首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T S Hakim  A S Macek 《Biorheology》1988,25(6):857-868
The contribution of erythrocyte deformability to the pulmonary vascular resistance during hypoxia in different animal species has not been examined. We hypothesized that the increase in pulmonary vascular resistance during hypoxia was partially due to erythrocytes (RBC's) becoming less deformable during hypoxia, and therefore their transit in the capillaries becomes restricted. To test this, we measured an index of deformability of RBC's from six animal species (dog, pig, cat, rabbit, hamster, rat) during normoxic and hypoxic condition, and compared the changes in deformability with the pulmonary hypoxic pressor response (HPR) which has been reported in the same species. Deformability was indexed as the resistance that a Hemafil polycarbonate membrane (Nucleopore filter, 4.7 micron pores) offers to a 10% suspension of RBC's. The RBC suspension was either normoxic (PO2 = 150 torr) or hypoxic (PO2 = 50 torr). We found that hypoxia decreased RBC deformability; the largest decrease occurred in rat RBC's, a small but significant decrease was observed in the RBC's of cats, rabbits and hamsters, but no change was detected in RBC's of dogs or pigs. In general, such changes in deformability do not correlate well with the HPR in intact or in isolated lungs, for example the pig, had the largest HPR but the smallest change in RBC deformability. In some species, however, there was a positive correlation between RBC deformability and HPR, for example rats, rabbits and cats are usually better responders than dogs and hamsters, similarly the deformability of RBC's in rats, rabbits and cats were also more influenced by hypoxia than RBC's from dogs. The limiting factors in this relationship are the artificial conditions which were used to measure deformability and HPR, both may be different than in the intact conditions. Nevertheless the present data show that erythrocytes of some species can become less flexible during hypoxia, and hence may impede the transit in the capillaries. Therefore we propose that the hypoxic pressor response in the pulmonary vasculature may be partly due to smooth muscle contraction (vasoconstriction) and partly due to a decrease in erythrocyte deformability (capillary obstruction). Both components are likely to be species dependent.  相似文献   

2.
本研究探讨低氧和AlF-4等药物经G-蛋白敏感的跨膜信号通路对心血管肌源性张力的调控作用。在含有稳定表达Na+-Ca2+交换蛋白的CK1.4细胞中,用fura-2荧光影像确定细胞低氧对胞浆游离Ca2+[Ca2+]i的影响。在离体犬心乳头肌、颈动脉、主动脉及肺动脉恒温灌流样本中,用张力-电换能器测量低氧灌流和AlF-4等药物对心血管肌源性张力的影响。在整体犬体内,按拉丁方设计,用125Isod-1获得不同剂量VISA高效剂细胞内分布等药代动力学参数。结果表明:①在CK1.4细胞中,低氧抑制Na+-Ca2+交换蛋白,产生Ca2+内流,升高[Ca2+]i;②低氧灌流削弱AlF-4所致的血管收缩而明显易化Ca2+内流所致的心乳头肌收缩,与结果1)吻合;③VISA高效剂分布至细胞内,协同AlF-4,模拟并激活G-蛋白敏感的跨膜信号通路,显著改善低氧所致的Na+-Ca2+交换蛋白等跨膜大分子和心血管收缩蛋白氧化损害。  相似文献   

3.
We tested the hypothesis that the changes in venous tone induced by changes in arterial blood oxygen or carbon dioxide require intact cardiovascular reflexes. Mongrel dogs were anesthetized with sodium pentobarbital and paralyzed with veruronium bromide. Cardiac output and central blood volume were measured by indocyanine green dilution. Mean circulatory filling pressure, an index of venous tone at constant blood volume, was estimated from the central venous pressure during transient electrical fibrillation of the heart. With intact reflexes, hypoxia (arterial PaO2 = 38 mmHg), hypercapnia (PaCO2 = 72 mmHg), or hypoxic hypercapnia (PaO2 = 41; PaCO2 = 69 mmHg) (1 mmHg = 133.32 Pa) significantly increased the mean circulatory filling pressure and cardiac output. Hypoxia, but not normoxic hypercapnia, increased the mean systemic arterial pressure and maintained the control level of total peripheral resistance. With reflexes blocked with hexamethonium and atropine, systemic arterial pressure supported with a constant infusion of norepinephrine, and the mean circulatory filling pressure restored toward control with 5 mL/kg blood, each experimental gas mixture caused a decrease in total peripheral resistance and arterial pressure, while the mean circulatory filling pressure and cardiac output were unchanged or increased slightly. We conclude that hypoxia, hypercapnia, and hypoxic hypercapnia have little direct influence on vascular capacitance, but with reflexes intact, there is a significant reflex increase in mean circulatory filling pressure.  相似文献   

