首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four apical components were used as markers for the apical end of the cell in studies centering on cell polarity in the early blastula stage of sea urchin embryos and in aggregates of cleavage stage cells. Cells were observed to maintain their polarity for several hours if dissociated and cultured in suspension. Orientation of cells in aggregates initially is random; however, within 3 hr the cells have reoriented so that their apical-basal axis corresponds to the correct inside-outside position in the aggregate. This reorientation occurs before formation of a basal lamina or a new hyalin layer in the aggregate, and appears to take place by a rotation or other movement of individual cells. The polarity within each cell is maintained during reorientation. An apical surface antigen is colocalized with concentrations of filamentous actin. Treatment of isolated cells with cytochalasin B causes the antigen to lose its apical position and eventually become distributed around the outside of the cell. Microtubules are visible radiating from two foci closely associated with the nucleus in untreated cells. Treatment of isolated cells with nocodazole leaves the apical cell surface marker and its associated actin undisturbed, but causes the nucleus to lose its apical position. Cytochalasin B and colchicine both prevent reorientation of cells in aggregates. Thus polarity appears to be a constant for the cells, and their reorientation in aggregates occurs prior to the polarized release of extraembryonic matrix and basal lamina.  相似文献   

2.
《Cytokine》2015,71(2):87-96
Autophagy and apoptosis are important in maintaining the metabolic homeostasis of intervertebral disc cells, and transforming growth factor-β1 (TGF-β1) is able to delay intervertebral disc degeneration. This study determined the effect of TGF-β1 on the crosstalk between autophagy and apoptosis in the disc cells, with the aim to provide molecular mechanism support for the prevention and treatment of disc degeneration. Annulus fibrosus (AF) cells were isolated and cultured under serum starvation. 10 ng/mL TGF-β1 reduced the apoptosis incidence in the cells under serum starvation for 48 h, down-regulated the autophagy incidence in the cells pretreated with 3-methyladenine (3-MA) or Bafilomycin A (Baf A), partly rescued the increased apoptosis incidence in the cells pretreated with 3-MA, while further reduced the decreased apoptosis incidence in the cells pretreated with Baf A. Meanwhile, TGF-β1 down-regulated the expressions of autophagic and apoptotic markers in the cells under starvation, partly down-regulated the expressions of Beclin-1, LC3 II/I and cleaved caspase-3 in the cells pretreated with 3-MA or Baf A, while significantly decreased the expression of Bax/Bcl-2 in the cells pretreated with Baf A. 3-MA blocked the phosphorylation of both AKT and mTOR and partly reduced the inhibitory effect of TGF-β1 on the expression of LC3 II/I and cleaved caspase-3. TGF-β1 enhanced the expression of p-ERK1/2 and down-regulated the expressions of LC3 II/I and cleaved caspase-3. U0126 partly reversed this inhibitory effect of TGF-β1. In conclusion, TGF-β1 protected against apoptosis of AF cells under starvation through down-regulating excessive autophagy. PI3K–AKT–mTOR and MAPK–ERK1/2 were the possible signaling pathways involved in this process.  相似文献   

3.

Background

mtRF1 is a vertebrate mitochondrial protein with an unknown function that arose from a duplication of the mitochondrial release factor mtRF1a. To elucidate the function of mtRF1, we determined the positions that are conserved among mtRF1 sequences but that are different in their mtRF1a paralogs. We subsequently modeled the 3D structure of mtRF1a and mtRF1 bound to the ribosome, highlighting the structural implications of these differences to derive a hypothesis for the function of mtRF1.

Results

Our model predicts, in agreement with the experimental data, that the 3D structure of mtRF1a allows it to recognize the stop codons UAA and UAG in the A-site of the ribosome. In contrast, we show that mtRF1 likely can only bind the ribosome when the A-site is devoid of mRNA. Furthermore, while mtRF1a will adopt its catalytic conformation, in which it functions as a peptidyl-tRNA hydrolase in the ribosome, only upon binding of a stop codon in the A-site, mtRF1 appears specifically adapted to assume this extended, peptidyl-tRNA hydrolyzing conformation in the absence of mRNA in the A-site.

Conclusions

We predict that mtRF1 specifically recognizes ribosomes with an empty A-site and is able to function as a peptidyl-tRNA hydrolase in those situations. Stalled ribosomes with empty A-sites that still contain a tRNA bound to a peptide chain can result from the translation of truncated, stop-codon less mRNAs. We hypothesize that mtRF1 recycles such stalled ribosomes, performing a function that is analogous to that of tmRNA in bacteria.

