首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of red blood cell (RBC) age on membrane thermal properties have been investigated by using a 16-nitroxide stearic acid spin probe. We detected in unfractionated and most dense cells (2% fraction of circulating cells) a thermal transition at 40 degrees C that in young cells (1% fraction) was lowered at 33-35 degrees C. Spectrin seems to be directly involved in the transition detected in both young and unfractionated cells, as showed by the disappearance of the breaks after low salt extraction of spectrin. A further indication for a role of spectrin in this transition comes from its characteristic thermal unfolding above 40 degrees C. However, young cells did not show changes either in the thermal unfolding of spectrin or in the distribution of spectrin dimer, tetramer, and high oligomeric forms. These data rule out that spectrin of young RBC is modified in its thermal properties and indicate that young cells may have a different spectrin-membrane interaction. Treatment of unfractionated ghosts with an antibody specific for a fragment of the 10K domain of protein 4.1, which is fully competent for the spectrin-actin binding, produced an evident lowering of the transition temperature. The same antibody did not affect the thermal transition of young ghosts. Our results suggest that spectrin-membrane interactions may be regulated during RBC lifespan.  相似文献   

2.
T Forte  T L Leto  M Minetti  V T Marchesi 《Biochemistry》1985,24(27):7876-7880
Proteins involved in a structural transition in red blood cell membranes detected at 8 +/- 1.5 degrees C by a stearic acid spin-label have been investigated. Calcium loading of red blood cells with ionophore A23187 caused the disappearance of the 8 degrees C transition. Protein 4.1 appears to be the most susceptible protein to Ca2+ treatment. Antibodies specific for spectrin, band 3 (43K cytoplasmic domain), and protein 4.1 have been utilized as specific probes to modify membrane thermotropic properties. The 8 degrees C transition was eliminated by anti-4.1 protein antibodies but was not modified by the other antibodies. To further characterize the protein(s) involved in the transition, ghosts were subjected to sequential extraction of skeletal proteins. The extraction of band 6, spectrin, and actin did not modify the 8 degrees C transition. In contrast, high-salt extraction (1 M KCl) of spectrin-actin-depleted vesicles, a procedure that extracts proteins 2.1 and 4.1, was able to eliminate the 8 degrees C transition. Rebinding of purified protein 4.1 to the high salt extracted vesicles restored the 8 degrees C transition. These results indicate the involvement of protein 4.1 in the transition and suggest a functional membrane association of this protein. The binding of protein 4.1 to the membrane seems to contribute significantly to the thermotropic properties of red blood cells.  相似文献   

3.
The relationship between membrane structural properties and functions has been generally inferred from observed thermotropic phenomena. By the use of 16-dinyloxyl stearic acid spin probe we investigated the red blood cell membrane components involved in three characteristic thermotropic structural transitions occurring at 8, 20, and 40 degrees C. The transition at 8 degrees C is removed by chymotrypsin treatment at the cytoplasmic membrane layer. The 20 degrees C phase transition is unmodified after chymotrypsin treatment and occurs at 15 degrees C after complete proteolysis of intramembrane chymotrypsin-insensitive peptides. Liposomes from the total lipid extract of RBC show only one thermotropic transition at 15 degrees C. The 40 degrees C phase transition is absent in vesicles free of skeletal proteins, in vesicles obtained after RBC storage, and in low-ionic-strength resealed ghosts. Transitions at 8 degrees C and 40 degrees C appear to be due to the interactions of cytoplasmic exposed proteins with membrane, whereas the 20 degrees C transition is intrinsic to the lipid component.  相似文献   

4.
Proteins involved in a structural transition detected in red blood cell membranes at 40 degrees C by spin labeling methods have been investigated. Antibodies specific for spectrin, band 3, and protein 4.1 have been used as specific probes to modify membrane thermotropic properties. Spectrin seems to be involved in a 40 degrees C transition detected in ghosts by both a stearic acid spin label (16-doxyl stearic) and a sulfhydryl-specific maleimide analogue spin label. Circular dichroism and maleimide spin labeling studies of purified spectrin show a slow unfolding of the protein structure starting at 25-30 degrees C and a massive transition with an onset temperature of 48 and 40 degrees C, respectively. This thermotropic behavior of spectrin could be the process that modifies membrane physicochemical properties above 40 degrees C that are detected by the stearic acid spin label. The transition detected by the stearic acid spin label was modified both by antispectrin antibodies and anti-4.1 protein antibodies, but not by antibodies specific for the cytoplasmic domain of band 3. These results suggest an involvement of protein 4.1 in regulating spectrin unfolding at the membrane level. A selective inhibition of the transition detected by the maleimide spin label has been obtained with a monoclonal antispectrin antibody at 1:1 molar ratio. The involvement in this transition of a localized spectrin domain(s) containing few exposed sulfhydryl groups is proposed.  相似文献   

