首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
3.
4.
5.
In addition to the sigma(32)-mediated heat shock response, the DnaK/DnaJ/GrpE molecular chaperone system of Escherichia coli directly adapts to elevated temperatures by sequestering a higher fraction of substrate. This immediate heat shock response is due to the differential temperature dependence of the activity of DnaJ, which stimulates the hydrolysis of DnaK-bound ATP, and the activity of GrpE, which facilitates ADP/ATP exchange and converts DnaK from its high-affinity ADP-liganded state into its low-affinity ATP-liganded state. GrpE acts as thermosensor with its ADP/ATP exchange activity decreasing above 40 degrees C. To assess the importance of this reversible thermal adaptation for the chaperone action of the DnaK/DnaJ/GrpE system during heat shock, we used glucose-6-phosphate dehydrogenase and luciferase as substrates. We compared the performance of wild-type GrpE as a component of the chaperone system with that of GrpE R40C. In this mutant, the thermosensing helices are stabilized with an intersubunit disulfide bond and its nucleotide exchange activity thus increases continuously with increasing temperature. Wild-type GrpE with intact thermosensor proved superior to GrpE R40C with desensitized thermosensor. The chaperone system with wild-type GrpE yielded not only a higher fraction of refolding-competent protein at the end of a heat shock but also protected luciferase more efficiently against inactivation during heat shock. Consistent with their differential thermal behavior, the protective effects of wild-type GrpE and GrpE R40C diverged more and more with increasing temperature. Thus, the direct thermal adaptation of the DnaK chaperone system by thermosensing GrpE is essential for efficient chaperone action during heat shock.  相似文献   

6.
H Schrder  T Langer  F U Hartl    B Bukau 《The EMBO journal》1993,12(11):4137-4144
Members of the conserved Hsp70 chaperone family are assumed to constitute a main cellular system for the prevention and the amelioration of stress-induced protein damage, though little direct evidence exists for this function. We investigated the roles of the DnaK (Hsp70), DnaJ and GrpE chaperones of Escherichia coli in prevention and repair of thermally induced protein damage using firefly luciferase as a test substrate. In vivo, luciferase was rapidly inactivated at 42 degrees C, but was efficiently reactivated to 50% of its initial activity during subsequent incubation at 30 degrees C. DnaK, DnaJ and GrpE did not prevent luciferase inactivation, but were essential for its reactivation. In vitro, reactivation of heat-inactivated luciferase to 80% of its initial activity required the combined activity of DnaK, DnaJ and GrpE as well as ATP, but not GroEL and GroES. DnaJ associated with denatured luciferase, targeted DnaK to the substrate and co-operated with DnaK to prevent luciferase aggregation at 42 degrees C, an activity that was required for subsequent reactivation. The protein repair function of DnaK, GrpE and, in particular, DnaJ is likely to be part of the role of these proteins in regulation of the heat shock response.  相似文献   

7.
8.
All living organisms respond to environmental stresses, such as heat or ethanol by increasing the synthesis of a specific group of proteins termed heat shock proteins (Hsps) or stress proteins. Major Hsps are molecular chaperones and proteases. Molecular chaperones facilitate the proper folding of polypeptides, protect other proteins from inactivation, and reactivate aggregated proteins. Heat shock proteases eliminate proteins irreversibly damaged by stress. This review describes the role of heat shock proteins of the model bacterial cell, E. coli in the protection of other proteins against aggregation and in the mechanism of removal of protein aggregates from the cell. This mechanism remains unclear and it is believed to involve substrate renaturation and proteolysis by molecular chaperones and heat shock proteases. Recently, many studies have been focused on the disaggregation and reactivation of proteins by a bi-chaperone system consisting of DnaK/DnaJ/GrpE and ClpB, an ATPase from the AAA superfamily of proteins.  相似文献   

