首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Growth, chemical composition, and nitrate reductase activity (NRA) of hydroponically cultured Rumex crispus, R. palustris, R. acetosa, and R. maritimus were studied in relation to form (NH4 +, NO3 -, or both) and level of N supply (4 mM N, and zero-N following a period of 4mM N). A distinct preference for either NH4 + or NO3 - could not be established. All species were characterized by a very efficient uptake and utilization of N, irrespective of N source, as evident from high concentrations of organic N in the tissues and concurrent excessive accumulations of free NO3 - and free NH4 +. Especially the accumulation of free NH4 + was unusually large. Generally, relative growth rate (RGR) was highest with a combination of NH4 + and NO3 -. Compared to mixed N supply, RGR of NO3 -- and NH4 +-grown plants declined on average 3% and 9%, respectively. Lowest RGR with NH4 + supply probably resulted from direct or indirect toxicity effects associated with high NH4 + and/or low Ca2+ contents of tissues. NRA in NO3 - and NH4NO3 plants was very similar with maxima in the leaves of ca 40 μmol NO2 - g-1 DW h-1. ‘Basal’ NRA levels in shoot tissues of NH4 + plants appeared relatively high with maxima in the leaves of ca 20 μmol NO2 - g-1 DW h-1. Carboxylate to organic N ratios, (C-A)/Norg, on a whole plant basis varied from 0.2 in NH4 + plants to 0.9 in NO3 - plants. After withdrawal of N, all accumulated NO3 - and NH4 + was assimilated into organic N and the organic N redistributed on a large scale. NRA rapidly declined to similar low levels, irrespective of previous N source. Shoot/root ratios of -N plants were 50–80% lower than those from +N plants. In comparison with +N, RGR of -N plants did not decline to a large extent, decreasing by only 15% in -NH4 + plants due to very high initial organic-N contents. N-deprived plants all exhibited an excess cation over anion uptake (net proton efflux), and whole-plant (C-A)/Norg ratios increased to values around unity. Possible difficulties in interpreting the (C-A)/Norg ratio and NRA of plants in their natural habitats are briefly discussed.  相似文献   

2.
The fate of nitrate and nitrogen-15 was followed during the apparent induction phase (6h) for nitrate uptake by N-depleted dwarf bean (Phaseolus vulgaris L. ev. Witte Krombek). Experiments were done with intact plants and with detached root systems. Qualitatively and quantitatively, xylem exudation from detached roots was a bad estimate of the export of NO?3 or NO?3-15N from roots of intact plants. In vivo nitrate reductase activity (NRA) agreed well with in situ reduction, calculated as the difference between uptake and accumulation in whole plants, provided NRA was assayed with merely endogenous nitrate as substrate (‘actual’ NRA). The majority (75%) of the entering nitrate remained unmetabolized. Both nitrate reduction and nitrate accumulation occurred predominantly in the root system. Some (< 25%) of the root-reduced nitrate-N was translocated to the shoot. Nitrate uptake occurred against the concentration gradient between medium and root cells, and probably against the gradient of the electro-chemical potential of nitrate. Part of the energy expended for NO?3 absorption came from the tops, since decapitation and ringing at the stem base restricted nitrate uptake.  相似文献   

3.
13NO3 influx into the roots and in vivo nitrate reductase activity (NRA) in the roots and leaves have been measured in trembling aspen (Populus tremuloides Michx.) and lodgepole pine (Pinus contorta Dougl.) seedlings after exposure to either 0·1 or 1·5 mol m–3 NO3 for varying periods up to 20 d. Both NO3 influx and NRA were inducible in these species and, in trembling aspen, peak induction of nitrate influx and NRA were achieved within 12 h, compared to 2–4 d for influx and 4–12 d for NRA in lodgepole pine. In trembling aspen, ≈ 30% of the total 13N absorbed during a 10 min influx period followed by 2 min of desorption was translocated to the shoot. In lodgepole pine, by contrast, translocation of 13N to the shoot was undetectable during the same time period. Root NRA as well as NO3 influx from 0·1 mol m–3 NO3 were substantially higher in trembling aspen than in lodgepole pine at all stages of NO3 exposure, i.e. during the uninduced, the peak induction, and steady-state stages. In order to examine whether the lower rates of NO3 influx and NRA were related to proportionately fewer young (unsuberized) roots in lodgepole pine, we determined these parameters in young and old (suberized) roots of this species separately. Induction of influx and NRA were initially greater in young roots but at steady-state there were only minor differences between the young and the old roots. However, even the elevated initial rates in the young roots of lodgepole pine were substantially lower than those of aspen. In pine, influx at 1·5 mol m–3 NO3 was ~ 6-fold higher than at 0·1 mol m–3 NO3 and appeared to be mostly via a constitutive system. By contrast, in aspen, steady-state influxes at 0·1 and 1·5 mol m–3 were not significantly different, being similar to the rate attained by pine at only the higher [NO3]. In aspen, leaf NRA was ~ 2-fold higher than that of roots. In lodgepole pine NRA of the needles was below the detection limit. These results show that trembling aspen seedlings are better adapted for NO3 acquisition and utilization than lodgepole pine seedlings.  相似文献   

