首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to examine the influence of exercise order on strength and muscle volume (MV) after 12 weeks of nonlinear periodized resistance training. The participants were randomly assigned into 3 groups. One group began performing large muscle group exercises and progressed to small muscle group exercises (LG-SM), whereas another group started with small muscle group exercises and advanced to large muscle group exercises (SM-LG). The exercise order for LG-SM was bench press (BP), machine lat pull-down (LPD), triceps extension (TE), and biceps curl (BC). The order for the SM-LG was BC, TE, LPD, and BP. The third group did not exercise and served as a control group (CG). Training frequency was 2 sessions per week with at least 72 hours of rest between sessions. Muscle volume was assessed at baseline and after 6 weeks and 12 weeks of training by ultrasound techniques. One repetition maximum strength for all exercises was assessed at baseline and after 12 weeks of training. Effect size data demonstrated that differences in strength and MV were exhibited based on exercise order. Both training groups demonstrated greater strength improvements than the CG, but only BP strength increased to a greater magnitude in the LG-SM group as compared with the SM-LG. In all other strength measures (LPD, TE, and BC), the SM-LG group showed significantly greater strength increases. Triceps MV increased in the SM-LG group; however, biceps MV did not differ significantly between the training groups. In conclusion, if an exercise is important for the training goals of a program, then it should be placed at the beginning of the training session, regardless of whether or not it is a large muscle group exercise or a small muscle group exercise.  相似文献   

2.
The objective of this study was to verify the effect of 2 periodized resistance training (RT) methods on the evolution of 1-repetition maximum (1RM) and 8RM loads. Twenty resistance trained men were randomly assigned to 2 training groups: linear periodization (LP) group and daily undulating periodization (DUP) group. The subjects were tested at baseline and after 12 weeks for 1RM and 8RM loads in leg press (LEG) and bench press (BP) exercises. The training program was performed in alternated sessions for upper (session A: chest, shoulder and triceps) and lower body (session B: leg, back and biceps). The 12-week periodized training was applied only in the tested exercises, and in the other exercises, 3 sets of 6-8RM were performed. Both groups exhibited significant increases in 1RM loads on LEG and BP, but no statistically significant difference between groups was observed. The same occurred in 8RM loads on LEG and BP. However, DUP group presented superior effect size (ES) in 1RM and 8RM loads for LEG and BP exercises when compared to the LP group. In conclusion, periodized RT can be an efficient method for increasing the strength and muscular endurance in trained individuals. Although there was no statistically significant difference between periodization models, DUP promoted superior ES gains in muscular maximal and submaximal strength.  相似文献   

3.
The purpose of this study was to compare linear (LT) with nonlinear (NL) in-season training programs in freshman football players during the course of 2 separate seasons. During the first year (n = 14, mean +/- SD = 177.3 +/- 4.8 cm, 88.0 +/- 9.7 kg), the LT program was employed 2 days per week. In the second year (n = 14, 175.0 +/- 7.1 cm, 94.2 +/- 20.5 kg), a 2 days per week LT was used. Subjects were tested for maximal strength in the squat (1 repetition maximum [1RM]) and bench press (1RM) exercises. A significant improvement in 1RM squat was seen in LT, but not in NL. No significant improvement in 1RM bench press was seen in either group. A significant difference between LT and NL was observed in Delta1RM squat (13.8 +/- 7.4 kg compared with 1.6 +/- 2.6 kg, respectively). Results of this study suggest that LT may be more effective in eliciting strength gains than NL in freshman football players during an in-season training program.  相似文献   

4.
Few studies and reports in the body of literature have directly addressed the issue of whether resistance exercise sets should be performed to failure. Research has clearly demonstrated the superiority of performing multiple sets vs. single sets for increases in maximal strength. However, there is little direct evidence to decide conclusively whether or not multiple sets should be performed to failure. Therefore, the purpose of this research note was to discuss what is currently known concerning the application of training to failure and to stimulate further research on this topic. Although not essential for increases in muscular characteristics such as strength and hypertrophy, training to failure might allow advanced lifters to break through training plateaus when incorporated periodically into short-term microcycles. Because muscular hypertrophy is a key contributor to long-term increases in maximal strength, advanced lifters should consider training to failure occasionally. The potential mechanisms by which training to failure might provide an advantage are through greater activation of motor units and secretion of growth-promoting hormones. However, training to failure is not an effective stimulus without lifting at a sufficient intensity (percentage of 1 repetition maximum). Furthermore, training to failure should not be performed repeatedly over long periods, due to the high potential for overtraining and overuse injuries. Therefore, the training status and the goals of the lifter should guide the decision-making process on this issue.  相似文献   