Reviewers

This article was reviewed by Dr. Eugene Koonin, Prof. Knud H. Nierhaus (nominated by Dr. Sarah Teichmann) and Dr. Shamil Sunyaev.  相似文献   

4.
5.
Engraftment of human embryonic stem cell (hESC)-derived OPCs in animal models of demyelination results in remyelination and clinical recovery, supporting the feasibility of cell replacement therapies in promoting repair of damaged neural tissue. A critical gap in our understanding of the mechanisms associated with repair revolves around the effects of the local microenvironment on transplanted cell survival. We have determined that treatment of human ESC-derived OPCs with the pleiotropic cytokine IFN-γ promotes apoptosis that is associated with mitochondrial cytochrome c released into the cytosol with subsequent caspase 3 activation. IFN-γ-induced apoptosis is mediated, in part, by secretion of the CXC chemokine ligand 10 (CXCL10) from IFN-γ-treated cells. Signaling through the chemokine receptor CXCR2 by the ligand CXCL1 functions in a tonic manner by muting apoptosis and this is associated with reduced levels of cytosolic cytochrome c and impaired cleavage of caspase 3. These findings support a role for both IFN-γ and CXCL10 in contributing to neuropathology by promoting OPC apoptosis. In addition, these data suggest that hOPCs used for therapeutic treatment for human neurologic disease/damage are susceptible to death through exposure to local inflammatory cytokines present within the inflammatory milieu.  相似文献   

6.
Milsom MD  Williams DA 《DNA Repair》2007,6(8):1210-1221
Gene transfer into hematopoietic stem cells (HSC) provides a potential means of correcting monogenic defects and altering drug sensitivity of normal bone marrow to cytotoxic agents. These applications have significant therapeutic potential but the translation of successful murine studies into human therapies has been hindered by low gene transfer in large animals (including humans), and recent serious side effects in a human immunodeficiency trial related to insertional mutagenesis. The latter trial, along with other subsequent trials, while bringing into focus the potential risks of integrating vector systems, also clearly demonstrate the potential usefulness of in vivo selection as it relates to inefficient stem cell transduction. Developing from initial studies by our group and other investigators in which drug resistance was utilized to demonstrate the feasibility of using gene transfer to effect protection from myelotoxicity of chemotherapeutic agents, expression of mutant forms of O(6)-methyguanine-DNA-methytransferase (MGMT) coupled with the simultaneous use of pharmacologic inhibitors and chemotherapeutic agents has been shown to provide a powerful method to select HSC in vivo. While stem and progenitor cell protection and resulting selection in vivo has potential applications for the treatment of selected cancers (allowing dose escalation) and for correction of monogenic disease (allowing an iatrogenic survival advantage of transduced cells in vivo), such an in vivo selection may have untoward effects on stem cell behavior. These deleterious effects may include stem cell exhaustion; lineage skewing; accumulation of genotoxic lesions; and clonal dominance driven towards a pro-leukemic phenotype. Knowledge of the likelihood of such deleterious events occurring as well as their potential implications will be critical to future clinical applications and may also enhance our understanding of both normal stem cell behavior and the evolution of hematopoietic malignancies.  相似文献   

7.
Intracellular targeting of the Pseudomonas aeruginosa toxins, such as exoenzyme S (ExoS), cause cell death, as well as morphological and physiological changes in various tissue culture cells and animal models. In this report we have investigated the mechanism behind ExoS-mediated cell death. In order to address this issue, we have used cell lines expressing activated forms of various components of the Ras signalling pathway in order to evaluate the importance of the Ras pathway for viability and survival upon ExoS infection. Here we show that activated Ras is able to protect cells against cell death, regardless of whether it has been ADP-ribosylated by ExoS. Further, an activated form of protein kinase B (PKB)/Akt also leads to decreased level of cell death in response to ExoS infection, indicating that an important ExoS survival target is located upstream of Raf-1 and PKB/Akt. Moreover, we show that ExoS infection inhibits phosphorylation of FOXO3a, and induces caspase-3 activity, which are hallmarks for induction of cell death. In conclusion, we suggest that Ras proteins are an important cellular target for the P. aeruginosa toxin ExoS, which induces cell death during pathogenesis as a means of defending the bacterium against eukaryotic phagocytosis.  相似文献   

8.