5.
The Plasmodium falciparum ring-erythrocyte surface antigen (RESA)-like putative protein was identified and characterised. PCR and RT-PCR assays revealed that the gene encoding this protein was both present and being transcribed in P. falciparum strain FCB-2 16 h after erythrocyte invasion. Indirect immunofluorescence studies detected this protein in infected erythrocyte (IE) cytosol in dense fluorescent granules similar to Maurer's clefts at 16-20 h (parasites in ring and trophozoite stages) and very strongly on IE membranes at 22 h, suggesting that it is synthesised during early ring stages (16 h) and transported to the infected red blood cell (RBC) membrane surface during the trophozoite stage (22 h). Western blotting showed that antisera produced against polymerised synthetic peptides of this protein recognised a 72-kDa band in P. falciparum schizont lysate. P. falciparum RESA-like peptides used in normal RBC binding assays revealed that peptides 30326 ((101)NAEKI LGFDD KNILE ALDLFY(120)), 30334 ((281)RVTWK KLRTK MIKAL KKSLTY(300)) and 30342 ((431)SSPQR LKFTA GGGFC GKLRNY(450)) bind with high activity and saturability, presenting nM affinity constants. These peptides contain alpha-helical structural elements, as determined by circular dichroism, and inhibit P. falciparum in vitro invasion of normal RBCs by up to 91%, suggesting that some RESA-like protein regions are involved in intra-erythrocyte stage P. falciparum invasion.  相似文献   

6.
Synthetic 20-mer long non-overlapped peptides, from STEVOR protein, were tested in RBC binding assays for identifying STEVOR protein regions having high RBC binding activity and evaluating whether these regions inhibit Plasmodium falciparum in vitro invasion. Affinity constants, binding site number per cell and Hill coefficients were determined by saturation assay with high activity binding peptides (HABPs). HABP binding assays using RBCs previously treated with enzymes were carried out to study the nature of the receptor. The molecular weight of RBC surface proteins interacting with HABPs was determined by cross-linking assays and SDS-PAGE analysis. RBC binding assays revealed that peptides 30561 (41MKSRRLAEIQLPKCPHYNND60), 30562 (61PELKKIIDKLNEERIKKYIE80) and 30567 (161ASCCKVHDNYLDNLKKGCFG180) bound saturably and with high binding activity, presenting nanomolar affinity constants. HABP binding activity to RBCs previously treated with neuraminidase and trypsin decreased, suggesting that these peptides bound to RBC surface proteins and that such binding could be sialic acid dependent. Cross-linking and SDS-PAGE assays showed that the three HABPs specifically bound to 30 and 40 kDa molecular weight RBC membrane proteins. Peptides 30561, 30562 and 30567 inhibited P. falciparum in vitro invasion of red blood cells in a concentration-dependent way. Goat sera having STEVOR protein polymeric peptides antibodies inhibit parasite in vitro invasion depending on concentration. Three peptides localized in STEVOR N-terminal and central regions had high, saturable, binding activity to 30 and 40 kDa RBC membrane proteins. These peptides inhibited the parasite's in vitro invasion, suggesting that STEVOR protein regions are involved in P. falciparum invasion processes during intra-erythrocyte stage.  相似文献   

7.
Immunological states during human malarial infection were examined. In parallel with parasitemia and anemia, granulocytosis was induced in the blood of patients, especially those infected with Plasmodium (P.) falciparum. At that time, the level of lymphocytes remained unchanged or slightly increased in the blood. However, the distribution of lymphocyte subsets was modulated, showing that the proportion of CD56(+)T cells, CD57(+)T cells, and gammadeltaT cells (i.e. all unconventional T cells) had increased in patients infected with P. falciparum or P. vivax. This phenomenon occurred at the early phase of infection and disappeared in the course of recovery. The data from patients with multiple attacks of P. vivax infection showed that there was no augmentation of these responses. In adult cases, the increase in the proportion of unconventional T cells seemed to closely parallel disease severity. However, all these responses were weak in children, even those infected with P. falciparum. In conjunction with accumulating evidence from mouse malaria experiments, the present results suggest that the immunological state induced by malarial infection might mainly be an event of unconventional T cells and that the immunological memory might not be long-lasting, possibly due to the properties of unconventional T cells.  相似文献   