4.
A new model is presented to predict the plant uptake of nitrate supplied by diffusion and mass flow to its roots. Plant growth, root-shoot ratio and the plant's nitrate uptake capacity are all set dependent on the plant's N nutrition state. By thoroughly integrating processes occurring in both plant and soil, the model enables to control the relative importance of both under a wide range of different nutritional scenarios.Soil parameters D0 diffusion coefficient in water (m2 day-1) - De diffusion coefficient in soil (m2 day-1) - C nitrate concentration in soil (mol m-3) - f tortuosity (-) - volumetric moisture content (-) - R radial distance from root axis (m) Plant parameters b1, b2 parameters of biomass partitioning Equation (10) - IR interroot distance (m) - KmU Michaelis-Menten constant of the uptake system (mol m-3) - KmNRA Michaelis-Menten constant of nitrogen reduction system (mol g-1) - k1, k2, k3 parameters of growth model Equation (9) - Lv Root length density (m m-3) - NO3 set - Set point of the cytoplasmatic nitrate pool (mol g-1 dw) - NO3 c - cytoplasmatic nitrate concentration (mol g-1 dw) - NO3 v - vacuolar nitrate concentration (mol g-1 dw) - NRAmax maximum nitrate reductase activity (mol g-1 dw day-1) - Nre reduced nitrogen content (mol) - Nremax maximum reduced N concentration in the plant (mol g-1 dw) - P partitioning coefficient of nitrate between cyplasm and vacuole - R(1) root radius (m) - RGR relative growth rate (day-1) - U uptake rate (mol day-1 m-2) - Umax maximum uptake rate (Eq. 6) (day-1 m-2) - Vo water flux at root surface (m day-1) - Wr root dry weight (g) - Wsh shoot dry weight (g) - X model parameter: number of root compartments - Y model parameter: number of nodes  相似文献   

5.
Lainé  P.  Ourry  A.  Boucaud  J.  Salette  J. 《Plant and Soil》1998,202(1):61-67
Roots of higher plants are usually exposed to varying spatial and temporal changes in concentrations of soil mineral nitrogen. A split root system was used to see how Lolium multiflorum Lam. roots adapt to such variations to cope with their N requirements. Plants were grown in hydroponic culture with their root system split in two spatially separated compartments allowing them to be fed with or without KNO3. Net NO3 - uptake, 15NO3 - influx and root growth were studied in relation to time. Within less than 24 h following deprivation of KNO3 to half the roots, the influx in NO3 - fed roots was observed to increase (about 200% of the influx measured in plant uniformly NO3 - supplied control plant) thereby compensating the whole plant for the lack of uptake by the N deprived roots. Due to the large NO3 - concentrations in the roots, the NO3 - efflux was also increased so that the net uptake rate increased only slightly (35% maximum) compared with the values obtained for control plants uniformly supplied with NO3 -. This increase in net NO3 - uptake rate was not sufficient to compensate the deficit in N uptake rate of the NO3 - deprived split root in the short term. Over a longer period (>1 wk), root growth of the part of the root system locally supplied with NO3 - was stimulated. An increase in root growth was mainly responsable for the greater uptake of nitrate in Lolium multiflorum so that it was able to fully compensate the deficit in N uptake rate of the NO3 - deprived split root.  相似文献   