Introduction  

Recent evidence suggests that intervertebral disc (IVD) cells derived from degenerative tissue are unable to respond to physiologically relevant mechanical stimuli in the 'normal' anabolic manner, but instead respond by increasing matrix catabolism. Understanding the nature of the biological processes which allow disc cells to sense and respond to mechanical stimuli (a process termed 'mechanotransduction') is important to ascertain whether these signalling pathways differ with disease. The aim here was to investigate the involvement of interleukin (IL)-1 and IL-4 in the response of annulus fibrosus (AF) cells derived from nondegenerative and degenerative tissue to cyclic tensile strain to determine whether cytokine involvement differed with IVD degeneration.  相似文献   

9.
The proteasome has been implicated in the control of apoptosis by modulating the levels of both pro- and antiapoptotic molecules. A recent study published in the April 9th issue of Molecular Cell reveals that caspase-dependent inactivation of the proteasome can amplify the activation of apoptosis.  相似文献   

10.
11.
Mirkes PE 《Teratology》2002,65(5):228-239
Cell death is a common and reproducible feature of the development of many mammalian tissues/organs. Two well-known examples of programmed cell death (PCD) are the cell deaths associated with fusion of the neural folds and removal of interdigital mesenchymal cells during digit formation. Like normal development, abnormal development is also associated with increased cell death in tissues/organs that develop abnormally after exposure to a wide variety of teratogens. At least in some instances, teratogens induce cell death in areas of normal PCD, suggesting that there is a link between programmed and teratogen-induced cell death. Although researchers recognized early on that cell death is an integral part of both normal and abnormal development, little was known about the mechanisms of cell death. In 1972, Kerr et al. ('72) showed conclusively that cell deaths, induced in a variety of contexts, followed a reproducible pattern, which they termed apoptosis. The next breakthrough came in the 1980s when Horvitz and his colleagues identified specific cell death genes (ced) that controlled PCD in the roundworm, Caenorhabditis elegans (C. elegans). Identification of ced genes in the roundworm quickly led to the isolation of their mammalian homologues. Subsequent research in the 1990s led to the identification of a cadre of proteins controlling cell death in mammals, i.e., receptors/ligands, caspases, cytochrome c, Apaf-1, Bcl-2 family proteins, and IAPs. Two major pathways of apoptosis have now been elucidated, the receptor-mediated and the mitochondrial apoptotic pathways. The latter pathway, induced by a wide variety of toxic agents, is activated by the release of cytochrome c from mitochondria. Cytochrome c then facilitates the activation of a caspase cascade involving caspase-9 and -3. Activation of these caspases results in the cleavage of a variety of cellular proteins leading to the orderly demise of the cell. Work from my laboratory in the last 5 years has shown that teratogens, such as hyperthermia, 4-hydroperoxycyclophosphamide, and staurosporine, induce cell death in day 9 mouse embryos by activating the mitochondrial apoptotic pathway, i.e., mitochondrial release of cytochrome c, activation of caspase-9 and -3, inactivation of poly (ADP-ribose) polymerase (PARP), and systematic degradation of DNA. Our work, as well as the work of others, has also shown that different tissues within the early post implantation mammalian embryo are differentially sensitive to the cell death inducing potential of teratogens, from exquisite sensitivity of cells in the developing central nervous system to complete resistance of cells in the developing heart. More importantly, we have shown that the resistance of heart cells is directly related to the failure to activate the mitochondrial apoptotic pathway in these cells. Thus, whether a cell dies in response to a teratogen and therefore contributes to the pathogenesis culminating in birth defects, depends, at least in part, by the cell's ability to regulate the mitochondrial apoptotic pathway. Future research aimed at understanding this regulation should provide insight not only into the mechanism of teratogen-induced cell death but also the role of cell death in the genesis of birth defects.  相似文献   

12.
Ceramides are potent lipid second messengers that are involved in apoptotic and hypoxic/ischaemic neurone death. We investigated the role of mitochondria and the mitochondrial apoptosis pathway in ceramide-induced cell death using human D283 medulloblastoma cells with a reduced mitochondrial DNA copy number (rho- cells) and a corresponding defect in mitochondrial respiration. Treatment with the complex I inhibitor rotenone, C2- or C8-ceramide induced cell death in D283 control cells, while rho- cells were significantly protected. In contrast, activation of the mitochondrial apoptosis pathway by transient overexpression of the pro-apoptotic Bax protein or exposure to the kinase inhibitor staurosporine induced apoptosis to a similar extent in control and rho- cells. Overexpression of the antiapoptotic protein Bcl-xL failed to inhibit the toxic effect of C2-ceramide in D283 control cells, and no significant increase in caspase-3-like protease activity could be detected during the death process. Despite this, C2-ceramide induced significant chromatin condensation and cell shrinkage in D283 control cells, reminiscent of apoptosis. These morphological alterations were associated with the activation of calpains. Both apoptotic morphology and calpain activation were attenuated in rho- cells. Our data indicate that the apoptosis-inducing effect of C2-ceramide may require mitochondrial respiratory chain activity and can occur independently of the mitochondrial apoptosis pathway, but involves the activation of calpains.  相似文献   