8.
The hypothesis of a correlation between the effects of temperature on red blood cells hypotonic hemolysis and hypertonic cryohemolysis and two thermotropic structural transitions evidenced by EPR studies has been tested. Hypertonic cryohemolysis of red blood cells shows critical temperatures at 7 degrees C and 19 degrees C. In hypotonic solution, the osmotic resistance increases near 10 degrees C and levels off above 20 degrees C. EPR studies of red blood cell membrane of a 16-dinyloxyl stearic acid spin label show, in the 0-50 degrees C range, the presence of three thermotropic transitions at 8, 20, and 40 degrees C. Treatments of red blood cells with acidic or alkaline pH, glutaraldehyde, and chlorpromazine abolish hypertonic cryohemolysis and reduce the effect of temperature on hypotonic hemolysis. 16-Dinyloxyl stearic acid spectra of red blood cells treated with glutaraldehyde and chlorpromazine show the disappearance of the 8 degrees C transition. Both the 8 degrees C and the 20 degrees C transitions were abolished by acidic pH treatment. The correlation between the temperature dependence of red blood cell lysis and thermotropic breaks might be indicative of the presence of structural transitions producing areas of mismatching between differently ordered membrane components where the osmotic resistance is decreased.  相似文献   

9.
The host hormone melatonin increases cytoplasmic Ca(2+) concentration and synchronizes Plasmodium cell cycle (Hotta, C.T., M.L. Gazarini, F.H. Beraldo, F.P. Varotti, C. Lopes, R.P. Markus, T. Pozzan, and C.R. Garcia. 2000. Nat. Cell Biol. 2:466-468). Here we show that in Plasmodium falciparum melatonin induces an increase in cyclic AMP (cAMP) levels and cAMP-dependent protein kinase (PKA) activity (40 and 50%, respectively).When red blood cells infected with P. falciparum are treated with cAMP analogue adenosine 3',5'-cyclic monophosphate N6-benzoyl/PKA activator (6-Bz-cAMP) there is an alteration of the parasite cell cycle. This effect appears to depend on activation of PKA (abolished by the PKA inhibitors adenosine 3',5'-cyclic monophosphorothioate/8 Bromo Rp isomer, PKI [cell permeable peptide], and H89). An unexpected cross talk was found to exist between the cAMP and the Ca(2+)-dependent signaling pathways. The increases in cAMP by melatonin are inhibited by blocker of phospholipase C U73122, and addition of 6-Bz-cAMP increases cytosolic Ca(2+) concentration, through PKA activation.These findings suggest that in Plasmodium a highly complex interplay exists between the Ca(2+) and cAMP signaling pathways, but also that the control of the parasite cell cycle by melatonin requires the activation of both second messenger controlled pathways.  相似文献   

10.
Human red blood cells (RBC) undergo a sudden change from blocking to passing through 1.3 +/- 0.2-micrometer micropipettes at a transition temperature (Tc) of 36.4 degrees C. For resealed RBC ghosts this transition occurs at 28.3 degrees C (Tg). These findings are attributed to an elastomeric transition of hemoglobin from being gel-like to a fluid and to an elastomeric transition of membrane proteins such as spectrin. Spectrin shows a uniform distribution along the aspirated RBC tongue above Tg in contrast to the linear gradient below Tg.  相似文献   

11.
Malarial gametocytes, which are taken up by mosquitoes during a blood meal, develop in the gut of the mosquito into gametes. Gametes and gametocytes contain the target antigens of transmission-blocking immunity. Here, we show that the peripheral blood of nonexposed donors contains Plasmodium falciparum gamete-reactive T cells at frequencies ranging from 1/300 to 1/4000. Studies on long-term clones demonstrated that these cells often recognized antigens shared between gametes and asexual stage parasites or even between heterologous gametes, although it has been possible to derive a P. falciparum gamete-specific T clone. The T clones examined were T3+, T4+, T8-, and either HLA-DR- or HLA-DQ-restricted. They responded to gametes by both proliferation and the secretion of gamma-interferon. The gamete-specific clone and other asexual cross-reactive clones examined could be stimulated in vitro by a preparation of mature gametocytes within RBC, but not by RBC alone, suggesting that gametocytes are immunogenic or can become immunogenic for T cells in vivo. The significance of these observations to mosquito transmission of malaria and development and application of a gamete vaccine are discussed.  相似文献   

