首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Halsall JR  Milner MJ  Casselton LA 《Genetics》2000,154(3):1115-1123
The B mating type locus of the basidiomycete Coprinus cinereus encodes a large family of lipopeptide pheromones and their seven transmembrane domain receptors. Here we show that the B42 locus, like the previously described B6 locus, derives its unique specificity from nine multiallelic genes that are organized into three subgroups each comprising a receptor and two pheromone genes. We show that the three genes within each group are kept together as a functional unit by being embedded in an allele-specific DNA sequence. Using a combination of sequence analysis, Southern blotting, and DNA-mediated transformation with cloned genes, we demonstrate that different B loci may share alleles of one or two groups of genes. This is consistent with the prediction that the three subgroups of genes are functionally redundant and that it is the different combinations of their alleles that generate the multiple B mating specificities found in nature. The B42 locus was found to contain an additional gene, mfs1, that encodes a putative multidrug transporter belonging to the major facilitator family. In strains with other B mating specificities, this gene, whose functional significance was not established, lies in a region of shared homology flanking the B locus.  相似文献   

2.
Pheromone signaling plays an essential role in the mating and sexual development of mushroom fungi. Multiallelic genes encoding the peptide pheromones and their cognate 7-transmembrane helix (7-TM) receptors are sequestered in the B mating type locus. Here we describe the isolation of the B6 mating type locus of Coprinus cinereus. DNA sequencing and transformation analysis identified nine genes encoding three 7-TM receptors and six peptide pheromone precursors embedded within 17 kb of mating type-specific sequence. The arrangement of the nine genes suggests that there may be three functionally independent subfamilies of genes each comprising two pheromone genes and one receptor gene. None of the nine B6 genes showed detectable homology to corresponding B gene sequences in the genomic DNA from a B3 strain, and each of the B6 genes independently alter B mating specificity when introduced into a B3 host strain. However, only genes in two of the B6 groups were able to activate B-regulated development in a B42 host. Southern blot analysis showed that these genes failed to cross-hybridize to corresponding genes in the B42 host, whereas the three genes of the third subfamily, which could not activate development in the B42 host, did cross-hybridize. We conclude that cross-hybridization identifies the same alleles of a particular subfamily of genes in different B loci and that B6 and B42 share alleles of one subfamily. There are an estimated 79 B mating specificities: we suggest that it is the different allele combinations of gene subfamilies that generate these large numbers.  相似文献   

3.
In the homobasidiomycete Schizophyllum commune the mating type genes of the B locus encode pheromones and pheromone receptors in multiple allelic specificities. Interaction of non-self pheromones and receptors leads to induction of B-regulated development easily scored in S. commune by the "flat" phenotype which lacks aerial mycelium formation and shows aberrant hyphal morphology. In contrast, self pheromones are not recognized and B-regulated development is not induced. Natural and mutant alleles of receptors have been analyzed for their specificity in transformation assays, and parts of the receptor involved in ligand discrimination can be described. The biological role of pheromone response in S. commune is assumed to be connected to nuclear migration based on the observation that wild-type cells with a receptor gene of different specificity lead to cells capable of nuclear uptake. Other possible roles for pheromone function are discussed.  相似文献   

4.
A successful mating in the mushroom Coprinus cinereus brings together a compatible complement of pheromones and G-protein-coupled receptors encoded by multiallelic genes at the B mating-type locus. Rare B gene mutations lead to constitutive activation of B-regulated development without the need for mating. Here we characterize a mutation that arose in the B6 locus and show that it generates a mutant receptor with a single amino acid substitution (R96H) at the intracellular end of transmembrane domain III. Using a heterologous yeast assay and synthetic pheromones we show that the mutation does not make the receptor constitutively active but permits it to respond inappropriately to a normally incompatible pheromone encoded within the same B6 locus. Parallel experiments carried out in Coprinus showed that a F67W substitution in this same pheromone enabled it to activate the normally incompatible wild-type receptor. Together, our experiments show that a single amino acid replacement in either pheromone or receptor can deregulate the specificity of ligand-receptor recognition and confer a self-compatible B phenotype. In addition, we use the yeast assay to demonstrate that different receptors and pheromones found at a single B locus belong to discrete subfamilies within which receptor activation cannot normally occur.  相似文献   

