首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrical instability of hypertrophied and failing hearts is caused by delayed repolarisation, which is thought to be due in part to altered levels and/or patterns of expression of ion channel genes. The aim of this study was to investigate changes in the levels and pattern of cystic fibrosis transmembrane conductance regulator (cftr) mRNA expression in a combined pressure and volume overload model of heart failure in the rabbit, using in situ mRNA hybridisation. There was a decrease in cftr mRNA expression, primarily due to a decrease in epicardial expression and, hence, loss of the normal epicardial to endocardial gradient of cftr mRNA expression in the rabbit left ventricle. In contrast there was an increase in atrial natriuretic factor (anf) mRNA expression in the hypertrophied hearts with preferential reexpression in subendocardial regions. The patterns of both cftr and anf mRNA expression in the hypertrophied hearts were similar to those seen in embryonic hearts. This suggests that the reversion to an embryonic pattern of gene expression in cardiac hypertrophy applies to ion channel genes. The loss of the normal transmural gradient of repolarising ion channels is likely to contribute to instability of repolarisation in the hypertrophied heart and hence increased risk of cardiac arrhythmias in patients with heart failure.  相似文献   

2.
3.
Cardiac hypertrophy is formed in response to hemodynamic overload. Although a variety of factors such as catecholamines, angiotensin II (AngII), and endothelin-1 (ET-1) have been reported to induce cardiac hypertrophy, little is known regarding the factors that inhibit the development of cardiac hypertrophy. Production of atrial natriuretic peptide (ANP) is increased in the hypertrophied heart and ANP has recently been reported to inhibit the growth of various cell types. We therefore examined whether ANP inhibits the development of cardiac hypertrophy. Pretreatment of cultured cardiomyocytes with ANP inhibited the AngII- or ET-1-induced increase in the cell size and the protein synthesis. ANP also inhibited the AngII- or ET-1-induced hypertrophic responses such as activation of mitogen-activated protein kinase (MAPK) and induction of immediate early response genes and fetal type genes. To determine how ANP inhibits cardiomyocyte hypertrophy, we examined the mechanism of ANP-induced suppression of the MAPK activation. ANP strongly induced expression of MAPK phosphatase-1 (MKP-1) and overexpression of MKP-1 inhibited AngII- or ET-1-induced hypertrophic responses. These growth-inhibitory actions of ANP were mimicked by a cyclic GMP analog 8-bromo-cyclic GMP. Taken together, ANP directly inhibits the growth factor-induced cardiomyocyte hypertrophy at least partly via induction of MKP-1. Our present study suggests that the formation of cardiac hypertrophy is regulated not only by positive but by negative factors in response to hemodynamic load.  相似文献   

4.
5.
The atria produce several peptides that have natriuretic and vasoactive properties, collectively called atrial natriuretic factor. All these peptides share a single messenger ribonucleic acid, the amount of which greatly increases in the rat left ventricle when the latter is submitted to chronic volume overload. Using the molecular hybridization technique and a desoxyribonucleic acid probe complementary to the atrial natriuretic factor messenger ribonucleic acid, we now report that a very important increase in the amount of this messenger ribonucleic acid is also observed in rat ventricle at at the compensatory stage of a pressure overload induced cardiac hypertrophy. This result suggests that the pressure overload hypertrophied rat ventricle also has the potential to itself regulate it's loading conditions via the regulation of extracellular fluid volume and vascular resistance.  相似文献   

6.
Previous studies have shown that endurance exercise training increases myocardial contractility. We have previously described training-induced alterations in myocardial contractile function at the cellular level, including an increase in the Ca(2+) sensitivity of tension. To determine the molecular mechanism(s) of these changes, oligonucleotide microarrays were used to analyze the gene expression profile in ventricles from endurance-trained rats. We used an 11-wk treadmill training protocol that we have previously shown results in increased contractility in cardiac myocytes. After the training, the hearts were removed and RNA was isolated from the ventricles of nine trained and nine control rats. With the use of an Affymetrix Rat Genome U34A Array, we detected altered expression of 27 genes. Several genes previously found to have increased expression in hypertrophied myocardium, such as atrial natriuretic factor and skeletal alpha-actin, were decreased with training in this study. From the standpoint of altered contractile performance, the most significant finding was an increase in the expression of atrial myosin light chain 1 (aMLC-1) in the trained ventricular tissue. We confirmed microarray results for aMLC-1 using RT-PCR and also confirmed a training-induced increase in aMLC-1 protein using two-dimensional gel electrophoresis. aMLC-1 content has been previously shown to be increased in human cardiac hypertrophy and has been associated with increased Ca(2+) sensitivity of tension and increased power output. These results suggest that increased expression of aMLC-1 in response to training may be responsible, at least in part, for previously observed training-induced enhancement of contractile function.  相似文献   