4.
Little is known of the cardiorespiratory control mechanisms utilized by hypoxia-tolerant teleost fish to tolerate prolonged periods (h) of near anoxic exposure. Here, we report on the cardiorespiratory control mechanisms of the common carp Cyprinus carpio L. during normoxia and prolonged, severe hypoxic (<0.3 mg O(2) L(-1)) exposure at acclimation temperatures of 5 degrees C, 10 degrees C, and 15 degrees C. Through serial intra-arterial injections of alpha - and beta -adrenergic, cholinergic, and purinergic antagonists while measuring cardiac output (Q), heart rate (f(H)), ventral aortic blood pressure, and respiration rate, we established that autonomic cardiovascular and respiratory control was preserved during severe hypoxia at all three acclimation temperatures and contributed to downregulation of cardiorespiratory activity. Specifically, inhibitory cholinergic tone mediated up to 76% reductions in f(H) and Q during hypoxia, whereas the accompanying arterial hypotension was attenuated by an upregulation of an alpha -adrenergically mediated peripheral vasoconstriction. Despite the overall cardiac downregulation, a large, stimulatory cardiac beta -adrenergic tone was present during prolonged, severe hypoxia, possibly to protect the heart from attendant acidotic conditions. Purinergic blockade, following alpha -adrenergic and cholinergic antagonists, showed that the hypoxic ventilatory depression, which reversed the 2.3- to 7.7-fold increases in respiration rate that occurred with the onset of hypoxia, was a result of purinergic inhibition at all three acclimation temperatures. In contrast, purinergic inhibition of cardiac activity during hypoxia might be important only at 5 degrees C. Finally, given that cardiac power output was reduced 72%-87% during prolonged, severe hypoxia and that glycolysis yields approximately 94% less ATP per mole glucose than oxidative phosphorylation, it seems unlikely that the common carp sufficiently reduces its cardiac energy demand to a level to preclude activation of a partial Pasteur effect. This means that glycogen stores will be used and waste products will accumulate at faster rates, a finding that may help explain why the common carp cannot tolerate such extended periods of severe hypoxia (weeks to months) at cold acclimation temperatures as the freshwater turtle, which is able to reduce its cardiac energy demand to a level that does not require a Pasteur effect and also blunts autonomic cardiovascular control.  相似文献   

5.
Hypoxia in fish is generally associated with bradycardia while cardiac output (Q) remains unaltered or slightly increased due to a compensatory increase in stroke volume (SV). Rainbow trout (Oncorhynchus mykiss) were subjected to severe (P(W)O2=7.3+/-0.2 kPa) or mild (P(W)O2=11.5+/-0.2 kPa) hypoxia. Central venous pressure (P(ven)), dorsal aortic pressure (P(da)), heart rate (f(H)) and Q, were recorded in vivo. Both levels of hypoxia triggered a significant increase in P(ven). Severe hypoxia was associated with bradycardia and unaltered Q, whereas mild hypoxia was associated with a small but significant increase in Q and no bradycardia. These findings indicate that an increase in P(ven) promotes an increase in SV during hypoxia. Since mild hypoxia increased P(ven), Q and SV without bradycardia or reduced systemic resistance (R(sys)), we hypothesize that an active increase in venous tone serving to mobilize blood to the central venous compartment in order to increase cardiac preload and consequently SV, is an important cardiovascular trait associated with hypoxia. Pharmacological pre-treatment with prazosin (1 mg kg(-1)) did not conclusively reveal the underlying mechanisms to the observed changes in P(ven). This study discusses the influence of venous pooling, reduced R(sys) and altered venous tone on changes in P(ven) observed during hypoxia.  相似文献   