5.
The purpose of this study was to compare linear periodization (LP) and daily undulating periodization (DUP) for strength gains. Twenty men (age = 21 +/- 2.3 years) were randomly assigned to LP (n = 10) or DUP (n = 10) groups. One repetition maximum (1RM) was recorded for bench press and leg press as a pre-, mid-, and posttest. Training involved 3 sets (bench press and leg press), 3 days per week. The LP group performed sets of 8 RM during weeks 1-4, 6 RM during weeks 4-8, and 4 RM during weeks 9-12. The DUP group altered training on a daily basis (Monday, 8 RM; Wednesday, 6 RM; Friday, 4 RM). Analysis of variance with repeated measures revealed statistically significant differences favoring the DUP group between T1 to T2 and T1 to T3. Making program alterations on a daily basis was more effective in eliciting strength gains than doing so every 4 weeks.  相似文献   

6.
The purpose of this study was to determine the effects of a running-specific, periodized strength training program (performed over the specific period [8 weeks] of a 16-week macrocycle) on endurance-trained runners' capacity to maintain stride length during running bouts at competitive speeds. Eighteen well-trained middle-distance runners completed the study (personal bests for 1500 and 5000 m of 3 minutes 57 seconds +/- 12 seconds and 15 minutes 24 seconds +/- 36 seconds). They were randomly assigned to each of the following groups (6 per group): periodized strength group, performing a periodized strength training program over the 8-week specific (intervention) period (2 sessions per week); nonperiodized strength group, performing the same strength training exercises as the periodized group over the specific period but with no week-to-week variations; and a control group, performing no strength training at all during the specific period. The percentage of loss in the stride length (cm)/speed (m.s) (SLS) ratio was measured by comparing the mean SLS during the first and third (last) group of the total repetitions, respectively, included in each of the interval training sessions performed at race speeds during the competition period that followed the specific period. Significant differences (p < 0.05) were found in mean percentage of SLS loss between the 3 study groups, with the periodized strength group showing no significant SLS change (0.36 +/- 0.95%) and the 2 other groups showing a moderate or high SLS loss (-1.22 +/- 1.5% and -3.05 +/- 1.2% for the nonperiodized strength and control groups, respectively). In conclusion, periodized, running-specific strength training minimizes the loss of stride length that typically occurs in endurance runners during fatiguing running bouts.  相似文献   

7.
The purpose of this study was to compare the acute neuromuscular fatigue during dynamic maximal strength and hypertrophic loadings, known to cause different adaptations underlying strength gain during training. Thirteen healthy, untrained males performed two leg press loadings, one week apart, consisting of 15 sets of 1 repetition maximum (MAX) and 5 sets of 10 repetition maximums (HYP). Concentric load and muscle activity, electromyography (EMG) amplitude and median frequency, was assessed throughout each set. Additionally, maximal bilateral isometric force and muscle activity was assessed pre-, mid-, and up to 30 min post-loading. Concentric load during MAX was decreased after set 10 (P<0.05), while the load was maintained throughout HYP. Both loadings caused large reductions in maximal isometric force (MAX=-30±6.4% vs. HYP=-48±9.7%, P<0.001). The decreased concentric and isometric strength during MAX loading was accompanied by reduced EMG amplitude (P<0.05). Conversely, hypertrophic loading caused decreased median frequency only during isometric contractions (P<0.01). During concentric contractions, EMG amplitude increased and median frequency decreased in HYP (P<0.01). Our results indicate reduced neural drive during MAX loading and more complex changes in muscle activity during HYP loading.  相似文献   