7.
Although it is a well-known fact that hemodynamic load is a major determinant of cardiac muscle mass and its phenotype, little is known as to how mechanical load is converted into intracellular signals of gene regulation. To address this question, we characterized the stretch-induced adaptation of cultured neonatal cardiocytes grown on a stretchable substrate in a serum-free medium. Static stretch (20%) of the cells was applied without cell injury. Stretch caused hypertrophy in myocytes and hyperplasia in non-myocytes. Stretch caused an induction of immediate-early genes such as c-fos, c-jun, c-myc, JE, and Egr-1, but not Hsp70. Immunostaining showed that the stretch-induced Fos protein localized in the nucleus of both myocytes and non-myocytes. Nuclear extracts from stretched myocytes contained DNA binding activity to the AP-1 and Egr-1 consensus sequences. In myocytes, the induction of immediate-early genes was followed by expression of "fetal" genes such as skeletal alpha-actin, atrial natriuretic factor, and beta-myosin heavy chain. DNA transfection experiments showed that the "stretch-response element" of the c-fos gene promoter is present within 356 base pairs of the 5'-flanking region, whereas that of the atrial natriuretic factor and the beta-myosin heavy chain genes is probably located outside of 3412 and 628 base pairs of the 5'-flanking region, respectively. These results demonstrate that the phenotype of stretched cardiocytes in this in vitro model closely mimics that of hemodynamic load-induced hypertrophy in vivo. This model seems to be a suitable system with which to dissect the molecular mechanisms of load-induced hypertrophy of cardiac muscle.  相似文献   

8.
9.
10.
The neurotrophin family plays pivotal roles in the development of the nervous system. Recently, the role of the neurotrophin in non-neural tissue has been extensively investigated. Among them, neurotrophin-3 and its receptor TrkC are critical for embryonic heart development, though little is known about neurotrophin-3/TrkC function in adult heart. Moreover, the expressions of other neurotrophin and Trk families in the cardiovascular system have not been fully determined. In adult and neonatal rats, only TrkC mRNA was expressed more abundantly in heart than aorta among the neurotrophin receptors, while all neurotrophins were equally expressed in the cardiovascular system. Immunohistochemistry confirmed the protein expressions of neurotrophin-3/TrkC in rat ventricles. In primary-cultured rat cardiomyocytes, neurotrophin-3 strongly activated p38 mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2, and Jun N-terminal kinase pathways in Western blot analysis. In Northern blot analysis, neurotrophin-3 strongly increased mRNA expressions of cardiac hypertrophic markers (skeletal alpha-actin and atrial natriuretic peptide) in cardiomocytes. [(3)H]-phenylalanine uptake into cardiomyocytes, myofilament reorganization, and cardiomyocyte size were also augmented with neurotrophin-3 stimulation, indicating that neurotrophin-3 is a novel cardiac hypertrophic factor. Unexpectedly, neurotrophin-3 was downregulated in cardiac hypertrophy induced by pressure overload (in vivo), and in cardiomyocyte hypertrophy evoked by endothelin-1 stimulation (in vitro). Interestingly, the cell size and BNP mRNA expression level (markers of hypertrophy) were greater in cardiomyocytes treated with both neurotrophin-3 and endothelin-1 than in those stimulated with endothelin-1 alone. These findings demonstrate that neurotrophin-3 is a unique hypertrophic factor, which is paradoxically downregulated in cardiac hypertrophy and might counteract hypertrophic change.  相似文献   

