首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type II collagen from six mammalian species was investigated for the capacity to induce an immune response and collagen-induced arthritis (CIA) in C57/B10 congenic mouse strains. H-2q haplotype mice were susceptible to chick, bovine, deer, rat, and human type II collagen, but were resistant to arthritis induced by porcine type II collagen. H-2r haplotype mice only developed CIA in response to bovine, deer, and porcine collagen. High antibody responses in the absence of disease, directed against a specific type II collagen, were observed in many independent haplotypes. The cross-reactive capacity of different antisera to the various collagen species was studied. The data support the existence of two arthritogenic and multiple nonarthritogenic epitopes on the type II collagen molecule.  相似文献   

2.
Complement deficiency ameliorates collagen-induced arthritis in mice   总被引:12,自引:0,他引:12  
Collagen-induced arthritis (CIA) is an experimental animal model of human rheumatoid arthritis being characterized by synovitis and progressive destruction of cartilage and bone. CIA is induced by injection of heterologous or homologous collagen type II in a susceptible murine strain. DBA/1J mice deficient of complement factors C3 (C3(-/-)) and factor B (FB(-/-)) were generated to elucidate the role of the complement system in CIA. When immunized with bovine collagen type II emulsified in CFA, control mice developed severe arthritis and high CII-specific IgG Ab titers. In contrast, the C3(-/-) and FB(-/-) were highly resistant to CIA and displayed decreased CII-specific IgG Ab response. A repeated bovine collagen type II exposure 3 wk after the initial immunization led to an increase in the Ab response in all mice and triggered arthritis also in the complement-deficient mice. Although the arthritic score of the C3(-/-) mice was low, the arthritis in FB(-/-) mice ranked intermediate with regard to C3(-/-) and control mice. We conclude that complement activation by both the classical and the alternative pathway plays a deleterious role in CIA.  相似文献   

3.
In order to study how inflammatory cells including autoimmune lymphocytes interact with each other to develop collagen-induced arthritis (CIA), we injected monoclonal antibodies against mouse LFA-1 and ICAM-1 into DBA/1 mice immunized with type II collagen (CII). Both antibodies suppressed the development of CIA. These antibodies showed no effect on anti-CII antibody response, although they both significantly suppressed DTH response. It was suggested that anti-adhesion molecule antibodies suppress CIA mainly through their effect on cell-mediated immunity, without affecting humoral immunity under the conditions used.  相似文献   

4.
Collagen-induced arthritis (CIA) can be induced in DBA/1J mice by immunization with bovine type II collagen (bCII) and is a model of some types of human autoimmune rheumatoid arthritis. In this study we examined whether preimmunization of the mice with various antigens could inhibit the development of CIA. Preimmunization of the mice with an extract of the house dust mite Dermatophagoides farinae (mite antigen), chicken ovalbumin, or keyhole limpet hemocyanin strongly inhibited CIA development, but hen egg lysozyme, beta-lactoglobulin from bovine milk or myelin basic protein from guinea pig brain did not substantially affect CIA development. Splenic T cells and serum antibodies specific for mite antigen did not cross-react with bCII. Preimmunization of the mice with mite antigen did not affect the IFN-gamma and proliferative response of splenic T cells to bCII, nor serum antibody responses. The most inhibitory constituent had a molecular weight between 1,000 and 10,000.  相似文献   

5.
Antibodies against type II collagen (CII) are important in the development of collagen-induced arthritis (CIA) and possibly also in rheumatoid arthritis. We have determined the fine specificity and arthritogenicity of the antibody response to CII in chronic relapsing variants of CIA. Immunization with rat CII in B10.Q or B10.Q(BALB/c×B10.Q)F2 mice induces a chronic relapsing CIA. The antibody response to CII was determined by using triple-helical peptides of the major B cell epitopes. Each individual mouse had a unique epitope-specific response and this epitope predominance shifted distinctly during the course of the disease. In the B10.Q mice the antibodies specific for C1 and U1, and in the B10.Q(BALB/c×B10.Q)F2 mice the antibodies specific for C1, U1 and J1, correlated with the development of chronic arthritis. Injection of monoclonal antibodies against these epitopes induced relapses in chronic arthritic mice. The development of chronic relapsing arthritis, initially induced by CII immunization, is associated with an arthritogenic antibody response to certain CII epitopes.  相似文献   