6.
We investigated the effects of nitroprusside and isoflurane on multipoint pulmonary arterial pressure (PAP)/cardiac index (Q) plots in pentobarbital sodium-anesthetized dogs ventilated alternatively in hyperoxia (fraction of inspired O2, FIO2, 0.4) and hypoxia (FIO2 0.1). Over the entire range of Q studied, 2-5 l.min-1.m-2, hypoxia increased PAP in 16 dogs ("responders") and did not affect PAP in 16 other dogs ("nonresponders"). A hypoxic pulmonary vasoconstriction (HPV) was restored in the nonresponders by intravenous administration of 1 g of acetylsalicylic acid (ASA). Nitroprusside (5 micrograms.kg-1.min-1) inhibited HPV in responders (n = 8) and nonresponders treated with ASA (n = 8). End-tidal 1.41% isoflurane (a minimal alveolar concentration equal to one for dogs) did not affect HPV in responders (n = 8) and nonresponders treated with ASA (n = 8). In the latter group isoflurane increased PAP at the highest Q studied (3-5 l.min-1.m-2) in hyperoxia and hypoxia. In a final group of eight dogs with Q kept constant, PAP remained unchanged during two consecutive sequences of alternated 30-min periods (maximum time to generate a PAP/Q plot) successively at FIO2 0.4 and 0.1, and the hypoxia-induced increase in PAP was reproducible. Thus the present experimental model appeared suitable for the study of the effects of hypoxia and drugs on pulmonary vascular tone of intact dogs. At the given doses HPV was inhibited by nitroprusside and not affected by isoflurane. Products of arachidonic acid metabolism possibly could be implicated in the pulmonary vascular effects of isoflurane.  相似文献   

7.
The importance of alpha-adrenergic receptors in the cardiac output and peripheral circulatory responses to carbon monoxide (CO) hypoxia was studied in anesthetized dogs. Phenoxybenzamine (3 mg/kg i.v.) was injected to block alpha-receptor activity and the data obtained were then compared with those from a previous study of CO hypoxia in unblocked animals. Values for cardiac output, hindlimb blood flow, vascular resistance, and oxygen uptake were obtained prior to and at 30 and 60 min of CO hypoxia which reduced arterial oxygen content by approximately 50%. alpha-Adrenergic blockade resulted in a lower (p less than 0.05) control value for cardiac output than observed in unblocked animals, but no differences were present between the two groups at 30 or 60 min of CO hypoxia. Similarly, limb blood flow was lower (p less than 0.05) during the control period in the alpha-blocked group but rose to the same level as that in the unblocked animals at 60 min of COH. No change in limb blood flow occurred during CO hypoxia in the unblocked group. These findings demonstrated that during CO hypoxia alpha-receptor mediated venoconstriction does not contribute to the cardiac output response and alpha-receptor mediated vasoconstriction probably does prevent a rise in hindlimb skeletal muscle blood flow.  相似文献   

8.
Polycythemia increases blood viscosity so that systemic O2 delivery (QO2) decreases and its regional distribution changes. We examined whether hypoxia, by promoting local vasodilation, further modified these effects in resting skeletal muscle and gut in anesthetized dogs after hematocrit had been raised to 65%. One group (CON, n = 7) served as normoxic controls while another (HH, n = 6) was ventilated with 9% O2--91% N2 for 30 min between periods of normoxia. Polycythemia decreased cardiac output so that QO2 to both regions decreased approximately 50% in both groups. In compensation, O2 extraction fraction increased to 65% in muscle and to 50% in gut. When QO2 was reduced further during hypoxia, blood flow increased in muscle but not in gut. Unlike previously published normocythemic studies, there was no initial hypoxic vasoconstriction in muscle. Metabolic vasodilation during hypoxia was enhanced in muscle when blood O2 reserves were first lowered by increased extraction with polycythemia alone. The increase in resting muscle blood flow during hypoxia with no change in cardiac output may have decreased O2 availability to other more vital tissues. In that sense and under these experimental conditions, polycythemia caused a maladaptive response during hypoxic hypoxia.  相似文献   

9.
Stimulated rabbit left atria in various buffer solutions [bicarbonate, Tris (hydroxymethyl) aminomethane (Tris), or both] in the presence or absence of 0.84 (6%) dimethyl sulfoxide (DMSO) were subjected to mild or severe hypoxia. Contractile strength and baseline tone changes were measured and analyzed. Oxygen consumption of right and left atria was measured before and after hypoxia in the above mentioned solutions. Results indicate (1) that DMSO allows cardiac muscle to maintain contractility during hypoxia, (2) that the absence of bicarbonate during hypoxia compromises tissue function, and (3) that Tris can exhibit toxic effects which are increased in the presence of DMSO.  相似文献   