8.
Acute and long-term hormonal and neuromuscular adaptations to hypertrophic strength training were studied in 13 recreationally strength-trained men. The experimental design comprised a 6-month hypertrophic strength-training period including 2 separate 3-month training periods with the crossover design, a training protocol of short rest (SR, 2 minutes) as compared with long rest (LR, 5 minutes) between the sets. Basal hormonal concentrations of serum total testosterone (T), free testosterone (FT), and cortisol (C), maximal isometric strength of the leg extensors, right leg 1 repetition maximum (1RM), dietary analysis, and muscle cross-sectional area (CSA) of the quadriceps femoris by magnetic resonance imaging (MRI) were measured at months 0, 3, and 6. The 2 hypertrophic training protocols used in training for the leg extensors (leg presses and squats with 10RM sets) were also examined in the laboratory conditions at months 0, 3, and 6. The exercise protocols were similar with regard to the total volume of work (loads x sets x reps), but differed with regard to the intensity and the length of rest between the sets (higher intensity and longer rest of 5 minutes vs. somewhat lower intensity but shorter rest of 2 minutes). Before and immediately after the protocols, maximal isometric force and electromyographic (EMG) activity of the leg extensors were measured and blood samples were drawn for determination of serum T, FT, C, and growth hormone (GH) concentrations and blood lactate. Both protocols before the experimental training period (month 0) led to large acute increases (p < 0.05-0.001) in serum T, FT, C , and GH concentrations, as well as to large acute decreases (p < 0.05-0.001) in maximal isometric force and EMG activity. However, no significant differences were observed between the protocols. Significant increases of 7% in maximal isometric force, 16% in the right leg 1RM, and 4% in the muscle CSA of the quadriceps femoris were observed during the 6-month strength-training period. However, both 3-month training periods performed with either the longer or the shorter rest periods between the sets resulted in similar gains in muscle mass and strength. No statistically significant changes were observed in basal hormone concentrations or in the profiles of acute hormonal responses during the entire 6-month experimental training period. The present study indicated that, within typical hypertrophic strength-training protocols used in the present study, the length of the recovery times between the sets (2 vs. 5 minutes) did not have an influence on the magnitude of acute hormonal and neuromuscular responses or long-term training adaptations in muscle strength and mass in previously strength-trained men.  相似文献   

9.
Although a dose-response relationship between resistance training frequency and strength has been identified, there is limited research regarding the association between frequency and body composition. This study evaluated the effects of 3 vs. 4 d·wk(-1) of resistance training on body composition and strength in middle-aged women. Twenty-one untrained women (age 47.6 ± 1.2 years) completed 8 weeks of resistance training either 3 nonconsecutive days of the week using a traditional total-body protocol (RT3) or 4 consecutive days of the week using an alternating split-training protocol (RT4). The RT3 completed 3 sets of 8 exercises, whereas RT4 completed 3 sets of 6 upper body exercises or 6 sets of 3 lower body exercises. Both groups completed 72 sets per week of 8-12 repetitions at 50-80% 1 repetition maximum. Weekly training volume load was calculated as the total number of repetitions × load (kg) completed per week. Body composition was measured using air displacement plethysmography. At baseline and after 8 weeks of resistance training, there were no significant between-group differences. Both protocols resulted in significant increases in absolute lean mass (1.1 ± 0.3 kg; p = 0.001), body weight (1.02 ± 0.3 kg; p = 0.005), body mass index (0.3 ± 0.1 kg·m(-2); p = 0.006), strength (p < 0.001), and weekly training volume load (p < 0.001). Correlation analysis revealed that weekly training volume load was strongly and positively related to gains in lean mass (r = 0.56, p = 0.05) and strength (r = 0.60, p = 0.006). In these untrained, middle-aged women, initial short-term gains in lean mass and strength were not influenced by training frequency when the number of training sets per week was equated.  相似文献   