9.
Three Escherichia coli heat shock proteins, DnaJ, DnaK, and GrpE, are required for replication of the bacteriophage lambda chromosome in vivo. We show that the GrpE heat shock protein is not required for initiation of lambda DNA replication in vitro when the concentration of DnaK is sufficiently high. GrpE does, however, greatly potentiate the action of DnaK in the initiation process when the DnaK concentration is reduced to a subsaturating level. We demonstrate in the accompanying articles (Alfano, C. and McMacken, R. (1989) J. Biol. Chem. 264, 10699-10708; Dodson, M., McMacken, R., and Echols, H. (1989) J. Biol. Chem. 264, 10719-10725) that DnaJ and DnaK bind to prepriming nucleoprotein structures that are assembled at the lambda replication origin (ori lambda). Binding of DnaJ and DnaK completes the ordered assembly of an ori lambda initiation complex that also contains the lambda O and P initiators and the E. coli DnaB helicase. With the addition of ATP, the DnaJ and DnaK heat shock proteins mediate the partial disassembly of the initiation complex, and the P and DnaJ proteins are largely removed from the template. Concomitantly, on supercoiled ori lambda plasmid templates, the intrinsic helicase activity of DnaB is activated and DnaB initiates localized unwinding of the DNA duplex, thereby preparing the template for priming and DNA chain elongation. We infer from our results that DnaK and DnaJ function in normal E. coli metabolism to promote ATP-dependent protein unfolding and disassembly reactions. We also provide evidence that neither the lambda O and P initiators nor the E. coli DnaJ and DnaK heat shock proteins play a direct role in the propagation of lambda replication forks in vitro.  相似文献   

10.
11.
The effect of overproduction of the Hsp70 system proteins (DnaK, DnaJ, GrpE) and/or ClpB (Hsp100) from plasmids on the process of formation and removal of heat-aggregated proteins from Escherichia coli cells (the S fraction) was investigated by sucrose density gradient centrifugation. Two plasmids were employed: pKJE7 carrying the dnaK/dnaJ/grpE genes under the control of the araB promoter and pClpB carrying the clpB gene under the control of its own promoter (sigma(32)-dependent). In the wild-type cells the S fraction after 15 min of heat shock amounted to 21% of cellular insoluble proteins (IP), and disappeared 10 min after transfer of the culture to 37 degrees C. In contrast to this, in the clpB mutant the S fraction was larger (35% IP) and its elimination was retarded, nearly 60% of the aggregated proteins remained stable 30 min after heat shock. This result points to the importance of ClpB in removal of the heat-aggregated proteins from cells. Overproduction of the Hsp70 system proteins (exceeding by about 1.5-fold that of wild-type) in wild-type and DeltaclpB cells completely prevented the formation of the S fraction during heat shock. Overproduction of ClpB (exceeding by about eight-fold that of wild-type) in the same background did not prevent protein aggregation after heat shock and only partly compensated for the effect of the mutation in the clpB gene. Monitoring the S fraction during co-production of DnaK/DnaJ/GrpE and ClpB in the DeltaclpB mutant revealed that both the levels of expression and the ratios of ClpB to Hsp70 system proteins had a significant effect on the formation and removal of protein aggregates in heat-shocked E. coli cells. In the presence of excess ClpB, an increase in the levels of DnaK, DnaJ and GrpE was required to prevent aggregate formation upon heat shock or to efficiently remove protein aggregates after heat shock. Therefore, it is supposed that a high level of ClpB under some conditions, especially at insufficient levels of Hsp70 system proteins, may support protein aggregation resulting from heat shock and may lead to stabilization of hydrophobic aggregates.  相似文献   

12.
Replication of mini-F plasmid in Escherichia coli requires the plasmid-encoded RepE initiator protein and a number of host factors and is regulated by interaction of RepE with specific sequences near the replication origin, ori2. We have examined DNA binding properties of several hyperactive mutant RepE proteins with single amino acid substitutions. Plasmids carrying these (repE) mutations, unlike the parental plasmid, can replicate in bacterial hosts lacking the heat shock sigma factor (sigma 32) or deficient in the DnaK, DnaJ, or GrpE heat shock protein. Using gel-retardation assays, the mutant RepE proteins were shown to bind the ori2 repeated sequences with much increased affinities compared to the wild type RepE, whereas they bound to the repE operator with slightly reduced affinities. These results agreed well with the properties of mutant RepE proteins studied in vivo and accounted for the high RepE initiator activities and the high copy numbers of mutant plasmids. In addition, the DnaJ heat shock protein was found to markedly enhance the binding of wild type RepE to ori2 or the operator. DnaK protein with or without ATP failed to show such enhancements. Thus, among the heat shock proteins required for mini-F replication, DnaJ appears to play a major role in RepE binding to ori2 and the operator, perhaps accompanied by RepE activation.  相似文献   