10.
Hypoxic pulmonary vasoconstriction (HPV) matches lung perfusion to ventilation for optimizing pulmonary gas exchange. Chronic alveolar hypoxia results in vascular remodeling and pulmonary hypertension. Previous studies have reported conflicting results of the effect of chronic alveolar hypoxia on pulmonary vasoreactivity and the contribution of nitric oxide (NO), which may be related to species and strain differences as well as to the duration of chronic hypoxia. Therefore, we investigated the impact of chronic hypoxia on HPV in rabbits, with a focus on lung NO synthesis. After exposure of the animals to normobaric hypoxia (10% O(2)) for 1 day to 10 wk, vascular reactivity was investigated in ex vivo perfused normoxic ventilated lungs. Chronic hypoxia induced right heart hypertrophy and increased normoxic vascular tone within weeks. The vasoconstrictor response to an acute hypoxic challenge was strongly downregulated within 5 days, whereas the vasoconstrictor response to the thromboxane mimetic U-46619 was maintained. The rapid downregulation of HPV was apparently not linked to changes in the lung vascular NO system, detectable in the exhaled gas and by pharmacological blockage of NO synthesis. Treatment of the animals with long-term inhaled NO reduced right heart hypertrophy and partially maintained the reactivity to acute hypoxia, without any impact on the endogenous NO system being noted. We conclude that chronic hypoxia causes rapid downregulation of acute HPV as a specific event, preceding the development of major pulmonary hypertension and being independent of the lung vascular NO system. Long-term NO inhalation partially maintains the strength of the hypoxic vasoconstrictor response.  相似文献   

11.
The importance of aortic chemoreceptors in the circulatory responses to severe carbon monoxide (CO) hypoxia was studied in anesthetized dogs. The aortic chemoreceptors were surgically denervated in eight dogs prior to the induction of CO hypoxia, with nine other dogs serving as intact controls. Values for both whole body and hindlimb blood flow, vascular resistance, and O2 uptake were determined prior to and at 30 min of CO hypoxia in the two groups. Arterial O2 content was reduced 65% using an in situ dialysis method to produce CO hypoxia. At 30 min of hypoxia, cardiac output increased but limb blood flow remained at prehypoxic levels in both groups. This indicated that aortic chemoreceptor input was not necessary for the increase in cardiac output during severe CO hypoxia, nor for the diversion of this increased flow to nonmuscle tissues. Limb O2 uptake decreased during CO hypoxia in the aortic-denervated group but remained at prehypoxic levels in the intact group. The lower resting values for limb blood flow in the aortic-denervated animals required a greater level of O2 extraction to maintain resting O2 uptake. When CO hypoxia was superimposed upon this compensation, an O2 supply limitation occurred because the limb failed to vasodilate even as maximal levels for O2 extraction were approached.  相似文献   

12.
We questioned whether carbon monoxide hypoxia (COH) would affect peripheral blood flow by neural activation of adrenoceptors to the extent we had found in other forms of hypoxia. We studied this problem in hindlimb muscles of four groups of anesthetized dogs (untreated, alpha 1-blocked, alpha 1 + alpha 2-blocked, and beta 2-blocked). Cardiac output increased, but hindlimb blood flow (QL) and resistance (RL) remained at prehypoxic levels during COH (O2 content reduced 50%) in untreated animals. When activity in the sciatic nerve was reversibly cold blocked, QL doubled and RL decreased 50%. These changes with nerve block were the same during COH, suggesting that neural activity to hindlimb vasculature was not increased by COH. In animals treated with phenoxybenzamine (primarily alpha 1-blocked), RL dropped (approximately 50%) during COH, an indication that catecholamines played a significant role in maintaining tone to skeletal muscle. Animals with both alpha 1 + alpha 2-adrenergic blockade (phenoxybenzamine and yohimbine added) did not survive COH. RL was higher in beta 2-block than in the untreated group during COH, but nerve cooling indicated that beta 2-adrenoceptor vasodilation was accomplished primarily by humoral means. The above findings demonstrated that adrenergic receptors were important in the regulation of QL and RL during COH, but they were not activated by sympathetic nerve stimulation to the limb muscles.  相似文献   