6.
Collagen type II (CII)-induced arthritis (CIA) can be induced in 78% of B10.RIII mice (H2r) by intradermal (id) immunization with CII of bovine origin in complete Freund's adjuvant (CFA), whereas immunization with CII of chick origin induces arthritis in less than 5% of these mice. Nevertheless, tolerization of B10.RIII mice with intravenously injected chick CII renders the animals resistant to induction of CIA by immunization with bovine CII. Such tolerization can be achieved either by intravenous injection of 500 micrograms chick CII 1 week prior to immunization with bovine CII in CFA or by such an intravenous injection of chick CII 2 weeks after immunization with bovine CII in CFA. Postimmunization treatment results in a significant decrease in the concentration of antibody to bovine CII. Preimmunization administration of chick CII causes a marked decrease in the antibody reactive with chick CII without a significant effect on the anti-bovine CII antibody concentration. In DBA/1 mice, a strain in which both bovine CII and chick CII can induce a high incidence of the disease, intravenous injection of bovine CII can also prevent arthritis induced by chick CII, even when given 7 or 14 days after immunization. The fact that chick CII as tolerogen is quite effective in preventing arthritis in B10.RIII mice, while as immunogen it is very ineffective in inducing arthritis in this strain, may be interpreted as evidence for interaction between different epitopes on CII in the pathogenesis of CIA.  相似文献   

7.
THR0921 is a novel peroxisome proliferator-activated receptor gamma (PPARgamma) agonist with potent anti-diabetic properties. Because of the proposed role of PPARgamma in inflammation, we investigated the potential of orally active THR0921 to inhibit the pathogenesis of collagen-induced arthritis (CIA). CIA was induced in DBA/1J mice by the injection of bovine type II collagen in complete Freund's adjuvant on days 0 and 21. Mice were treated with THR0921 (50 mg/kg/day) starting on the day of the booster injection and throughout the remaining study period. Both clinical disease activity scores as well as histological scores of joint destruction were significantly reduced in mice treated with THR0921 compared to untreated mice. Proliferation of isolated spleen cells, as well as circulating levels of IgG antibody to type II collagen, was decreased by THR0921. Moreover, spleen cell production of IFN-gamma, tumor necrosis factor (TNF)-alpha and IL-1beta in response to exposure to lipopolysaccharide or type II collagen was reduced by in vivo treatment with THR0921. Steady state mRNA levels of TNF-alpha, IL-1beta, monocyte chemotactic protein-1 and receptor activator of nuclear factor kappaB ligand (RANKL) in isolated joints were all decreased in mice treated with THR0921. Finally, THR0921 inhibited osteoclast differentiation of bone marrow-derived cells stimulated with macrophage colony-stimulating factor and RANKL. In conclusion, THR0921 attenuates collagen-induced arthritis in part by reducing the immune response. As such, PPARgamma may be an important therapeutic target for rheumatoid arthritis.  相似文献   

8.
Rats immunized with type II collagen (CII) develop an immunologically mediated polyarthritis. T cells have been implicated in the pathogenesis of this model since they can adoptively transfer the disease. A CII-specific T cell line (VA), consisting of three distinct clones by Southern blot analysis, has been shown to be arthritogenic. Antibodies specific for this line were generated by immunizing rabbits. In an attempt to prevent collagen-induced arthritis (CIA), Louvain rats were injected with 1 ml of anti-VA ip on Days -1, +1, +3 and 0.5 ml on Day +5 (early treatment). To evaluate its effect on existing disease, rats received anti-VA on the day of arthritis onset and subsequently on 4 successive alternate days using the same dosage protocol (late treatment). Control rats received no therapeutic injections or were administered normal rabbit serum. All rats were immunized with CII on Day 0 to induce CIA. Rats administered antibodies using the early anti-VA treatment protocol had a significantly diminished incidence of arthritis compared to controls. Established arthritis was significantly diminished compared to controls in rats given the late anti-VA treatment. In both protocols, radiographic evidence of joint destruction was significantly reduced compared to controls. T cell phenotyping using flow cytometry analysis demonstrated that the anti-VA antibody therapy selectively eliminated a small subset of T cells since there was little difference in total T cell counts in the experimental versus control groups. Delayed type hypersensitivity and IgG antibody titers to CII were minimally decreased in the experimental versus control group. These results suggest that antibodies raised to an oligoclonal arthritogenic T cell line can suppress collagen arthritis. This may have implications with respect to 1) the size of the T cell receptor repertoire involved in the pathogenesis of collagen arthritis and 2) immunospecific protocols for CIA and other autoimmune diseases.  相似文献   