13.
Staphylococcal enterotoxins are bacterial products that display superantigen activity in vitro as well as in vivo. For instance, staphylococcal enterotoxin B (SEB) polyclonally activates T cells that bear the Vbeta8 gene segment of the TCR. SEB-activated T cells undergo a burst of proliferation that is followed by apoptosis. Using an in vivo adaptation of a fluorescent cell division monitoring technique, we show here that SEB-activated T cells divide asynchronously, and that apoptosis of superantigen-activated T cells is preferentially restricted to cells which have undergone a discrete number of cell divisions. Collectively, our data suggest that superantigen-activated T cells are programmed to undergo a fixed number of cell divisions before undergoing apoptosis. A delayed death program may provide a mechanistic compromise between effector functions and homeostasis of activated T cells.  相似文献   

14.
Hypericin and hypocrellin are potential antiviral and antineoplastic agents with multiple modes of light-induced biological activity connected with a production of singlet oxygen and/or excited-state proton transfer and consequent pH drop formation in the drugs environment. In present work light-induced cytotoxicity of hypericin and hypocrellin and mechansim of cell death (apoptosis or necrosis) on human leukemic cell line HL-60 was studied. As a mean for apoptosis detection we used poly (ADP-ribose) polymerase (PARP) as a sensitive marker of early stages of apoptosis. Our results show that exposition of HL-60 cells to hypericin (1 x 10(-5) mol x l(-1)) for 4 hours has no effect on PARP cleavage. However, after 24 and 48 hours of illumination there is evident that hypericin in this concentration cleaved PARP (116 kDa) into two fragments (85 and 25 kDa). Contrary to hypericin, hypocrellin in concentration 1 x 10(-5) mol x l(-1) after 4 hours of illumination cleaved PARP into two fragments typical for apoptosis. In lower concentration (1 x 10(-6) mol x l(-1)) hypocrellin possess also significant cytotoxic activity. Because we detected no fragmentation of PARP in all observed time periods we suggest that cytotoxic effect of hypocrellin in this concentration is due to induction of necrosis. Our results support the hypotesis that the hypericin and hypocrellin has similar mechanism of action and illumination increases cytotoxic effect of both agents.  相似文献   

15.
Most models of optimum energy partitioning predict variability in adult size, although not always explicitly. Increase in size is usually attributed to an increase in the growth rate or decline in mortality. The model presented shows that this may not always be the case. Even when mortality is kept constant in organisms with overlapping generations, a constraint on the maximum reproductive growth rate may lead, when the rate of overall growth increases, to either an increase or a decline in the optimum adult body size. It is shown that adult size could be a consequence of the differential responses of life history traits to changes in temperature and food quality. This is clearly advantageous for short lived organisms, like aphids, each generation of which only experience a very small part of the great seasonal range in conditions. This hypothesis complements Iwasa's (1991) explanation of the phenotypic plasticity observed in long lived organisms. The predictions are illustrated with empirical data from aphids. The model presented, which has been verified against a very large data set, indicates that for aphids the adult weight observed at a particular combination of temperature and food quality is that at which the population growth rate, rm, is maximized. We conclude that predictions about adult size from models based on the partitioning of energy are more likely to apply to organisms that scramble for resources, i.e., “r” selected species. The size of organisms that contest for resources is more likely to be determined by competitive status and avoidance of natural enemies.  相似文献   

16.
Glutamate (Glu) dehydrogenase (GDH) catalyses the reversible amination of 2-oxoglutarate for the synthesis of Glu using ammonium as a substrate. This enzyme preferentially occurs in the mitochondria of companion cells of a number of plant species grown on nitrate as the sole nitrogen source. For a better understanding of the controversial role of GDH either in ammonium assimilation or in the supply of 2-oxoglutarate (F. Dubois, T. Terce-Laforgue, M.B. Gonzalez-Moro, M.B. Estavillo, R. Sangwan, A. Gallais, B. Hirel [2003] Plant Physiol Biochem 41: 565-576), we studied the localization of GDH in untransformed tobacco (Nicotiana tabacum) plants grown either on low nitrate or on ammonium and in ferredoxin-dependent Glu synthase antisense plants. Production of GDH and its activity were strongly induced when plants were grown on ammonium as the sole nitrogen source. The induction mainly occurred in highly vascularized organs such as stems and midribs and was likely to be due to accumulation of phloem-translocated ammonium in the sap. GDH induction occurred when ammonia was applied externally to untransformed control plants or resulted from photorespiratory activity in transgenic plants down-regulated for ferredoxin-dependent Glu synthase. GDH was increased in the mitochondria and appeared in the cytosol of companion cells. Taken together, our results suggest that the enzyme plays a dual role in companion cells, either in the mitochondria when mineral nitrogen availability is low or in the cytosol when ammonium concentration increases above a certain threshold.  相似文献   