5.
Schizophyllum commune has thousands of mating types defined in part by numerous lipopeptide pheromones and their G-protein-coupled receptors. These molecules are encoded within multiple versions of two redundantly functioning B mating-type loci, B alpha and B beta. Compatible combinations of pheromones and receptors, produced by individuals of different B mating types, trigger a pathway of fertilization required for sexual development. Analysis of the B beta 2 mating-type locus revealed a large cluster of genes encoding a single pheromone receptor and eight different pheromones. Phenotypic effects of mutations within these genes indicated that small changes in both types of molecules could significantly alter their specificity of interaction. For example, a conservative amino acid substitution in a pheromone resulted in a gain of function toward one receptor and a loss of function with another. A two-amino-acid deletion from a receptor precluded the mutant pheromone from activating the mutant receptor, yet this receptor was activated by other pheromones. Sequence comparisons provided clues toward understanding how so many variants of these multigenic loci could have evolved through duplication and mutational divergence. A three-step model for the origin of new variants comparable to those found in nature is presented.  相似文献   

6.
《The Journal of cell biology》1986,102(5):1567-1575
The structure and processing of low density lipoprotein (LDL) receptors in wild-type and LDL receptor-deficient mutant Chinese hamster ovary cells was examined using polyclonal anti-receptor antibodies. As previously reported for human LDL receptors, the LDL receptors in wild- type Chinese hamster ovary cells were synthesized as precursors which were extensively processed by glycosylation to a mature form. In the course of normal receptor turnover, an apparently unglycosylated portion of the cysteine-rich N-terminal LDL binding domain of the receptor is proteolytically removed. The LDL receptor-deficient mutants fall into four complementation groups, ldlA, ldlB, ldlC, and ldlD; results of the analysis of ldlB, ldlC, and ldlD mutants are described in the accompanying paper (Kingsley, D. M., K. F. Kozarsky, M. Segal, and M. Krieger, 1986, J. Cell. Biol, 102:1576-1585). Analysis of ldlA cells has identified three classes of mutant alleles at the ldlA locus: null alleles, alleles that code for normally processed receptors that cannot bind LDL, and alleles that code for abnormally processed receptors. The abnormally processed receptors were continually converted to novel unstable intracellular intermediates. We also identified a compound-heterozygous mutant and a heterozygous revertant which indicate that the ldlA locus is diploid. In conjunction with other genetic and biochemical data, the finding of multiple mutant forms of the LDL receptor in ldlA mutants, some of which appeared together in the same cell, confirm that the ldlA locus is the structural gene for the LDL receptor.  相似文献   

7.
The pheromone receptor system of the basidiomycete Schizophyllum commune is capable of ligand discrimination to confer mating specificity. The pheromone receptors of the B alpha locus were investigated for ligand discrimination in a strategy of domain swapping experiments. Several altered phenotypes of chimeric receptors have been found. These include constitutive pheromone receptors which need no ligand for activation of the downstream cascade of events. In addition, receptors still dependent on ligand were identified that had altered pheromone activation profiles, including promiscuous receptors that are activated by pheromones of all nine specificities, including the former self. In addition, highly discriminative receptors were created which are activated by only two of the eight non-self-specificities. The chimeric receptors identify the last third of the receptor as the determinant for B alpha 1 specificity, whereas B alpha 2 specificity resides in noncontiguous domains covering the first and middle parts of the receptor molecule.  相似文献   