13.
In tests on dogs, rabbits and rats, it has been established that in acute postoperative period, the time of memorizing of conditioned signals (light, tone and metronome) is reduced, the time of realization of conditioned reactions increases, the excitability and the bloodflow of the midbrain reticular formation and Mg-AtPhase activity of pons Varolii raise. In the hippocampus the excitability and local bloodflow lower and the activity of Ca-Mg-ATPhase is enhanced. In the frontal cortex these processes do not change. Functional interrelations of the brain structures in the acute postoperative period are characterized by the weakening of the activating influence of the reticular formation on the frontal cortex and an increase of its suppressive action on the dorsal hippocampus. It is suggested, that the discovered damages in the higher nervous activity are stipulated by the changes in neurochemical organization of the brain.  相似文献   

14.
This study investigates changes of adenylyl cyclase activity in the heart of young and adult Wistar rats exposed to experimental conditions simulating high altitude hypoxia as a model for interpretation of some adaptive changes of adenylyl cyclase observed in human. The exposure of rats to intermittent high altitude (IHA) hypoxia (5000 m) showed significant adaptive changes. The right ventricular weight and the ratio of right/left ventricular weights of adult rats exposed to IHA were significantly increased when compared to appropriate controls; adaptive changes of cardiac adenylyl cyclase being dependent on the age of the animals. The isoprenaline-stimulated activity was higher in the left than in the right ventricle, and in both ventricles it was higher in young rats than in adult rats. When compared to controls, isoprenaline stimulation was decreased in the right ventricles of adapted young rats and, by contrast, it was increased in the left ventricles of adapted adult rats. This decrease and increase of adenylyl cyclase activity evoked by isoprenaline was paralleled by forskolin-induced adenylyl cyclase activity in these experimental groups. It seems therefore that the changes in the pattern of total adenylyl cyclase activity observed under IHA hypoxia may at least be partially explained by the changes of beta-adrenergic receptor susceptibility following IHA hypoxia.  相似文献   

15.
Although a diminished ability of tissues and organisms to tolerate stress is a clinically important hallmark of normal aging, little is known regarding its biochemical basis. Our goal was to determine whether age-associated changes in AMP-activated protein kinase (AMPK), a key regulator of cellular metabolism during the stress response, might contribute to the poor stress tolerance of aged cardiac and skeletal muscle. Basal AMPK activity and the degree of activation of AMPK by AMP and by in vivo hypoxemia (arterial Po2 of 39 mmHg) were measured in cardiac and skeletal muscle (gastrocnemius) from 5- and 24-mo-old C57Bl/6 mice. In the heart, neither basal AMPK activity nor its allosteric activation by AMP was affected by age. However, after 10 min of hypoxemia, the activity of alpha2-AMPK, but not alpha1-AMPK, was significantly higher in the hearts from old than from young mice (P < 0.005), this difference being due to differences in phosphorylation of alpha2-AMPK. Significant activation of AMPK in the young hearts did not occur until 30 min of hypoxemia (P < 0.01), stress that was poorly tolerated by the old mice (mortality = 67%). In contrast, AMPK activity in gastrocnemius muscle was unaffected by age or hypoxemia. We conclude that the age-associated decline in hypoxic tolerance in cardiac and skeletal muscle is not caused by changes in basal AMPK activity or a blunted AMPK response to hypoxia. Activation of AMPK by in vivo hypoxia is slower and more modest than might be predicted from in vitro and ex vivo experiments.  相似文献   

16.
Oxygen tension is known to control the pulmonary vascular tone. We reviewed three hypotheses that try to explain the mechanism whereby hypoxia is sensed in the lung tissue. The first hypothesis concerns the role of the oxygen binding hemoprotein cytochrome P-450. Studies using various inhibitors and activators of cytochrome P-450 show that this enzyme affects pulmonary vascular tone. The data are, however, contradictory. The second hypothesis postulates that hypoxia reduces the synthesis of vasodilator oxygen radicals in the lung. This hypothesis is quite well supported by experimental data. The third hypothesis, similarly widely documented, states that slowing of the respiratory chain and altered cellular energetics is crucial for sensing of hypoxia. In this case, however, it is not exactly clear how changes in cellular energetics are connected with vascular tone. The possibility exists that changes in both the cytochrome P-450 activity and in the rate of electrons flow in the respiratory chain may alter the amount of oxygen radicals in the cells and, similarly as in the "oxygen radicals" hypothesis, govern calcium channels through the control of the redox status of these channels.  相似文献   