6.
A glass-house study was conducted to determine the effects of four commonly used herbicides (pendimethalin, metobromuron, metolachlor and prometryne) applied pre-emergence at rates of 0, 0.125, 0.625 and 1.25 kg ha–1, on leaf nitrate concentration (NO3–C), nitrate reductase activity (NRA), leaf crude protein and seed protein in two cowpea cultivars, 60 day (60D) and Ife brown (IB).Control and treated plants of both cultivars showed separate peaks for NO3–C and NRA, 49 days after planting (DAP) and 35 DAP for 60D and IB respectively. Herbicide treatment generally enhanced NO3–C but tended to decrease NRA in both cultivars. Howver, metobromuron at 0.625 kg ha–1 increased NRA throughout the growth period with an optimum increase of 52.5%, over the control, at 35 DAP. Pendimethalin increased NO3–C NRA and leaf protein but did not influence seed protein appreciably. In contrast metobromuron increased NO3–C, decreased NRA, but increased seed protein by 29.6% over the control at 0.125 kg ha–1 in 60D. Metolachlor and prometryne were most inhibitory to seed protein development. In addition, metolachlor reversed the interdependence of NO3–C and NRA.  相似文献   

7.
Tritordeum is a fertile amphiploid derived from durum wheat (Triticum turgidum L. conv. durum) × a wild barley (Hordeum chilense Roem. et Schultz.). The organic nitrogen content of tritordeum grain (34 mg g-1 DW) was significantly higher than that of its wheat parent (25 mg g-1 DW). Leaf and root nitrogen content became higher in tritordeum than in wheat after four weeks of growth, independently of the nitrogen source (either NO3 - or NH4 +). Under NO3 - nutrition, tritordeum generally exhibited higher levels of nitrate reductase (NR) activity than wheat. Nitrite reductase (NiR) levels were however lower in tritordeum than in its wheat parent. In NH4 +-grown plants, both NR and NiR activities progressively decreased in the two species, becoming imperceptible after 3 to 5 weeks of growth. Results indicate that, in addition to a higher rate of NO3 - reduction, other physiological factors must be responsible for the greater accumulation of organic nitrogen in tritordeum grain.  相似文献   

8.
Gebauer  G.  Hahn  G.  Rodenkirchen  H.  Zuleger  M. 《Plant and Soil》1998,199(1):59-70
Nitrate reductase activities (NRA) and nitrate concentration per unit biomass in Picea abies (L.) Karst. roots from four different soil horizons and in leaves and roots of the frequent field-layer species Oxalis acetosella L. were measured on six different irrigation and liming treatments within the Höglwald project, S-Bavaria, Germany. Liming increased and acid irrigation reduced soil nitrate availability when compared to control plots. Nitrate assimilation capacities of the respective plant compartments per unit of soil volume or ground area were calculated from the NRA per unit of biomass and from the biomass distribution on the various treatments.Mean NRA per unit of biomass in Picea abies roots ranged between 0.23 and 0.09 mol NO 2 - g-1 d.w. h-1 without significant effects of soil horizon or treatment. Limed and non-limed treatments showed for Picea different root distributions within the soil profile, but root biomass per unit of ground area (295 to 220 g d.w. m-2) was not affected by the various treatments. Thus, nitrate assimilation capacity of Picea roots per unit of ground area ranged between 19.5 and 11.4 mol NO 2 - m-2 h-1 without major treatment effects.In laminae of Oxalis acetosella mean NRA per unit of biomass ranged between 2.91 and 0.27 mol NO 2 - g-1 d.w. h-1 and, in contrast to Picea abies, treatment effects were found with NRA on limed plots increased and on acid irrigated plots reduced when compared to control plots. Mean leaf biomass of Oxalis per unit of ground area ranged between 9.57 and 0.66 g d.w. m-2 and responded in a similar manner to the various treatments. Thus, for the Oxalis leaf NRA per unit of ground area (27.85 to 0.18 mol NO2 m-2 h-1) a cumulative response to the variations in nitrate availability was found.The different responses of Picea abies and Oxalis acetosella to changes in soil nitrate availability are discussed with respect to their suitability to prevent soil nitrate leaching.  相似文献   