8.
Tetrapolar fungal mating types: Sexes by the thousands   总被引:6,自引:1,他引:5  
  相似文献   

9.
郑凯迪  杜永均 《昆虫学报》2012,55(9):1093-1102
蛾类昆虫性信息素受体首先从烟芽夜蛾Heliothis virescens和家蚕Bombyx mori中鉴定出来, 到目前为止已经克隆得到了19种蛾类昆虫的几十种性信息素受体基因, 并且这些基因在系统发育树中聚成一个亚群。性信息素受体从蛾类蛹期开始表达, 主要表达在雄性触角的毛形感器中, 少部分受体在雌性触角、 雄性触角其他感器以及身体其他部位中也有表达。大部分蛾类性信息素受体的配体并不是单一的, 而是能够对多种性信息素组分有反应, 部分性信息素受体还能够识别性信息素以外的其他物质, 还有一部分性信息素受体的识别配体目前尚不清楚。另外发现在雌性蛾类触角中也存在一些嗅觉受体能够识别雄性分泌的性信息素。在蛾类性信息素受体与性信息素识别的过程中, 性信息素结合蛋白不仅能够特异性地运送配体到嗅觉神经元树状突上, 还能够提高性信息素与性信息素受体之间的结合效率。另外, OrCo类受体与性信息素受体共表达在嗅觉神经元中, 在蛾类性信息素受体与配体的识别过程中扮演了重要角色。但是蛾类信息素对神经元刺激的终止并非由性信息素受体控制, 而是由细胞中的气味降解酶等其他因子调控。蛾类性信息素受体研究中还有很多疑问需要解答, 其过程可能比我们想象的更为复杂。  相似文献   

10.
Origin of allelic diversity in antirrhinum S locus RNases.   总被引:17,自引:0,他引:17       下载免费PDF全文
In many plant species, self-incompatibility (SI) is genetically controlled by a single multiallelic S locus. Previous analysis of S alleles in the Solanaceae, in which S locus ribonucleases (S RNases) are responsible for stylar expression of SI, has demonstrated that allelic diversity predated speciation within this family. To understand how allelic diversity has evolved, we investigated the molecular basis of gametophytic SI in Antirrhinum, a member of the Scrophulariaceae, which is closely related to the Solanaceae. We have characterized three Antirrhinum cDNAs encoding polypeptides homologous to S RNases and shown that they are encoded by genes at the S locus. RNA in situ hybridization revealed that the Antirrhinum S RNase are primarily expressed in the stylar transmitting tissue. This expression is consistent with their proposed role in arresting the growth of self-pollen tubes. S alleles from the Scrophulariaceae form a separate group from those of the Solanaceae, indicating that new S alleles have been generated since these families separated (approximately 40 million years). We propose that the recruitment of an ancestral RNase gene into SI occurred during an early stage of angiosperm evolution and that, since that time, new alleles subsequently have arisen at a low rate.  相似文献   

11.
Fibroblast growth factor (FGF) receptors trigger a wide variety of cellular responses as diverse as cell migration, cell proliferation and cell differentiation. However, the molecular basis of the specificity of these responses is not well understood. The C. elegans FGF receptor EGL-15 similarly mediates a number of different responses, including transducing a chemoattractive signal and mediating an essential function. Analysis of the migration-specific alleles of egl-15 has identified a novel EGL-15 isoform that provides a molecular explanation for the different phenotypic effects of lesions at this locus. Alternative splicing yields two EGL-15 proteins containing different forms of a domain located within the extracellular region of the receptors immediately after the first IG domain. Neither of these two domain forms is found in any other FGF receptor. We have tested the roles of these EGL-15 receptor isoforms and their two FGF ligands for their signaling specificity. Our analyses demonstrate different physiological functions for the two receptor variants. EGL-15(5A) is required for the response to the FGF chemoattractant that guides the migrating sex myoblasts to their final positions. By contrast, EGL-15(5B) is both necessary and sufficient to elicit the essential function mediated by this receptor.  相似文献   