10.
ABSTRACT: Santos, EJAM and Janeira, MAAS. The effects of resistance training on explosive strength indicators in adolescent basketball players. J Strength Cond Res 26(10): 2641-2647, 2012-The purpose of this study was to assess the effects of a lower- and upper-body 10-week in-season resistance training program on explosive strength development in young basketball players. Twenty-five adolescent male athletes, aged 14-15 years old, were randomly assigned to an experimental group (EG; n = 15) and a control group (CG; n = 10). The subjects were assessed at baseline and after training for squat jump (SJ), countermovement jump (CMJ), Abalakov test, drop jump, and seated medicine ball throw (MBT). The EG showed significant increases (p < 0.05) in all the variable scores. Conversely, the CG significantly decreased (p < 0.05) in SJ, CMJ, and Abalakov test scores and significantly increased in the results of MBT test (p < 0.05). The groups were similar on pretest, but significant differences (p < 0.05) occurred on posttest in all the variables. The results of this study show that a 10-week in-season resistance training program with moderate volume and intensity loads increased vertical jump and MBT performance in adolescent male basketball players. Coaches should know that such a short resistance training program specifically designed for young basketball players induce increased explosivity levels, which are essential to a better basketball performance, with no extra overload on adolescents' skeletal muscle development.  相似文献   

11.
Changes in strength, body composition and anthropometric measures for groups training with constant resistance and variable resistance training procedures was compared. Thirty-six male volunteers were randomly assigned to one of three groups: Constant Resistance (CR), Variable Resistance (VR) and Control (C). Strength training was conducted 3 days per week, 45 min per day, for 10 weeks. The results demonstrated that both the CR and the VR groups increased muscular strength. The CR group demonstrated significant increases in strength over the VR group when strength was assessed by CR procedures. Conversely, the VR group demonstrated significant increases in strength over the CR group when strength was assessed by VR procedures. Neither group exhibited superiority over the other relative to changes in body composition and anthropometric measures. The significance of these results is discussed.  相似文献   

12.
Interaction between concurrent strength and endurance training   总被引:1,自引:0,他引:1  
To assess the effects of concurrent strength (S) and endurance (E) training on S and E development, one group (4 young men and 4 young women) trained one leg for S and the other leg for S and E (S+E). A second group (4 men, 4 women) trained one leg for E and the other leg for E and S (E+S). E training consisted of five 3-min bouts on a cycle ergometer at a power output corresponding to that requiring 90-100% of oxygen uptake during maximal exercise (VO2 max). S training consisted of six sets of 15-20 repetitions with the heaviest possible weight on a leg press (combined hip and knee extension) weight machine. Training was done 3 days/wk for 22 wk. Needle biopsy samples from vastus lateralis were taken before and after training and were examined for histochemical, biochemical, and ultrastructural adaptations. The nominal S and E training programs were "hybrids", having more similarities as training stimuli than differences; thus S made increases (P less than 0.05) similar to those of S+E in E-related measures of VO2max (S, S+E: 8%, 8%), repetitions with the pretraining maximal single leg press lift [1 repetition maximum (RM)] (27%, 24%), and percent of slow-twitch fibers (15%, 8%); and S made significant, although smaller, increases in repetitions with 80% 1 RM (81%, 152%) and citrate synthase (CS) activity (22%, 51%). Similarly, E increased knee extensor area [computed tomography (CT) scans] as much as E+S (14%, 21%) and made significant, although smaller, increases in leg press 1 RM (20%, 34%) and thigh girth (3.4%, 4.8%). When a presumably stronger stimulus for an adaptation was added to a weaker one, some additive effects occurred (i.e., increases in 1 RM and thigh girth that were greater in E+S than E; increases in CS activity and repetitions with 80% 1 RM that were greater in S+E than S). When a weaker, although effective, stimulus was added to a stronger one, addition generally did not occur. Concurrent S and E training did not interfere with S or E development in comparison to S or E training alone.  相似文献   

13.
The purpose of the present study was to compare the effects of a program of resistance training in water-based exercises (RWE) with those of a program without resistance control in water-based exercises (WEs). Twenty-seven women (aged 60-74 years) were randomly assigned to the RWE group (n = 10), WE group (n = 10), or nontraining control (CON) group (n = 7). The RWE and WE groups trained classes with aerobic exercises and localized muscular resistance exercises for 50 minutes, twice a week for 12 weeks. For the RWE group, the program included 4 mesocycles of 3 weeks-respectively, 4 sets of 15 repetitions, 4 sets of 12 repetitions, 5 sets of 10 repetitions, and 5 sets of 8 repetitions-of shoulder horizontal flexion exercise at maximum speed, with the use of resistive equipment. For the WE group, the training was not periodized, and the resistance in the localized muscular exercises was not controlled. One repetition maximum (1RM) was measured on a pectoral fly machine at baseline and after the training period. The level of significance adopted was p ≤ 0.05. The results showed that the only significant increase in 1RM (10.89%, p < 0.001) occurred in the RWE group after training. In conclusion, these findings suggest that WEs with emphasis on resistance training in a periodized program can efficiently increase maximum strength in elderly women. Thus, it is suggested that the strategies used in WE programs be modified to offer suitable stimuli for the development of strength.  相似文献   