9.
The effect of exogenous NH4+ on the induction of nitrate reductase activity (NRA; EC 1.6.6.1) and nitrite reductase activity (NiRA; EC 1.7.7.1) in roots of 8-day-old intact barley (Hordeum vulgare L.) seedlings was studied. Enzyme activities were induced with 0.1, 1 or 10 mM NO3+ in the presence of 0, 1 or 10 mM NH4+, Exogenous NH4+ partially inhibited the induction of NRA when roots were exposed to 0.1 mM, but not to 1 or 10 mM NO3+, In contrast, the induction of NiRA was inhibited by NH4+ at all NO3+ levels. Maximum inhibition of the enzyme activities occurred at 1.0 mM NH4+ Pre-treatment with NH4+ had no effect on the subsequent induction of NRA in the absence of additional NH4+ whereas the induction of NiRA in NH4+-pretreated roots was inhibited in the absence of NH4+ At 10 mM NO3+ L-methionine sulfoximine stimulated the induction of NRA whether or not exogenous NH4+ was present. In contrast, the induction of NiRA was inhibited by L-methionine sulfoximine irrespective of NH4+ supply. During the postinduction phase, exogenous NH4+ decreased NRA in roots supplied with 0.1 mM but not with 1mM NH3+ whereas, NiRA was unaffected by NH4+ at either substrate concentration. The results indicate that exogenous NH4+ regulates the induction of NRA in roots by limiting the availability of NO3+. Conversely, it has a direct effect, independent of the availability of NO3+, on the induction of NiRA. The lack of an NH4+ effect on NiRA during the postinduction phase is apparently due to a slower turnover rate of that enzyme.  相似文献   

10.
Role of sugars in nitrate utilization by roots of dwarf bean   总被引:4,自引:0,他引:4  
Nitrate uptake and in vivo, nitrate reductase activity (NRA) in roots of Phaseolus vulgaris, L. cv. Witte Krombek were measured in nitrogen-depleted plants of varying sugar status, Variation in sugar status was achieved at the start of nitrate nutrition by excision, ringing, darkness or administration of sugars to the root medium. The shape of the apparent induction pattern of nitrate uptake was not influenced by the sugar status of the absorbing tissue. When measured after 6 h of nitrate nutrition (0.1 mol m?3), steady state nitrate uptake and root NRA were in the order intact>dark>ringed>excised. Exogenous sucrose restored NRA in excised roots to the level of intact plants. The nitrate uptake rate of excised roots, however, was not fully restored by sucrose (0.03–300 mol m?3). When plants were decapitated after an 18 h NO3? pretreatment, the net uptake rate declined gradually to become negative after three hours. This decline was slowed down by exogenous fructose, whilst glucose rapidly (sometimes within 5 min) stimulated NG?3 uptake. Presumably due to a difference in NO3? due to a difference in NO3? uptake, the NRA of excised roots was also higher in the presence of glucose than in the presence of fructose after 6 h of nitrate nutrition. The sugar-stimulation of, oxygen consumption as well as the release of 14CO2 from freshly absorbed (U-14C) sugar was the same for glucose and fructose. Therefore, we propose a glucose-specific effect on NO3? uptake that is due to the presence of glucose rather than to its utilization in root respiration. A differential glucose-fructose effect on nitrate reductase activity independent of the effect on NO3? uptake was not indicated. A constant level of NRA occurred in roots of NO3? induced plants. Removal of nutrient nitrate from these plants caused an exponential NRA decay with an approximate half-life of 12 h in intact plants and 5.5 h in excised roots. The latter value was also found in roots that were excised in the presence of nitrate, indicating that the sugar status primarily determines the apparent rate of nitrate reductase decay in excised roots.  相似文献   

11.
A review of literature, reporting values of cytoplasmic/cytosolic [NO3] in plant cells, identified two major areas of disagreement: (1) disparity in the absolute values within the same system, and (2) constancy versus variability in cytoplasmic/cytosolic [NO3] with varying [NO3]o. These differences are related to the techniques used by the different authors. Estimates of cytoplasmic [NO3] by compartmental analysis and by cell fractionation were consistently higher than the estimates by NO3selective microelectrodes and by techniques based upon in vivo and in vitro nitrate reductase activity (NRA). A model recognizing more than one cytoplasmic ionic pool would satisfactorily reconcile the differences in both aspects, i.e. absolute values and constancy. Compartmental analysis and cell fractionation techniques may measure the amount of NO3 in the cytoplasm as a whole (including organelles); by contrast, NO3 selective microelectrodes and NRA estimate only the cytosolic NO3 and, hence, may result in lower estimates. Thus, variable organellar pool(s) may maintain a constant cytosolic pool as estimated by microelectrodes. However, certain observations remain at odds with the notion of a constant cytosolic [NO3].  相似文献   