11.
Taurine is the most abundant free amino acid in heart muscle and protects against heart failure. In the present study, the consequences of hereditary taurine deficiency on cardiac gene expression were examined in 2- and 15-16-month-old taurine transporter knockout (taut(-/-)) mice using a mouse-specific DNA microarray. This oligonucleotide-based microarray contains probes for 251 genes with relevance for heart function. Of these, 163 probes exhibited a reproducible hybridization signal and were analyzed. alpha-Actin type 1 mRNA levels were 70% lower in the heart of young and older taut(-/-) mice compared to wild-type controls. Interestingly, the hearts of taut(-/-) mice showed a switch from alpha-actin 1 to alpha-actin 2 expression, as confirmed by real-time PCR and Western blot analysis. In addition, mRNA levels of biomarkers for pressure overload and hypertension were upregulated in taut(-/-) hearts, i.e., atrial natriuretic factor (+848%), brain natriuretic peptide (+90%), cardiac ankyrin repeat protein (+118%), and procollagen 1a1, 1a2 and 3a1 (+40% at least). These results point to a stress situation in the heart of taut(-/-) mice under laboratory conditions, and it can be speculated that taut(-/-) hearts may be even more susceptible to failure in the wild when under exogenous stress.  相似文献   

12.
13.
14.
Both atrial (ANP) and brain (BNP) natriuretic peptide affect development of cardiac hypertrophy and fibrosis via binding to natriuretic peptide receptor (NPR)-A in the heart. A putative clearance receptor, NPR-C, is believed to regulate cardiac levels of ANP and BNP. The renin-angiotensin system also affects cardiac hypertrophy and fibrosis. In this study we examined the expression of genes for the NPRs in rats with pressure-overload cardiac hypertrophy. The ANG II type 1 receptor was blocked with losartan (10 mg.kg(-1).day(-1)) to investigate a possible role of the renin-angiotensin system in regulation of natriuretic peptide and NPR gene expression. The ascending aorta was banded in 84 rats during Hypnorm/Dormicum-isoflurane anesthesia; after 4 wk the rats were randomized to treatment with losartan or placebo. The left ventricle of the heart was removed 1, 2, or 4 wk later. Aortic banding increased left ventricular expression of NPR-A and NPR-C mRNA by 110% (P < 0.001) and 520% (P < 0.01), respectively, after 8 wk; as expected, it also increased the expression of ANP and BNP mRNAs. Losartan induced a slight reduction of left ventricular weight but did not affect the expression of mRNAs for the natriuretic peptides or their receptors. Although increased gene expression does not necessarily convey a higher concentration of the protein, the data suggest that pressure overload is accompanied by upregulation of not only ANP and BNP but also their receptors NPR-A and NPR-C in the left ventricle.  相似文献   

15.
Relatively little is known concerning the regulation of uncoupling proteins (UCPs) in the heart. We investigated in the adult rodent heart 1) whether changes in workload, substrate supply, or cytokine (TNF-alpha) administration affect UCP-2 and UCP-3 expression, and 2) whether peroxisome proliferator-activated receptor alpha (PPARalpha) regulates the expression of either UCP-2 or UCP-3. Direct comparisons were made between cardiac and skeletal muscle. UCP-2, UCP-3, and PPARalpha expression were reduced when cardiac workload was either increased (pressure overload by aortic constriction) or decreased (mechanical unloading by heterotopic transplantation). Similar results were observed during cytokine administration. Reduced dietary fatty acid availability resulted in decreased expression of both cardiac UCP-2 and UCP-3. However, when fatty acid (the natural ligand for PPARalpha) supply was increased (high-fat feeding, fasting, and STZ-induced diabetes), cardiac UCP-3 but not UCP-2 expression increased. Comparable results were observed in rats treated with the specific PPARalpha agonist WY-14,643. The level of cardiac UCP-3 but not UCP-2 expression was severely reduced (20-fold) in PPARalpha-/- mice compared to wild-type mice. These results suggest that in the adult rodent heart, UCP-3 expression is regulated by PPARalpha. In contrast, cardiac UCP-2 expression is regulated in part by a fatty acid-dependent, PPARalpha-independent mechanism.  相似文献   