12.
Pheromones trigger filamentous growth in Ustilago maydis.   总被引:10,自引:4,他引:6       下载免费PDF全文
Cell recognition and mating in the smut fungus Ustilago maydis have been proposed to involve specific pheromones and pheromone receptors. The respective structural genes are located in the a mating type locus that exists in the alleles a1 and a2. We demonstrate that binding of pheromone to the receptor can induce a morphological switch from yeast-like to filamentous growth in certain strains. Using this as biological assay we were able to purify both the a1 and a2 pheromone. The structure of the secreted pheromones was determined to be 13 amino acids for a1 and nine amino acids for a2. Both pheromones are post-translationally modified by farnesylation and carboxyl methyl esterification of the C-terminal cysteine. An unmodified a1 peptide exhibits dramatically reduced activity. The pheromone alone is able to induce characteristic conjugation tubes in cells of opposite mating type and confers mating competence; even cells of the same mating type undergo fusion. We discuss the role of pheromones in initiating filamentous growth and pathogenic development.  相似文献   

13.
14.
Avian sarcoma and leucosis viruses (ASLV) are classified into six major subgroups (A to E and J) according to the properties of the viral envelope proteins and the usage of cellular receptors for virus entry. Subgroup A and B receptors are identified molecularly and their genomic positions TVA and TVB are mapped. The subgroup C receptor is unknown, its genomic locus TVC is reported to be genetically linked to TVA, which resides on chicken chromosome 28. In this study, we used two chicken inbred lines that carry different alleles coding for resistance (TVC(R) and sensitivity (TVC(S)) to infection by subgroup C viruses. A backross population of these lines was tested for susceptibility to subgroup C infection and genotyped for markers from chicken chromosome 28. We confirmed the close linkage between TVA and TVC loci. Further, we have described the position of TVC on chromosome 28 relative to markers from the consensus map of the chicken genome.  相似文献   

15.
I A Matus  P M Hayes 《Génome》2002,45(6):1095-1106
Genetic diversity can be measured by several criteria, including phenotype, pedigree, allelic diversity at marker loci, and allelic diversity at loci controlling phenotypes of interest. Abundance, high level of polymorphism, and ease of genotyping make simple sequence repeats (SSRs) an excellent molecular marker system for genetics diversity analyses. In this study, we used a set of mapped SSRs to survey three representative groups of barley germplasm: a sample of crop progenitor (Hordeum vulgare subsp. spontaneum) accessions, a group of mapping population parents, and a group of varieties and elite breeding lines. The objectives were to determine (i) how informative SSRs are in these three sets of barley germplasm resources and (ii) the utility of SSRs in classifying barley germplasm. A total of 687 alleles were identified at 42 SSR loci in 147 genotypes. The number of alleles per locus ranged from 4 to 31, with an average of 16.3. Crop progenitors averaged 10.3 alleles per SSR locus, mapping population parents 8.3 alleles per SSR locus, and elite breeding lines 5.8 alleles per SSR locus. There were many exclusive (unique) alleles. The polymorphism information content values for the SSRs ranged from 0.08 to 0.94. The cluster analysis indicates a high level of diversity within the crop progenitors accessions and within the mapping population parents. It also shows a lower level of diversity within the elite breeding germplasm. Our results demonstrate that this set of SSRs was highly informative and was useful in generating a meaningful classification of the germplasm that we sampled. Our long-term goal is to determine the utility of molecular marker diversity as a tool for gene discovery and efficient use of germplasm.  相似文献   

16.
17.
In mammals, the vomeronasal organ (VNO) contains chemosensory receptor cells that bind to pheromones and induce a variety of social and reproductive behaviors. It has been traditionally assumed that the human VNO (Jacobson's organ) is a vestigial structure, although recent studies have shown minor evidence for a structurally intact and possibly functional VNO. The presence and function of the human VNO remains controversial, however, as pheromones and VNO receptors have not been well characterized. In this study we screened a human Bacterial Artificial Chromosome (BAC) library with multiple primer sets designed from human cDNA sequences homologous to mouse VNO receptor genes. Utilizing these BAC sequences in addition to mouse VNO receptor sequences, we screened the High Throughput Genome Sequence (HTGS) database to find additional human putative VNO receptor genes. We report the identification of 56 BACs carrying 34 distinct putative VNO receptor gene sequences, all of which appear to be pseudogenes. Sequence analysis indicates substantial homology to mouse V1R and V2R VNO receptor families. Furthermore, chromosomal localization via FISH analysis and RH mapping reveal that the majority of the BACs are localized to telomeric and centromeric chromosomal localizations and may have arisen through duplication events. These data yield insight into the present state of pheromonal olfaction in humans and into the evolutionary history of human VNO receptors.  相似文献   