14.
The purpose of this study was to compare the effects of short-term unilateral resistance training (UL) and bilateral resistance training (BL) with free weights on several tests of unilateral and bilateral lower-body strength and power in men and women. Thirty-eight untrained men and women (mean body mass 78.3 +/- 21.47 kg; age 20.74 +/- 2.6 years) completed the study. The groups trained 2 days per week for 8 weeks with free weights and 2 days per week for 5 of the 8 weeks with plyometric drills. The resistance-training program consisted of a progression from 3 sets of 15 repetitions at 50% of the subject's predicted 1 repetition maximum (1RM) to 6 sets of 5 repetitions at 87% 1RM. Training volume and intensity were equal for each group. The free-weight squat was used to measure unilateral and bilateral strength. Power was measured by the Magaria-Kalamen stair-climb test and the unilateral and bilateral vertical jump test. Analysis of covariance was used to analyze differences between men and women and the interaction of group and gender. Pretest scores were used as the covariate. The UL group improved more than the BL group on the unilateral vertical jump height (p = 0.001) and relative power (p = 0.013). After adjusting for pretest differences, the improved scores on all tests, except for the unilateral squat, were similar between the men and the women. No significant interactions on all tests were found for the men or women comparison between training groups. These results indicate that UL and BL are equally effective for early phase improvement of unilateral and bilateral leg strength and power in untrained men and women.  相似文献   

15.
The strength cycle ergometer has been proposed as a method of simultaneously increasing aerobic conditioning and muscular strength, because of its unique capacity of disengaging the pedal crank, thus allowing for concurrent single-leg cycling. The purpose of this study was to assess the aerobic and muscular strength effects of strength cycle training (SCT), comparing it to similar standard cycle training. A total of 28 recreationally-trained adult subjects (9 men, 19 women) were paired for VO2peak and randomly assigned to either SCT or Monark cycle training (MCT). Subjects trained 3 days per week following a progressive interval protocol for 9 weeks under supervised conditions. Training intervals (5 minutes' duration) consisted of 3 minutes of standard cycling at an intensity of 60-85% of maximum heart rate (HRmax), and 2 minutes of either the disengaged cycling mode (SCT) or standard cycling plus 30 W (MCT). Subjects began training for a total of 25 minutes per session, progressing to 45 minutes per session by study's end. Prior to and following training, subjects were measured for VO2peak; submaximal VO2, heart rate (HR), RPE, power output, and knee and ankle isokinetic strength. Training resulted in significant (p < or = 0.05) increases in VO2peak (14.5%) and submaximal power output (11%), and significant reductions in submaximal VO2, HR, and RPE in both groups. Significant increases in bilateral isokinetic knee extension (4-6%) and left ankle plantar flexion (10.5%) were noted following training in both groups. No group differences were detected in any variable. Although the strength cycle effectively increased aerobic function and resulted in modest selected increases in lower-extremity muscular strength, these changes were not different from those seen using a similar standard cycling protocol.  相似文献   