17.
The effects of hypoxia on the avian cardiovascular system are reviewed. The avian cardiovascular system seems well adapted to deal with the stress of hypoxia. In general, birds are remarkably tolerant of hypoxia, with some species being capable of performing vigorous exercise at extreme altitude. During hypoxia at rest, the circulation maintains arterial pressure, increases cardiac output, and redistributes blood flow so oxygen delivery to the heart and brain is maintained. During exercise, further adjustments are required, since exercising muscle has large oxygen requirements. The mechanisms responsible for producing these circulatory changes are largely unknown. The transport steps that limit O2 delivery during hypoxia are also poorly understood.  相似文献   

18.
Mean arterial pressure, cardiac output and heart rate were determined in eight male New Zealand white rabbits while conscious and after being anesthetized with halothane plus nitrous oxide for 15 minutes. Delivery of the anesthetic agent was stopped and the measurement repeated at 15, 30, 60 and 210 minutes. In a separate experiment blood samples were obtained for plasma renin activity in six rabbits before anesthesia, after 15 minutes of halothane plus nitrous oxide administration, and again 210 minutes after cessation of the anesthesia. Later, this experiment was repeated with the same rabbits except that they were allowed to breathe room air instead of the anesthesia. The halothane anesthesia resulted in decreased mean arterial pressure and cardiac output, but these returned to the preanesthetic levels by 15 minutes after stopping the anesthesia. Heart rate increased during halothane administration, and although it tended to return toward control levels after cessation of the halothane, heart rate was still elevated 210 minutes later. Halothane plus nitrous oxide produced an increase in plasma renin activity, which then subsided to normal by 210 minutes following anesthesia; breathing room air did not result in increases in plasma renin activity. These studies revealed that although short-term anesthesia with halothane plus nitrous oxide resulted in cardiovascular changes in rabbits, after cessation of the anesthetic agent the cardiovascular system quickly returned to normal.  相似文献   

19.
Abstract

This study investigates changes of adenylyl cyclase activity in the heart of young and adult Wistar rats exposed to experimental conditions simulating high altitude hypoxia as a model for interpretation of some adaptive changes of adenylyl cyclase observed in human. The exposure of rats to intermittent high altitude (IHA) hypoxia (5000 m) showed significant adaptive changes. The right ventricular weight and the ratio of right/left ventricular weights of adult rats exposed to IHA were significantly increased when compared to appropriate controls; adaptive changes of cardiac adenylyl cyclase being dependent on the age of the animals. The isoprenaline‐stimulated activity was higher in the left than in the right ventricle, and in both ventricles it was higher in young rats than in adult rats. When compared to controls, isoprenaline stimulation was decreased in the right ventricles of adapted young rats and, by contrast, it was increased in the left ventricles of adapted adult rats. This decrease and increase of adenylyl cyclase activity evoked by isoprenaline was paralleled by forskolin‐induced adenylyl cyclase activity in these experimental groups. It seems therefore that the changes in the pattern of total adenylyl cyclase activity observed under IHA hypoxia may at least be partially explained by the changes of beta‐adrenergic receptor susceptibility following IHA hypoxia.  相似文献   

20.
The role of endogenous radicals in the regulation of pulmonary vascular tone was evaluated by simultaneous measurement of pulmonary artery pressure and lung radical levels during exposure of isolated rat lungs to varying inspired O2 concentrations (0-95%) and angiotensin II. Lung radical levels, measured "on-line" using luminol and lucigenin-enhanced chemiluminescence, decreased in proportion to the degree of alveolar hypoxia. Radical levels fell during hypoxia before the onset of pulmonary vasoconstriction and promptly returned to basal levels with restoration of normoxic ventilation. Mild alveolar hypoxia (10% O2), which failed to decrease chemiluminescence, did not trigger pulmonary vasoconstriction. Although chemiluminescence tended to decrease more as the hypoxic response strengthened, there was not a simple correlation between the magnitude of the change in chemiluminescence induced by hypoxia and the strength of the hypoxic pressor response. Normoxic chemiluminescence was largely inhibited by superoxide dismutase but not catalase. Superoxide dismutase also increased normoxic pulmonary vascular tone and the strength of the pressor response to hypoxia and angiotensin II. Thus the predominant activated O2 species in the lung, during normoxia, was the superoxide anion or a closely related substance. Alteration of endogenous radical levels can result in changes in vascular tone. It remains uncertain whether the decrease in lung radical production during hypoxia caused pulmonary vasoconstriction or was merely associated with hypoxic ventilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号