18.
A subset of families with autosomal dominant retinitis pigmentosa (RP) display reduced penetrance with some asymptomatic gene carriers showing no retinal abnormalities by ophthalmic examination or by electroretinography. Here we describe a study of three families with reduced-penetrance RP. In all three families the disease gene appears to be linked to chromosome 19q13.4, the region containing the RP11 locus, as defined by previously reported linkage studies based on five other reduced-penetrance families. Meiotic recombinants in one of the newly identified RP11 families and in two of the previously reported families serve to restrict the disease locus to a 6-cM region bounded by markers D19S572 and D19S926. We also compared the disease status of RP11 carriers with the segregation of microsatellite alleles within 19q13.4 from the noncarrier parents in the newly reported and the previously reported families. The results support the hypothesis that wild-type alleles at the RP11 locus or at a closely linked locus inherited from the noncarrier parents are a major factor influencing the penetrance of pathogenic alleles at this locus.  相似文献   

19.
Brush borders or enterocytes obtained from the small intestine of 248 pedigreed pigs were tested by adhesion assay in vitro with enterotoxigenic Escherichia (E.) coli strains, each expressing one of the three K88 pilus variants K88ab, K88ac and K88ad. All pigs were classified as belonging to one of the four adhesion phenotypes: I--K88ab(-), ac(-), ad(-); II--K88ab(-), ac(-), ad(+); III--K88ab(+), ac(+), ad(-); and IV--K88ab(+), ac(+), ad(+). Serum or red cells were typed for 15 blood group systems: A-O, B, C, D, E, F, G, H, I, J, K, L, M, N and O; for 11 biochemical polymorphisms: PI1, PI2, PO1A, A1BG, GPI, PGD, TF, HPX, ADA, PGM and AMY; the polymorphism at the IGHG1 locus. Linkage analysis was performed between the alleles at the locus (loci) specifying K88 receptors able to bind one or more different serological types of K88 E. coli and alleles for markers at other loci. Linkage was demonstrated between the locus for the L blood group system and the locus (loci) for K88 E. coli receptors (Z = 3.24), adding one locus (loci) to the previously identified linkage group IV (LGIV) [L-SLB]. The maximum likelihood estimate of the recombination fraction (theta) was 0.23. No evidence was found for linkage between any of the other biochemical and immunogenetic markers and the receptor locus (loci) of K88 E. coli.  相似文献   

20.
Summary The genetic heterogeneity at the phenylalanine hydroxylase (PAH) locus was studied in 88 families including 93 of the 105 children with phenylketonuria (PKU) or hyperphenylalaninemia (HPA) detected through the Swedish neonatal screening program from 1966 to the end of 1986. Haplotypes based on eight restriction fragment length polymorphisms (RFLPs) at the PAH locus could be constructed for 132 normal and 136 mutant alleles. The normal alleles were of 27 different RFLP haplotypes, 9 of which have not been described previously, but there was a dominance of a few haplotypes common to many European populations. The distribution of mutant alleles was significantly different from that in neighboring countries, even though over 90% of all mutant alleles were confined to six RFLP haplotypes, also prevalent in other European populations. Allele-specific oligonucleotide hybridization analysis for the Arg408 to Trp408 mutation and for the G to A splicing mutation in intron 12 showed exceptions to the previously reported linkage of these mutations to mutant haplotypes 2 and 3, respectively. Correlation of mutant alleles with clinical phenotypes pointed to the presence of at least two different mutations associated with each of six haplotypes. We argue that PKU/HPA in the Swedish population may be caused by at least 13 different mutations in addition to the 4 already identified. The theoretical informativity of RFLP analysis in heterozygote detection and prenatal diagnosis in PKU/HPA families was estimated at approximately 85%. Carrier detection could, in effect, be accomplished for 88% of the 56 healthy siblings in the families studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号