of the osmotica and the substrates. Evidence for this view includes the equal inhibitions of glucose-induced respiration by osmotica with such diverse molecular structure as mannitol, KCl, and polyethylene glycol 1540. More conclusively, glucose itself was used as an osmotic agent and its inhibition of glucose-induced respiration was very similar to that by mannitol solutions of equal water potentials.Respiratory activity was much less reduced than uptake. This was demonstrated by lowering the water potential of cells which had already absorbed glucose from a control medium. The subsequent respiration was much higher than that for cells continuously exposed to low water potential.The findings are discussed in relation to the reduced transport of ions and sucrose, which is known to occur in vascular plants subjected to a water stress.The results demonstrate the advantages of using a unicellular organism in the study of metabolic effects of water deficits in plants.  相似文献   

19.
J. B. Bole 《Plant and Soil》1977,46(2):297-307
Summary Direct measurements were made of 3HHO and 32P taken up from labelled soil by roots of wheat (Triticum aestivum L.) and rape (Brassica campestris L.). Single roots were encased in labelled soil for 3 days, and the amount of 3HHO and 32P retained in the shoots was determined. Plants were grown to five stages of maturity in growth boxes under controlled conditions. Roots were labelled at up to four depths (to 90 cm) depending on the rooting depth at each stage of maturity. Uptake of 3HHO per unit length of root increased as the plant age increased, while uptake of 32P decreased to below detection levels by 45 days after germination. Larger amounts of both nutrients were translocated to and retained in the shoots from surface roots than from roots located deeper in the soil although the soil was uniform in temperature, bulk density, and composition throughout the growth boxes. Wheat roots were more efficient than rape roots in absorbing 3HHO; however, rape roots took up larger amounts of 32P per unit length of root. Neither native nor added P located more than 30 cm deep is of much importance to these annual crops, since uptake is minimal and the main demand for this nutrient occurs at early growth stages when the root system is restricted to the surface layers. re]19750812  相似文献   

20.
The flow of the nutrient solution stimulates significantly the growth of maize plants and enhances the absorption of nitrogen, potassium, and phosphorus. Especially the content of phosphorus in the shoots and in the roots is significantly increased, but its incorporation into organic compounds is considerably decreased. The plants grown, in flowing nutrient solutions have an altered distribution of iron with a higher amount of it remaining in the roots. In the shoots there is an increase in the P/Fe ratio, the ratio between ions changes in all parts of the plants in disfavour of N, K, and Fe, the production of dry matter is higher and the synthesis of chlorophyll is inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号