12.
The superficial cortical fiber cells of the bovine lens contain membrane-associated proteins of 150,000, 80,000, and 78,000 D that cross-react with antisera prepared against red blood cell (RBC) protein 4.1 (Aster, J. C., G. J. Brewer, S. M. Hanash, and H. Maisel, 1984, Biochem. J., 224:609-616). To further study their relationship to protein 4.1, these proteins were immunoprecipitated from detergent extracts of crude lens membranes with purified polyclonal and monoclonal anti-4.1 antibodies and resolved by SDS PAGE. The electrophoretic mobilities of the lens proteins of 80,000 and 78,000 D were found to be identical to bovine RBC protein 4.1a and protein 4.1b, respectively. One- and two-dimensional peptide mapping revealed that a high degree of structural homology exists among all three of the lens 4.1-like proteins and RBC protein 4.1a and protein 4.1b. Despite the large difference in apparent molecular mass, the 150,000-D lens protein showed only minor peptide map differences. A nitrocellulose filter overlay assay showed that all three of the lens 4.1-like proteins bind to RBC and lens spectrins. We conclude that the bovine lens contains proteins of 80,000 and 78,000 D that are highly similar to protein 4.1 in structure and functional capacity. Additionally, the lens also contains a 4.1 isomorph of 150 kD. Analogous to RBC protein 4.1, these proteins may function in the lens by promoting association of spectrin with actin and by playing a role in the coupling of lens cytoskeleton to plasma membrane.  相似文献   

13.
An in vitro model of Plasmodium falciparum-infected red blood cell sequestration which uses C32 amelanotic melanoma cells as targets has been used to examine the binding capacity of infected red blood cells from subjects with naturally acquired P. falciparum infections of varying severity. The binding of infected red blood cells (IRBCs) to melanoma cells was specific to cells containing mature parasites. Variations in target cell density and in conditions of growth had significant effects on binding. Binding was pH dependent, being maximum at a pH of 6.9. Using standardized conditions the binding capacity of individual isolates of P. falciparum could be measured with a high degree of reproducibility. Binding capacity of IRBCs from 51 subjects between the ages of 6 months and 15 years varied between 12 and 1254 IRBCs per 100 melanoma cells when RBC suspensions at a 1% parasitemia and 4% hematocrit were used. Variation in binding was not related to the level of peripheral parasitemia of the isolate or to differences in adaptation to culture conditions. The binding capacity of parasitized cells from subjects with cerebral malaria did not differ from that of IRBCs from subjects with less serious clinical manifestations.  相似文献   

14.
Recently, we have described that apoptosis-like process of red blood cells (RBC) - eryptosis - in malaria is not restricted to parasitized cells, occurring also in non-parasitized RBC (nRBC). Besides to pathogenic proprieties, apoptosis also participates in the innate defense trough restriction of intracellular pathogens propagation. In the present study, we investigated the capacity of P. falciparum parasites to infect eryptotic RBC. Schizont parasitized RBC concentrated by magnetic separation were cultured with eryptotic RBC obtained by ionomycin treatment and, then, parasite growth was evaluated in Giemsa-stained thin blood smears. While parasites infected and developed normally in control non-eryptotic RBC, cultures performed with eryptotic RBC had a marked decrease in parasitaemia. It was noteworthy a great number of free merozoites in eryptotic RBC cultures, indicating that these cells were not susceptible to invasion. We suggest that although eryptosis could be involved in malaria pathogenesis, it could also acting protectively by controlling parasite propagation.  相似文献   

15.
Parasitic infection with Plasmodium falciparum is responsible for the most severe form of human malaria in which patients suffer from periodic fever. It is well established that during intra-erythrocytic maturation of the parasite in the red blood cell (RBC), the RBC becomes significantly more cytoadhesive and less deformable; these and other biochemical factors together with human host factors such as compromised immune status are important contributors to the disease pathology. There is currently substantial interest in understanding the loss of RBC deformability due to P. falciparum infection, but few results are available concerning effects of febrile conditions or parasitization on RBC membrane rheology. Here, for the first time, we report rheology of the single, isolated RBC with and without P. falciparum merozoite invasion, spanning a range from room temperature to febrile conditions (41 degrees C), over all the stages of parasite maturation. As expected, stiffness increased with parasite maturation. Surprisingly, however, stiffness increased acutely with temperature on a scale of minutes, particularly in late trophozoite and schizont stages. This acute stiffening in late falciparum stages may contribute to fever-dependent pathological consequences in the microcirculation.  相似文献   