16.
A decreased hamstring:quadriceps (H:Q) ratio may put the hamstrings and anterior cruciate ligament (ACL) at increased risk of injury. Therefore, the purpose of this study was to evaluate H:Q ratios of 12 female National Collegiate Athletic Association soccer players, and to test the effects of a 6-week strength training program on these ratios. Each subject completed 2 practice sessions before a pretest. Subjects then completed 6 weeks of strength training that included the addition of 2 hamstring specific exercises, followed by a posttest. Peak torque during concentric and eccentric actions for both hamstrings and quadriceps was measured with an isokinetic dynamometer. Each muscle action was tested at 3 angular velocities in the following order: concentric 240, 180, and 60 degrees x s(-1) and eccentric 60, 180, and 240 degrees x s(-1). The H:Q strength ratio was evaluated using concentric muscle actions (concentric hamstrings:concentric quadriceps). This method is commonly used and is thus called the conventional ratio. Because concentric actions do not occur simultaneously in opposing muscles, a more functional assessment compares eccentric hamstring actions to concentric quadriceps actions. This functional ratio was also analyzed. Mean conventional and functional H:Q ratio data were analyzed using separate analysis of variance procedures with repeated measures on all factors (2 [Test] x 2 [Leg] x 3 [Angular Velocity]). The results revealed a significant main effect for factor (F test) with the functional ratio (p < 0.05) but not for the conventional ratio. The mean functional ratio increased from 0.96 +/- 0.09 in pretest to 1.08 +/- 0.11 in posttest. These results suggest that 6 weeks of strength training that emphasizes hamstrings is sufficient to significantly increase the functional ratio. The functional ratio after training exceeded 1.0, which is specifically recommended for prevention of ACL injuries.  相似文献   

17.
The purpose of this study was to examine the effects of a 6-week, periodized squat training program, with or without whole-body low-frequency vibration (WBLFV), applied before and between sets to 1RM squat strength and body composition. Thirty men aged between 20 and 30 years with at least 6 months of recreational weight training experience completed the study. Subjects were randomly assigned to either 1 of 2 training groups or to an active control group (CON). Group 1 (CON; n = 6) did not participate in the training protocol but participated only in testing sessions. Group 2 (SQTV, n = 13) performed 6 weeks of squat training while receiving WBLFV (50 Hz), before, and in-between sets. The third group (SQT, n = 11) performed 6 weeks of squat training only. Subjects completed 12 workouts with variable loads (55-90% one repetition maximum [1RM]) and sets (), performing squats twice weekly separated by 72 hours. The RM measures were recorded on weeks (W) 1, 3, and 7. During the second workout of a week, the load was reduced by 10-15%, with "speed squats" performed during the final 3 weeks. Rest periods in between sets were set at 240 seconds. The WBLFV was applied while subjects stood on a WBLFV platform holding an isometric quarter squat position (knee angle 135 ± 5°). Initially, WBLFV was applied at 50 Hz for 30 seconds at low amplitude (peak-peak 2-4 mm). A rest period of 180 seconds followed WBLFV exposure before the first set of squats. The WBLFV was then applied intermittently (3 × 10 seconds) at 50 Hz, high amplitude (peak-peak, 4-6 mm) at time points, 60, 120, and 180 seconds into the 240-second rest period. Total body dual x-ray absorptiometry scans were performed at W0 (week before training) and W7 (week after training). Measures recorded included total body mass (kg), total body lean mass (TLBM, kg), trunk lean mass (kg), leg lean mass (kg), total body fat percentage, trunk fat percentage, and leg fat percentage (LF%). Repeated-measures analysis of variance and analysis of covariance revealed 1RM increased significantly between W1-W3, W3-W7, and W1-W7 for both experimental groups but not for control (p = 0.001, effect size [ES] = 0.237, 1 - β = 0.947). No significant differences were seen for %Δ (p > 0.05). Significant group by trial and group effects were seen for TLBM, SQTV > CON at W7 (p = 0.044). A significant main effect for time was seen for LF%, W0 vs. W7 (p = 0.047). No other significant differences were seen (p > 0.05). "Practical trends" were seen favoring "short-term" neuromuscular adaptations for the SQTV group during the first 3 weeks (p = 0.10, ES = 0.157, 1 - β = 0.443, mean diff; SQTV week 3 4.72 kg > CON and 2.53 kg > SQT). Differences in motor unit activation patterns, hypertrophic responses, and dietary intake during the training period could account for the trends seen.  相似文献   