9.
Collagen-induced arthritis   总被引:1,自引:0,他引:1  
The collagen-induced arthritis (CIA) mouse model is the most commonly studied autoimmune model of rheumatoid arthritis. Autoimmune arthritis is induced in this model by immunization with an emulsion of complete Freund's adjuvant and type II collagen (CII). This protocol describes the steps necessary for acquisition, handling and preparation of CII, as well as selection of mouse strains, proper immunization technique and evaluation of the arthritis incidence and severity. Typically, the first signs of arthritis appear in this model 21-28 days after immunization, and identification of the arthritic limbs is not difficult. Using the protocol described, the investigator should be able to reproducibly induce a high incidence of CIA in various strains of genetically susceptible mice as well as learn how to critically evaluate the pathology of the disease. The total time for the preparation of reagents and the immunization of ten mice is about 1.5 h.  相似文献   

10.
The immunodominant T-cell epitope that is involved in collagen-induced arthritis (CIA) is the glycosylated type II collagen (CII) peptide 256-270. In CII transgenic mice, which express the immunodominant CII 256-270 epitope in cartilage, the CII-specific T cells are characterized by a partially tolerant state with low proliferative activity in vitro, but with maintained effector functions, such as IFN-γ secretion and ability to provide B cell help. These mice were still susceptible to CIA. The response was mainly directed to the glycosylated form of the CII 256-270 peptide, rather than to the nonglycosylated peptide. Tolerance induction was rapid; transferred T cells encountered CII within a few days. CII immunization several weeks after thymectomy of the mice did not change their susceptibility to arthritis or the induction of partial T-cell tolerance, excluding a role for recent thymic emigrants. Thus, partially tolerant CII autoreactive T cells are maintained and are crucial for the development of CIA.  相似文献   

11.
Viral IL-10 (vIL-10) and soluble TNF receptor (sTNFR) are anti-inflammatory proteins that can suppress collagen-induced arthritis (CIA). These and related proteins have shown efficacy in the treatment of human rheumatoid arthritis; however, neither alone is able to completely suppress disease. Furthermore, they have short half-lives, necessitating frequent administration. To determine the ability of these proteins to act synergistically following gene transfer, arthritis was induced in DBA/1 male mice by immunization with type II collagen on days 0 and 21. Mice were injected i.v. either before disease onset (day 20) or after disease onset (day 28) with 1010 particles of adenovirus encoding vIL-10, a soluble TNF receptor-IgG1 fusion protein (sTNFR-Ig), a combination of both vectors, or a control vector lacking a transgene. Significant synergism was observed with the combination of vIL-10 and sTNFR-Ig, with a substantial reduction in both the incidence and severity of disease as well as inhibition of progression of established disease. sTNFR-Ig alone had no effect on CIA. vIL-10 alone inhibited disease when given before disease onset, but had minimal effect on established disease. Both proteins inhibited spleen cell proliferation and IFN-gamma secretion in response to stimulation with type II collagen, but only vIL-10 reduced the synovial mRNA levels of the proinflammatory cytokines IL-1beta, TNF-alpha, and IL-6. These findings demonstrate that vIL-10 and sTNFR-Ig act synergistically in suppressing CIA and suggest that gene transfer offers a potential therapeutic modality for the treatment of arthritis.  相似文献   