16.
17.
Multiplication of the human malaria parasite Plasmodium falciparum within red blood cells is an energy-dependent process and glucose consumption increases dramatically in infected red blood cells (IRBC) versus normal red blood cells (NRBC). The major pathway for glucose metabolism in P. falciparum IRBC is anaerobic glycolysis. Phosphoglycerate kinase (PGK) is one of the key enzymes of this pathway as it generates ATP. We found that the PGK specific activity in P. falciparum IRBC is seven times higher than that in NRBC. The parasitic origin of the increase in PGK activity is confirmed by isoelectric focusing. Indeed, two P. falciparum isoenzymes with neutral isoelectric points were detected. P. falciparum PGK in purified form has a molecular mass of 48 kDa. Antiserum raised against purified P. falciparum PGK specifically recognizes the 48-kDa protein band in P. falciparum and also reacts with P. berghei and P. yoelii IRBC lysates but does not cross-react with PGK associated with NRBC.  相似文献   

18.
Several intraerythrocytic growth cycles of Plasmodium falciparum could be achieved in vitro using a serum free medium supplemented only with a human high density lipoprotein (HDL) fraction (d = 1.063-1.210). The parasitemia obtained was similar to that in standard culture medium containing human serum. The parasite development was incomplete with the low density lipoprotein (LDL) fraction and did not occur with the VLDL fraction. The lipid traffic from HDL to the infected erythrocytes was demonstrated by pulse labeling experiments using HDL loaded with either fluorescent NBD-phosphatidylcholine (NBD-PC) or radioactive [3H]palmitoyl-PC. At 37 degrees C, the lipid probes rapidly accumulated in the infected cells. After incubation in HDL medium containing labeled PC, a subsequent incubation in medium with either an excess of native HDL or 20% human serum induced the disappearance of the label from the erythrocyte plasma membrane but not from the intraerythrocytic parasite. Internalization of lipids did not occur at 4 degrees C. The mechanism involved a unidirectional flux of lipids but no endocytosis. The absence of labeling of P. falciparum, with HDL previously [125I]iodinated on their apolipoproteins or with antibodies against the apolipoproteins AI and AII by immunofluorescence and immunoblotting, confirmed that no endocytosis of the HDL was involved. A possible pathway of lipid transport could be a membrane flux since fluorescence videomicroscopy showed numerous organelles labeled with NBD-PC moving between the erythrocyte and the parasitophorous membranes. TLC analysis showed that a partial conversion of the PC to phosphatidylethanolamine was observed in P. falciparum-infected red cells after pulse with [3H]palmitoyl-PC-HDL. The intensity of the lipid traffic was stage dependent with a maximum at the trophozoite and young schizont stages (38th h of the erythrocyte life cycle). We conclude that the HDL fraction appears to be a major lipid source for Plasmodium growth.  相似文献   

19.
During development inside red blood cells (RBCs), Plasmodium falciparum malaria parasites export proteins that associate with the RBC membrane skeleton. These interactions cause profound changes to the biophysical properties of RBCs that underpin the often severe and fatal clinical manifestations of falciparum malaria. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is one such exported parasite protein that plays a major role in malaria pathogenesis since its exposure on the parasitised RBC surface mediates their adhesion to vascular endothelium and placental syncytioblasts. En route to the RBC membrane skeleton, PfEMP1 transiently associates with Maurer's clefts (MCs), parasite-derived membranous structures in the RBC cytoplasm. We have previously shown that a resident MC protein, skeleton-binding protein 1 (SBP1), is essential for the placement of PfEMP1 onto the RBC surface and hypothesised that the function of SBP1 may be to target MCs to the RBC membrane. Since this would require additional protein interactions, we set out to identify binding partners for SBP1. Using a combination of approaches, we have defined the region of SBP1 that binds specifically to defined sub-domains of two major components of the RBC membrane skeleton, protein 4.1R and spectrin. We show that these interactions serve as one mechanism to anchor MCs to the RBC membrane skeleton, however, while they appear to be necessary, they are not sufficient for the translocation of PfEMP1 onto the RBC surface. The N-terminal domain of SBP1 that resides within the lumen of MCs clearly plays an essential, but presently unknown role in this process.  相似文献   

20.
The effect of 12-O-tetradecanoyl-phorbol-12-acetate (TPA) and dibutyryl-3,5-cAMP on the shape, volume and protein phosphorylation in human red blood cells (RBC) was studied. TPA (but not cAMP) reduced the average volume of RBC and their transformed definite pool in the cup-shaped form. The changes in the physical parameters were accompanied by an increase in the cytoskeleton protein phosphorylation. An additive effect of cAMP and TPA on the phosphorylation of bands 4.1 and 4.9 was established, thus indicating that distinct domains of amino acid residues were phosphorylated by these stimuli. It was concluded that protein kinase C regulates the shape and volume of human RBC. A model, in which the state of spectrin 4.1-actin and actin 4.9-myosin complexes define the shape and volume of RBC and thus influence ion transport, is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号