12.
Chlorsulfuron (15 g a.i. ha-1) inhibited growth of wheat (Triticurn aestivum L. cv. Rongotea) especially on high nitrate (NO3) supply. Decreased growth at high NO-3 was associated with higher concentrations of reduced nitrogen (N) and NO-3 in the shoots. Seven days after spraying (DAS), shoot dry weight (dry wt) of sprayed plants was similar with NO-3 or branched chain amino acids as main N supply but 28 DAS, shoot dry wt was greater with the amino acid treatment. One DAS, chlorsulfuron caused substantial decreases in extension of the youngest leaf and acetolactate synthase activity and valine content of shoots of plants supplied with NO-3 or branched chain amino acids. Total amino acid content of shoots was greater in sprayed plants than in unsprayed plants 1 DAS. Acetolactate synthase activity of sprayed plants supplied low NO-3 returned to normal 14–21 DAS. For sprayed plants transferred from low to high NO-3 supply 7, 14 or 21 DAS, shoot dry wt 50 DAS increased with increased time of transfer to high NO-3 while shoot NO-3 content decreased. Shoot NO3 content of sprayed plants transferred to high NO-3 supply 7 or 14 DAS was similar to that in unsprayed plants at applied NO-3 concentrations which inhibited growth. It is concluded that inhibition of acetolactate synthase is likely to be the primary mode of action of chlorsulfuron in this wheat cultivar; data are consistent with the proposal that subsequent NO-3 accumulation can also inhibit growth.  相似文献   

13.
Nitrogen assimilation was studied in the deciduous, perennial climber Clematis vitalba. When solely supplied with NO3 in a hydroponic system, growth and N-assimilation characteristics were similar to those reported for a range of other species. When solely supplied with NH4+, however, nitrate reductase (NR) activity dramatically increased in shoot tissue, and particularly leaf tissue, to up to three times the maximum level achieved in NO3 supplied plants. NO3 was not detected in plant material that had been solely supplied with NH4+, there was no NO3 contamination of the hydroponic system, and the NH4+-induced activity did not occur in tobacco or barley grown under similar conditions. Western Blot analysis revealed that the induction of NR activity, either by NO3 or NH4+, was matched by NR and nitrite reductase protein synthesis, but this was not the case for the ammonium assimilation enzyme glutamine synthetase. Exposure of leaf disks to N revealed that NO3 assimilation was induced in leaves directly by NO3 and NH4+ but not glutamine. Our results suggest that the NH4+-induced potential for NO3 assimilation occurs when externally sourced NH4+ is assimilated in the absence of any NO3 assimilation. These data show that the potential for nitrate assimilation in C. vitalba is induced by a nitrogenous compound in the absence of its substrate and suggest that NO3 assimilation in C. vitalba may have a significant role beyond the supply of reduced N for growth.  相似文献   

14.
The rate of nitrate uptake by N-depleted French dwarf bean (Phaseolus vulgaris L. cv. Witte Krombek) increased steadily during the first 6 h after addition of NO3 -After this initial phase the rale remained constant for many hours. Detached root systems showed the same time-course of uptake as roots of intact plants. In vivo nitrate reductase activity (NRA) was assayed with or without exogenous NO3- in the incubation medium and the result ing activities were denoted potential and actual level, respectively. In roots the difference between actual and potential NRA disappeared within 15 min after addition of nitrate, and NRA increased for about 15 h. Both potential and actual NRA were initially very low. In leaves, however, potential NRA was initially very high and was not affected by ambient nitrate (0.1–5 mol m-3) for about 10 h. Actual and potential leaf NRA became equal after the same period of time. In the course of nitrate nutrition, the two nitrate reductase activities in leaves were differentially inhibited by cycloheximide (3.6 mmol m-3) and tungstate (1 mol m-3). We suggest that initial potential NRA reflects the activity of pre-existing enzyme, whereas actual NRA depends on enzyme assembly during NO3- supply. Apparent induction of nitrate uptake and most (85%) of the actual in vivo NRA occurred in the root system during the first 6 h of nitrate utilization by dwarf bean.  相似文献   