12.
THR0921 is a novel peroxisome proliferator-activated receptor gamma (PPARγ) agonist with potent anti-diabetic properties. Because of the proposed role of PPARγ in inflammation, we investigated the potential of orally active THR0921 to inhibit the pathogenesis of collagen-induced arthritis (CIA). CIA was induced in DBA/1J mice by the injection of bovine type II collagen in complete Freund's adjuvant on days 0 and 21. Mice were treated with THR0921 (50 mg/kg/day) starting on the day of the booster injection and throughout the remaining study period. Both clinical disease activity scores as well as histological scores of joint destruction were significantly reduced in mice treated with THR0921 compared to untreated mice. Proliferation of isolated spleen cells, as well as circulating levels of IgG antibody to type II collagen, was decreased by THR0921. Moreover, spleen cell production of IFN-γ, tumor necrosis factor (TNF)-α and IL-1β in response to exposure to lipopolysaccharide or type II collagen was reduced by in vivo treatment with THR0921. Steady state mRNA levels of TNF-α, IL-1β, monocyte chemotactic protein-1 and receptor activator of nuclear factor κB ligand (RANKL) in isolated joints were all decreased in mice treated with THR0921. Finally, THR0921 inhibited osteoclast differentiation of bone marrow-derived cells stimulated with macrophage colony-stimulating factor and RANKL. In conclusion, THR0921 attenuates collagen-induced arthritis in part by reducing the immune response. As such, PPARγ may be an important therapeutic target for rheumatoid arthritis.  相似文献   

13.

Introduction

Statins (hydroxymethylglutaryl coenzyme A reductase inhibitors) are effective in reducing the risk of cardiovascular morbidity and mortality in patients with hyperlipidemia, hypertension, or type II diabetes. Next to their cholesterol-lowering activity, statins have immunomodulatory properties. Based on these properties, we hypothesized that statin use may eventually lead to dysregulation of immune responses, possibly resulting in autoimmunity. We have recently shown in an observational study that statin use was associated with an increased risk of developing rheumatoid arthritis. Our objective was to investigate whether a causal relationship could be established for this finding.

Methods

The mouse collagen type II (CII)-induced arthritis (CIA) model was used, with immunization, challenge, and euthanasia at days 0, 21, and 42, respectively. Statins were given orally before (day -28 until day 21) or after (day 21 until day 42) CIA induction. Atorvastatin (0.2 mg/day) or pravastatin (0.8 mg/day) was administered. Arthritis was recorded three times a week. Serum anti-CII autoantibodies and cytokines in supernatants from Concanavalin-A-stimulated lymph node cells and CII-stimulated spleen cells were measured.

Results

Statin administration accelerated arthritis onset and resulted in 100% arthritic animals, whereas only seven out of 12 nonstatin control animals developed arthritis. Atorvastatin administration after CIA induction resulted in earlier onset than atorvastatin administration before induction, or than pravastatin administration before or after induction. The arthritic score of animals given pravastatin before CIA induction was similar to that of the nonstatin controls, whereas the other groups that received statins showed higher arthritic scores. Atorvastatin administration, especially before CIA induction, increased anti-CII autoantibody production. IL-2 and IL-17 production by lymph node and spleen cells was higher in CIA animals than in PBS controls, but was not affected by statin administration. While IFNγ production was not affected by CIA induction, atorvastatin administration before CIA induction increased the production of this cytokine.

Conclusion

These data support previous results from our observational studies, indicating a role for statins in the induction of autoimmunity.  相似文献   

14.
The relationship between production of IgE and collagen-induced arthritis in mice was examined. Collagen-specific IgE was produced as a consequence of immunization of DBA/1 mice with chicken type II collagen emulsified in CFA. We observed a rise in collagen-specific IgE antibody levels at the onset of CIA clinical and histologic signs in DBA/1 mice. This rise in IgE paralleled that of IgG2a anticollagen antibodies, an isotype implicated in the pathogenesis of CIA by other laboratories. The collagen-specific IgE contained in the plasma of mice with CIA could arm basophils for Ag- (collagen) dependent degranulation. Collagen-specific IgE may thus contribute to CIA by promoting mast cell degranulation in the synovia of susceptible mice immunized with chick type II collagen; but, further work is required to establish such a role for IgE in CIA. However, genetic differences in disease susceptibility could not be accounted for by quantitative differences in collagen-specific IgE production. Further, comparable levels of IgE anticollagen antibodies were observed in animals with active CIA and after spontaneous remission, thereby confirming that the presence of such antibodies is insufficient for disease. Total IgE levels peaked just before spontaneous remission indicating active production of IL-4. IL-4 was administered to animals with CIA to determine if this lymphokine could be involved in the remission process. IL-4 facilitated remission of CIA. Enhanced total IgE production may thus be a marker for activation of Th2 cells that produce lymphokines such as IL-4 and IL-10, factors that may be involved in the spontaneous remission process.  相似文献   