13.
14.
We used depletion studies designed to further investigate the role of the DnaK, DnaJ, and GrpE heat shock proteins in the SecB-dependent and SecB-independent secretion pathways. Our previous finding that SecB-deficient strains containing the grpE280 mutation were still secretion proficient raised the possibility that GrpE was not involved in this secretory pathway. Using depletion studies, we now demonstrate a requirement for GrpE in this pathway. In addition, depletion studies demonstrate that while DnaK, DnaJ, and GrpE are involved in the secretion of the SecB-independent proteins (alkaline phosphatase, ribose-binding protein, and beta-lactamase), they are not the primary chaperones in this process.  相似文献   

15.
16.
表达载体pHsh对大肠杆菌热休克系统中负调控机制的影响   总被引:1,自引:0,他引:1  
pHsh是一种由σ32识别和启动外源基因表达的新型高效的大肠杆菌表达载体。正常E.coli细胞在热激诱导条件下,σ32的浓度在5 min内到达高峰,随后被3个负调控蛋白Dnak、DnaJ、GrpE结合导致失活或降解,整个热休克反应持续约12min。在携带有外源基因的高拷贝pHsh 的E.coli细胞中,外源基因却能持续高效表达4~10 h,这一现象表明了此时细胞中的σ32比没有携带质粒的细胞内σ32的浓度要高。σ32浓度的增高有可能是由于3个负调控蛋白Dnak、DnaJ、GrpE在细胞内的含量比正常情况下降低的结果。为了验证这一推测,从E.coli中克隆了Dnak、DnaJ、GrpE的编码基因,表达并初步纯化了其重组蛋白以作分子标记,采用双向电泳技术,分析携带质粒(pHsh+)和不携带质粒的E.coli(pHsh-)细胞在热休克后胞内蛋白质组的差异。该项实验通过与检索到的标准的E.coli蛋白质组图谱进行比较鉴别出的两个蛋白Dnak、GrpE,并通过对比目标点的大小和深浅发现pHsh+中的Dnak均少于pHsh─中的目标蛋白,所得结果与上述假设一致。  相似文献   

17.
Regulation of the Escherichia coli heat-shock response   总被引:28,自引:8,他引:20  
  相似文献   

18.
Molecular chaperones are an essential part of the universal heat shock response that allows organisms to survive stress conditions that cause intracellular protein unfolding. During the past few years, two new mechanisms have been found to control the activity of several chaperones under stress conditions—the regulation of chaperone activity by the redox state and by the temperature of the environment. Hsp33, for example, is redox-regulated. Hsp33 is specifically activated by disulfide bond formation during oxidative stress, where it becomes a highly efficient chaperone holdase that binds tightly to unfolding proteins. Certain small heat shock proteins, such as Hsp26 and Hsp16.9, on the other hand, are temperature regulated. Exposure to heat shock temperatures causes these oligomeric proteins to disassemble, thereby changing them into highly efficient chaperones. The ATP-dependent chaperone folding system DnaK/DnaJ/GrpE also appears to be temperature regulated, switching from a folding to a holding mode during heat stress. Both of these novel post-translational regulatory strategies appear to have one ultimate goal: to significantly increase the substrate binding affinity of the affected chaperones under exactly those stress conditions that require their highest chaperone activity. This ensures that protein folding intermediates remain bound to the chaperones under stress conditions and are released only after the cells return to non-stress conditions.  相似文献   

19.
Molecular chaperones are an essential part of the universal heat shock response that allows organisms to survive stress conditions that cause intracellular protein unfolding. During the past few years, two new mechanisms have been found to control the activity of several chaperones under stress conditions-the regulation of chaperone activity by the redox state and by the temperature of the environment. Hsp33, for example, is redox-regulated. Hsp33 is specifically activated by disulfide bond formation during oxidative stress, where it becomes a highly efficient chaperone holdase that binds tightly to unfolding proteins. Certain small heat shock proteins, such as Hsp26 and Hsp16.9, on the other hand, are temperature regulated. Exposure to heat shock temperatures causes these oligomeric proteins to disassemble, thereby changing them into highly efficient chaperones. The ATP-dependent chaperone folding system DnaK/DnaJ/GrpE also appears to be temperature regulated, switching from a folding to a holding mode during heat stress. Both of these novel post-translational regulatory strategies appear to have one ultimate goal: to significantly increase the substrate binding affinity of the affected chaperones under exactly those stress conditions that require their highest chaperone activity. This ensures that protein folding intermediates remain bound to the chaperones under stress conditions and are released only after the cells return to non-stress conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号