15.
In this study we assessed the growth, morphological responses, and N uptake kinetics of Salvinia natans when supplied with nitrogen as NO3, NH4+, or both at equimolar concentrations (500 μM). Plants supplied with only NO3 had lower growth rates (0.17 ± 0.01 g g−1 d−1), shorter roots, smaller leaves with less chlorophyll than plants supplied with NH4+ alone or in combination with NO3 (RGR = 0.28 ± 0.01 g g−1 d−1). Ammonium was the preferred form of N taken up. The maximal rate of NH4+ uptake (Vmax) was 6–14 times higher than the maximal uptake rate of NO3 and the minimum concentration for uptake (Cmin) was lower for NH4+ than for NO3. Plants supplied with NO3 had elevated nitrate reductase activity (NRA) particularly in the roots showing that NO3 was primarily reduced in the roots, but NRA levels were generally low (<4 μmol NO2 g−1 DW h−1). Under natural growth conditions NH4+ is probably the main N source for S. natans, but plants probably also exploit NO3 when NH4+ concentrations are low. This is suggested based on the observation that the plants maintain high NRA in the roots at relatively high NH4+ levels in the water, even though the uptake capacity for NO3 is reduced under these conditions.  相似文献   

16.
Previous reports have indicated positive effects of enriched rhizosphere dissolved inorganic carbon on the growth of salinity-stressed tomato (Lycopersicon esculentum L. Mill. cv. F144) plants. In the present work we tested whether a supply of CO2 enriched air to the roots of hydroponically grown tomato plants had an effect on nitrogen uptake in these plants. Uptake was followed over periods of 6 to 12 hours and measured as the depletion of nitrogen from the nutrient solution aerated with either ambient or CO2 enriched air. Enriched rhizosphere CO2 treatments (5000 μmol mol-1) increased NO3 - uptake up to 30% at pH 5.8 in hydroponically grown tomato plants compared to control treatments aerated with ambient CO2 (360 μmol mol-1). Enriched rhizosphere CO2 treatments had no effect on NH3 + uptake. Acetazolamide, an inhibitor of apoplastic carbonic anhydrase, increased NO3 - uptake in ambient rhizosphere CO2 treatments, but had no effect on NO3 - uptake in enriched rhizosphere CO2 treatments. Ethoxyzolamide, an inhibitor of both cytoplasmic and extracellular carbonic anhydrase, decreased NO3 - uptake in ambient rhizosphere CO2 treatments. In contrast, a CO2 enriched rhizosphere increased NO3 - uptake with ethoxyzolamide, although not to the same extent as in plants without ethoxyzolamide. It is suggested that a supply of enriched CO2 to the rhizosphere influenced NO3 - uptake through the formation of increased amounts of HCO3 - in the cytosol. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
研究了盐氮处理条件下盐地碱蓬种子成熟过程中的离子积累以及种子萌发特性,以理解盐地碱蓬在种子发育及萌发过程中对高盐低氮生境的适应性。结果表明,种子成熟过程中,不同浓度盐氮处理下(0.5和5 mmol/L NO3--N;1和500 mmol/L NaCl),与果皮和果枝相比, 胚中Na+、K+、Cl- 和NO3-离子含量几乎没有变化。所有盐氮处理下Na+ 和Cl-都是果皮和果枝中高于胚中,尤其是在高盐处理下。高盐处理下,K+ 和NO3-含量呈现相反的趋势。高氮时无论高盐还是低盐,果皮中NO3-离子含量高于胚中,而果枝中NO3-离子含量低于胚中。而低氮时果皮及果枝中NO3-离子含量均显著低于胚中。与高氮环境下收获的种子相比,低氮环境下收获的种子萌发率,萌发指数,活力指数都要明显高。上述结果说明,盐地碱蓬种子成熟过程中存在完善的离子调控机制,保护胚免受Na+ 和Cl-等有害离子的伤害并且促进K+ 和NO3-等营养离子的积累。低NO3--N下收获的种子对外界的NO3-含量比较敏感,施以较高浓度的NO3-能够促进种子萌发,提高萌发指数和活力指数,可能与盐地碱蓬长期适应高盐低氮生境有关。  相似文献   