15.
Collagen-induced arthritis (CIA) is an experimental model of arthritis widely used to dissect the pathogenesis of human rheumatoid arthritis and to identify potential therapeutic targets. Among these, TNF-alpha has been recognized to play an important role. Here we investigate the feasibility and therapeutic efficacy of prolonged blockade of TNF-alpha activity through the adenovirus-mediated gene delivery of a dimeric chimeric human p55 TNFR-IgG fusion protein and compare it to protein therapy in established CIA. A single i.v. administration of the replication-deficient adenovirus yielded microgram serum levels of the chimeric fusion protein and ameliorated CIA for 10 days. Subsequently, benefit was lost and a rebound to greater inflammatory activity was observed despite the continual presence of bioactive TNFR fusion protein. A similar trend was also observed in mice injected directly with comparable amounts of a human TNFR-IgG fusion protein, whereas the administration of a control adenovirus-encoding beta-galactosidase or of a control human IgG1 protein did not significantly affect the disease course. The mechanisms of the rebound of CIA were investigated, and augmented Ab response to collagen type II and TNFR were identified as potential causes. Our results confirm the feasibility of adenovirus-mediated gene delivery of cytokine inhibitors in animal models of autoimmune diseases for investigational purposes and highlight the importance of prolonged studies. Further investigations are needed to optimize ways of exploiting the potential of adenoviral gene therapy in RA.  相似文献   

16.
Collagen-induced arthritis (CIA) is an experimental model of rheumatoid arthritis (RA) and has helped researchers to analyze the pathogenesis of inflammatory joint disease. In classical CIA, Freund's complete adjuvant (FCA), which contains heat-killed Mycobacterium tuberculosis, is used as an adjuvant. In our previous study, we reported that particles of beta-glucan, OX-CA, derived from Candida albicans, acted as a proper adjuvant in the CIA model. In this study, to establish pure beta-glucan as an adjuvant for CIA, we tested a commercially available preparation of Zymosan A (ZYM) and modified its products. beta-Glucan fractions of ZYM were prepared by oxidation with various concentrations of NaClO. The oxidized ZYM (OX-ZYM) was mainly composed of beta-glucan. In this study, we examined its effect as an adjuvant for CIA. DBA/1 mice injected with CII and OX-CA developed arthritis 7-10 days after receiving booster injections; the OX-ZYM fractions induced arthritis with the same time course. 0.01% OX-ZYM (oxidized with a 0.01% NaClO solution) caused arthritis faster than 0.1% OX-ZYM or 0.5% OX-ZYM. In conclusion, beta-glucan derived from ZYM by brief oxidation with NaClO is a suitable adjuvant for a CIA model with anti-CII antibody production.  相似文献   

17.
Collagen-induced arthritis (CIA) is an immunologically relevant animal model of human rheumatoid arthritis. Studies comparing the disease incidence in genetically susceptible male and female DBA/1LacJ mice demonstrated that under low density/low stress housing conditions, female mice had earlier onset (day 35) and higher disease incidence (25%) than the male mice (17% at day 49) when immunized with bovine type II collagen. A single subcutaneous or intraperitoneal injection of bacterial lipopolysaccharide (LPS) 17-24 days after collagen immunization greatly potentiated this standard CIA model in a dose related manner. 20-40 mug of LPS accelerated the onset of disease from day 35 to day 21 and exacerbated the clinical severity score from 0.27 to 2.00 at day 42. A similar administration of 6 mug of recombinant interleukin-beta produced a comparable potentiated CIA model. The acute phase protein, serum amyloid P (SAP), was elevated in the serum at day 26 to 440 mug ml(-1) for the LPS potentiated CIA mice compared to 65 mug ml(-1) in the non-potentiated immunized CIA mice. There was a significant correlation (r = 0.78) between SAP levels and disease expression in the LPS treated CIA mice. The rapidity and uniformity of disease expression in this LPS potentiated CIA model will allow more and different drugs to be evaluated with a smaller number of animals.  相似文献   