17.
Previously, we reported that a peptide, p458, from the sequence of the mammalian 60-kDa heat shock protein (hsp60) molecule can serve as a carrier in conjugate vaccines with capsular polysaccharide (CPS) molecules of various bacteria. These conjugate vaccines were effective injected in PBS without added adjuvants. We now report that p458 conjugated to pneumococcal CPS type 4 (PS4) manifests innate adjuvant effects: it stimulated mouse macrophages to secrete IL-12 and induced the late appearance of PS4 on the macrophage surface in a TLR4-dependent manner; PS4 alone or conjugated to other carriers did not stimulate macrophages in vitro. The injection of macrophages manifesting PS4 on the surface into mice induced long-term resistance to lethal Streptococcus pneumoniae challenge. The TLR4 ligand LPS could also induce the late appearance on the surface of unconjugated PS4 and resistance to challenge in injected mice. Resistance was not induced by macrophages containing only internalized PS4 or by pulsed macrophages that had been lysed. Glutaraldehyde-fixed macrophages pulsed with PS4 did induce resistance to lethal challenge. Moreover, bone marrow-derived dendritic cells activated by LPS and pulsed with unconjugated CPS were also effective in inducing resistance to lethal challenge. Resistance induced by the PS4-pulsed bone marrow-derived dendritic cell was specific for pneumococcal CPS serotypes (type 3 or type 4) and was associated with the induction of CPS-specific IgG and IgM Abs.  相似文献   

18.
In the past, investigators have successfully used iron chelators to mitigate the cardiotoxicity of doxorubicin (DOX), a widely used anticancer drug that induces reactive oxygen species (ROS), oxidative damage, and apoptosis. Although intracellular iron plays a critical role in initiating DOX-induced apoptosis, the molecular mechanism(s) that link iron, ROS, and apoptosis are still unknown. In this study, we demonstrate that apoptosis results from the exposure of bovine aortic endothelial cells to DOX and that the apoptotic cell death is accompanied by a significant increase in cellular iron ((55)Fe) uptake and activation of iron regulatory protein-1. Furthermore, DOX-induced iron uptake was shown to be mediated by the transferrin receptor (TfR)-dependent mechanism. Treatment with the anti-TfR antibody (IgA class) dramatically inhibited DOX-induced apoptosis, iron uptake, and intracellular oxidant formation as measured by fluorescence using dichlorodihydrofluorescein. Treatment with cell-permeable iron chelators and ROS scavengers inhibited DOX-induced cellular (55)Fe uptake, ROS formation, and apoptosis. Based on these findings, we conclude that DOX-induced iron signaling is regulated by the cell surface TfR expression, intracellular oxidant levels, and iron regulatory proteins. The implications of TfR-dependent iron transport in oxidant-induced apoptosis in endothelial cells are discussed.  相似文献   

19.
20.
We compared twins to their gender-matched singleton classmates in peer-assessed behavioral adjustment. Our samples include 1874 11- to 12-year-old Finnish twins (687 monozygotic, MZ; 610 same-sex dizygotic, SSDZ; 577 opposite-sex dizygotic, OSDZ) and their 23,200 non-twin classmates. Data were collected using a 30-item Multidimensional Peer Nomination Inventory containing three factors and their subscales. We found twin-singleton differences: classmates rated twin girls and boys higher than gender-matched singletons in Adaptive Behaviors (constructive, compliant, and socially active behavior), and those effects were particularly evident among OSDZ twins for assessments of social interaction, popularity, and leadership. We found no evidence that individual twins differ from singletons in Externalizing (hyperactivity-impulsivity, inattention, aggression) or Internalizing Problem Behaviors (depressive symptoms, social anxiety). Nor did we find systematic differences between MZ and SSDZ twins. Among both twins and singletons, boys exceeded girls in Externalizing, and girls exceeded boys in Internalizing Problem Behaviors. Results suggest that a twinship forms a positive developmental environment for socioemotional behavior, particularly among OSDZ twins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号