18.
The purpose of this study was to evaluate the early-phase muscular performance adaptations to 5 weeks of traditional (TRAD) and eccentric-enhanced (ECC+) progressive resistance training and to compare the acute postexercise total testosterone (TT), bioavailable testosterone (BT), growth hormone (GH), and lactate responses in TRAD- and ECC+-trained individuals. Twenty-two previously untrained men (22.1 +/- 0.8 years) completed 1 familiarization and 2 baseline bouts, 15 exercise bouts (i.e., 3 times per week for 5 weeks), and 2 postintervention testing bouts. Anthropometric and 1 repetition maximum (1RM) measurements (i.e., bench press and squat) were assessed during both baseline and postintervention testing. Following baseline testing, participants were randomized into TRAD (4 sets of 6 repetitions at 52.5% 1RM) or ECC+ (3 sets of 6 repetitions at 40% 1RM concentric and 100% 1RM eccentric) groups and completed the 5-week progressive resistance training protocols. During the final exercise bout, blood samples acquired at rest and following exercise were assessed for serum TT, BT, GH, and blood lactate. Both groups experienced similar increases in bench press (approximately 10%) and squat (approximately 22%) strength during the exercise intervention. At the conclusion of training, postexercise TT and BT concentrations increased (approximately 13% and 21%, respectively, p < 0.05) and GH concentrations increased (approximately 750-1200%, p < 0.05) acutely following exercise in both protocols. Postexercise lactate accumulation was similar between the TRAD (5.4 +/- 0.4) and ECC+ (5.6 +/- 0.4) groups; however, the ECC+ group's lactate concentrations were significantly lower than those of the TRAD group 30 to 60 minutes into recovery. In conclusion, TRAD training and ECC+ training appear to result in similar muscular strength adaptations and neuroendocrine responses, while postexercise lactate clearance is enhanced following ECC+ training.  相似文献   

19.
Complex training (CT; alternating between heavy and lighter load resistance exercises with similar movement patterns within an exercise session) is a form of training that may potentially bring about a state of postactivation potentiation, resulting in increased dynamic power (Pmax) and rate of force development during the lighter load exercise. Such a method may be more effective than either modality, independently for developing strength. The purpose of this research was to compare the effects of resistance training (RT), plyometric training (PT), and CT on lower body strength and anthropometrics. Thirty recreationally trained college-aged men were trained using 1 of 3 methods: resistance, plyometric, or complex twice weekly for 6 weeks. The participants were tested pre, mid, and post to assess back squat strength, Romanian dead lift (RDL) strength, standing calf raise (SCR) strength, quadriceps girth, triceps surae girth, body mass, and body fat percentage. Diet was not controlled during this study. Statistical measures revealed a significant increase for squat strength (p = 0.000), RDL strength (p = 0.000), and SCR strength (p = 0.000) for all groups pre to post, with no differences between groups. There was also a main effect for time for girth measures of the quadriceps muscle group (p = 0.001), the triceps surae muscle group (p = 0.001), and body mass (p = 0.001; post hoc revealed no significant difference). There were main effects for time and group × time interactions for fat-free mass % (RT: p = 0.031; PT: p = 0.000). The results suggest that CT mirrors benefits seen with traditional RT or PT. Moreover, CT revealed no decrement in strength and anthropometric values and appears to be a viable training modality.  相似文献   

20.
Morton, SK, Whitehead, JR, Brinkert, RH, and Caine, DJ. Resistance training vs. static stretching: Effects on flexibility and strength. J Strength Cond Res 25(12): 3391-3398, 2011-The purpose of this study was to determine how full-range resistance training (RT) affected flexibility and strength compared to static stretching (SS) of the same muscle-joint complexes in untrained adults. Volunteers (n = 25) were randomized to an RT or SS training group. A group of inactive volunteers (n = 12) served as a convenience control group (CON). After pretesting hamstring extension, hip flexion and extension, shoulder extension flexibility, and peak torque of quadriceps and hamstring muscles, subjects completed 5-week SS or RT treatments in which the aim was to stretch or to strength train the same muscle-joint complexes over similar movements and ranges. Posttests of flexibility and strength were then conducted. There was no difference in hamstring flexibility, hip flexion, and hip extension improvement between RT and SS, but both were superior to CON values. There were no differences between groups on shoulder extension flexibility. The RT group was superior to the CON in knee extension peak torque, but there were no differences between groups on knee flexion peak torque. The results of this preliminary study suggest that carefully constructed full-range RT regimens can improve flexibility as well as the typical SS regimens employed in conditioning programs. Because of the potential practical significance of these results to strength and conditioning programs, further studies using true experimental designs, larger sample sizes, and longer training durations should be conducted with the aim of confirming or disproving these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号