18.
A naturally occurring fatty acid, conjugated linoleic acid (CLA), reduces immune-induced TNF and inducible cyclooxygenase (COX-2) expression; key mediators of inflammation in rheumatoid arthritis (RA). On the basis of previous work, it was hypothesized that dietary CLA would act as an anti-inflammatory agent in select animal models of RA. In the collagen antibody-induced arthritis (CAIA) model, mice fed CLA (mixed isomers of c9, t11, and t10, c12-CLA) for 3 wk before anticollagen antibody injection had reduced lipopolysaccharide-induced plasma TNF levels and had arthritic scores that were 60% of mice fed corn oil (CO). In the collagen-induced arthritis (CIA) model, mice fed mixed isomers of CLA for 21 days before immunization had lower IgG(1) titers, earlier signs of joint inflammation, but similar arthritis scores compared with CO fed mice during the remaining 70-day post-injection period. Beginning on day 80 to 133, CLA-fed mice had arthritic scores 70% that of the CO-fed mice. In a second CIA experiment, CLA was fed only after the booster injection. Plasma IgG(1) levels were not reduced and arthritis onset was delayed 4 days in CLA-fed mice compared with the CO-fed mice. Peak arthritis score was similar between CLA and CO-fed mice from day 35 to 56. Because CLA reduced inflammation in the CAIA model, delayed onset of arthritis in the CIA model (CIA experiment 2) and reduced arthritis score after day 80 in the CIA model (CIA experiment 1), we concluded that dietary CLA exhibited anti-inflammatory activity that was dependent on antibody.  相似文献   

19.
The objective of the present investigation was to examine the effects of an irreversible inhibitor of ornithine decarboxylase (2R,5R)-6-heptyne-2,5,diamine (methylacetylenic putrescine, MAP) on experimentally induced arthritis in mice. MAP (0.5-0.05%) was administered in drinking water to DBA/1 mice immunized with native chick type II collagen (CII). The development of arthritis was inhibited only in those mice receiving 0.5% MAP; lower doses were ineffective. Putrescine and spermidine levels were decreased and spermine levels were increased in spleen and lymph node cells from drug-treated mice compared to control arthritic mice. Furthermore, when control mice were developing arthritis, serum anti-CII antibody levels were lower in the MAP-treated group. MAP inhibited antibody production early in the immune response to CII; there was an association between inhibition of antibody production and inhibition of the development of arthritis. When MAP was discontinued, the nonarthritic, drug-treated mice did not develop the disease. Late administration of MAP (beginning 19 days after CII immunization) did not affect the incidence or the severity of the arthritis. Cyclophosphamide treatment begun at the same time significantly inhibited the development of the disease. In vitro T cell responses to denatured type II collagen (dCII) in untreated and MAP-treated mice were examined 14 days after immunization with CII. This is a time of peak T cell responsiveness in untreated animals. MAP treatment had no effect on the T cell response to dCII. These results indicate that MAP can prevent the development of CII-induced arthritis, possibly by inhibiting the autoantibody response. Therefore, inhibitors of polyamine biosynthesis deserve further investigation as potential immunosuppressive agents.  相似文献   

20.
Heterogeneous effects of IL-2 on collagen-induced arthritis   总被引:4,自引:0,他引:4  
IL-2 is generally considered a pro-inflammatory cytokine that exacerbates Th1-mediated disease states, such as autoimmune arthritis. Consistent with this role for IL-2, recent studies from our laboratory demonstrate that IL-2 mRNA is markedly increased during the acute stage of collagen-induced arthritis (CIA), an animal model of rheumatoid arthritis. To further define the role of IL-2 in CIA, the levels of IL-2 protein and its receptor and the effects of IL-2 administration were analyzed during CIA. IL-2 protein and IL-2R were preferentially expressed at disease onset, compared with later stages of disease. Administration of recombinant human IL-2 (rhIL-2) at, or just before, disease onset exacerbated disease; surprisingly, rhIL-2 given before disease onset inhibited CIA, associated with reduced cellular and humoral responses to type II collagen. Determination of in vivo serum levels of Th1 and Th2 cytokines in response to rhIL-2 treatment demonstrated that IFN-gamma, but not IL-4, was markedly up-regulated in response to IL-2. In mice treated with anti-IFN-gamma Ab, both early and late IL-2 administration exacerbated CIA. Thus, IL-2 can have two opposite effects on autoimmune arthritis, a direct stimulatory effect and an indirect suppressive effect that is mediated by IFN-gamma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号