16.
Cardiomyocyte hypertrophy differs according to the stress exerted on the myocardium. While pressure overload-induced cardiomyocyte hypertrophy is associated with depressed contractile function, physiological hypertrophy after exercise training associates with preserved or increased inotropy. We determined the activation state of myocardial Akt signaling with downstream substrates and fetal gene reactivation in exercise-induced physiological and pressure overload-induced pathological hypertrophies. C57BL/6J mice were either treadmill trained for 6 weeks, 5 days/week, at 85-90% of maximal oxygen uptake (VO(2max)), or underwent transverse aortic constriction (TAC) for 1 or 8 weeks. Total and phosphorylated protein levels were determined with SDS-PAGE, and fetal genes by real-time RT-PCR. In the physiologically hypertrophied heart after exercise training, total Akt protein level was unchanged, but Akt was chronically hyperphosphorylated at serine 473. This was accompanied by activation of the mammalian target of rapamycin (mTOR), measured as phosphorylation of its two substrates: the ribosomal protein S6 kinase-1 (S6K1) and the eukaryotic translation initiation factor-4E binding protein-1 (4E-BP1). Exercise training did not reactivate the fetal gene program (beta-myosin heavy chain, atrial natriuretic factor, skeletal muscle actin). In contrast, pressure overload after TAC reactivated fetal genes already after 1 week, and partially inactivated the Akt/mTOR pathway and downstream substrates after 8 weeks. In conclusion, changes in opposite directions of the myocardial Akt/mTOR signal pathway appears to distinguish between physiological and pathological hypertrophies; exercise training associating with activation and pressure overload associating with inactivation of the Akt/mTOR pathway.  相似文献   

17.
18.
19.
Cardiac hypertrophy is enlargement of the heart in response to physiological or pathological stimuli, chiefly involving growth of myocytes in size rather than in number. Previous studies have shown that the expression pattern of a group of genes in hypertrophied heart induced by pressure overload resembles that at the embryonic stage of heart development, a phenomenon known as activation of the "fetal gene program". Here, using a genome-wide approach we systematically defined genes and pathways regulated in short- and long-term cardiac hypertrophy conditions using mice with transverse aortic constriction (TAC), and compared them with those regulated at different stages of embryonic and postnatal development. In addition, exon-level analysis revealed widespread mRNA isoform changes during cardiac hypertrophy resulting from alternative usage of terminal or internal exons, some of which are also developmentally regulated and may be attributable to decreased expression of Fox-1 protein in cardiac hypertrophy. Genes with functions in certain pathways, such as cell adhesion and cell morphology, are more likely to be regulated by alternative splicing. Moreover, we found 3'UTRs of mRNAs were generally shortened through alternative cleavage and polyadenylation in hypertrophy, and microRNA target genes were generally de-repressed, suggesting coordinated mechanisms to increase mRNA stability and protein production during hypertrophy. Taken together, our results comprehensively delineated gene and mRNA isoform regulation events in cardiac hypertrophy and revealed their relations to those in development, and suggested that modulation of mRNA isoform expression plays an importance role in heart remodeling under pressure overload.  相似文献   

20.
Cardiac hypertrophy, induced by chronic pressure or volume overload, is associated with abnormalities in energy metabolism as well as characteristic increases in muscle mass and alterations in the structure of the heart. Hypertrophied hearts display increased rates of glycolysis and overall glucose utilization, but rates of pyruvate oxidation do not rise in step with rates of pyruvate generation. Glycolysis and glucose oxidation, therefore, become markedly less 'coupled' in hypertrophied hearts than in non-hypertrophied hearts. Because the pyruvate dehydrogenase complex (PDC) contributes so powerfully to the control of glucose oxidation, we set out to test the hypothesis that the function of PDC is impaired in cardiac hypertrophy. In this review we describe evidence indicating that the alterations in glucose metabolism in hypertrophied hearts cannot be explained simply by changes in PDC expression or control. Additional mechanisms that may lead to an altered balance of pyruvate metabolism in cardiac hypertrophy are discussed, with commentaries on possible changes in pyruvate transport, NADH shuttles, lactate dehydrogenase, and amino acid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号