18.
Ancheng  Luo  Jianming  Xu  Xiaoe  Yang 《Plant and Soil》1993,155(1):395-398
Although NH4 + has generally been accepted as the preferred N source for fertilising rice, some workers have concluded tha NO3 - is as effective as NH4 +. The present glasshouse study exmined the relative uptake of NH4 + and NO3 - from solution and cultures containing 5–120 mg N/L supplied as NH4NO3 by a hybrid rice (India) and a conventional rice cultivar (Japonica). At all levels of N supply, the hybrid rice had higher leaf area and higher rates of uptake of total N than the conventional cultivar. Net photosynthesis rates were similar for both cultivars at the highest rates of N supply, but were lower at 5–40 mg N/L for the hybrid cultivar than for the conventional cultivar. At all levels of N supply, the conventional rice cultivar absorbed more NH4 + than NO3 -. In contrast, the hybrid rice absorbed more NH4 + than NO3 - at the low levels of N supply (5–40 mg N/L), but more NO3 - than NH4 + at the high levels of at 80 and 120 mg N/L. It is concluded that the uptake of N by rice is under genetic control and also dependent on levels of N supply. Thus the appropriate form of N fertiliser for rice may depend on cultivar and rates of N supply.  相似文献   

19.
A. Melzer  R. Kaiser 《Oecologia》1986,69(4):606-611
Summary 11 macrophytic species from a groundwater influenced chalk stream in Upper Bavaria were investigated during a period of one year in order to determine differences in the endogenous nitrate content, in total nitrogen content and in nitrate reductase activity (NRA). Nitrate concentrations of different plants taken from the same site of the river varied by a factor of approximately 103. A maximum of 1,958 mol NO 3 - g-1 dry w. could be measured in the petioles of Nasturtium officinale, which accounts for 12% of plant dry w. Very high values were also found in Callitriche obtusangula and Veronica angallis-aquatica. In comparison to the ambient water, mean accumulation rates of up to 131 could be found. In Fontinalis antipyretica, the plant poorest in nitrate, the ratio was only 1.24:1. Elodea canadensis belonged to a group of plants having very low nitrate concentrations. Since NRA was very low too, it is assumed that nitrogen nutrition of this species depends rather on ammonia than on nitrate. With a few exceptions nitrate content of different plant organs varied markedly. In general they were lowest in leaves and highest in shoot axes. Appreciable amounts of nitrate were also found in the roots of plants. No correlation could be found between endogenous nitrate content and NRA. In contrast to endogenous nitrate content and NRA, total nitrogen concentrations of the plants did not differ significantly.  相似文献   

20.
The effect of varied Zn supply on the pH of the nutrient solution and uptake of cations and anions was studied in cotton (Gossypium hirsutum L.), sunflower (Helianthus annuus L.) and buckwheat (Fagopyrum esculentum Moench) plants grown under controlled environmental conditions in nutrient solutions with nitrate as source of nitrogen. With the appearance of visual Zn deficiency symtoms, the pH of the nutrient solutions decreased from 6 to about 5 whereas the pH increased to about 7 when the plants were adequately supplied with Zn. In Zn deficient plants the pH decrease was associated with a shift in the cation-anion uptake ratio in favour of cation uptake. Of the major ions, uptake of Ca2+ and K+ was either not affected or only slightly lowered whereas NO3 - uptake was drastically decreased in Zn deficient plants. Although the Zn nutritional status of plants hardly affected the NO3 - concentrations in the plants, the leakage of NO3 - from roots of Zn deficient plants into a diluted CaCl2 solution was nearly 10 times higher than that of plants adequately supplied with Zn. In contrast to Zn deficiency, Mn deficiency in cotton plants neither affected NO3 - uptake nor the pH of the nutrient solution.The results indicate that, probably as a consequence of the role of Zn in plasma membrane integrity and nitrogen metabolism, when Zn is deficient in dicotyledonous species net uptake of NO3 - is particularly depressed which in turn results in an increase in cation-anion uptake ratio and a corresponding decrease in external pH. The ecological relevance of this rhizosphere acidification is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号