首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capacity for self-maintenance of the bone marrow osteogenic precursor cells from the skeletal bones and from the bones induced by implantation of decalcified bone matrix is compared. Transplantation in diffusion chambers is employed as the test system. Osteogenesis in the bone marrow transplants isolated from the skeletal bone lasts several months, whereas osteogenesis in the bone marrow transplants isolated from induced bone stops after the second month. Fibroblasts arising in the monolayer cultures of the skeletal bone marrow retained their osteogenic potencies after repeated passages. On the contrary, fibroblasts from the monolayer cultures of induced bone marrow lost their osteogenic capacity after the second passage. Thus, contrary to osteogenic precursors of the skeletal bone, osteogenic precursors of induced bone tissue had a very limited self-maintaining capacity after the cessation of induction.  相似文献   

2.
In this study, cells isolated from hen medullary bone were cultured to examine their matrix formation. Furthermore, we compared medullary bone cells with rat bone marrow cells regarding the temporal changes in osteoblast developmental markers. Medullary bone cells were positive for alkaline phosphatase (ALP) activity and formed bone nodules, apparent with Alcian blue and von Kossa staining. The intensity of these stains became stronger with the maturation of those bone nodules. In this developmental process, the expression patterns of osteoblast phenotypes of medullary bone cells differed from those of rat bone marrow cells. ALP mRNA was expressed at the maximum level in the proliferation stage and gradually decreased in medullary bone cells, but that expression showed the opposite pattern in rat bone marrow cells. Medullary bone cells strongly expressed two non-collagenous protein mRNAs from the early stages, but the expression of these mRNAs in rat bone marrow cells increased only in the later stages. These results suggest that the features of medullary bone osteoblasts differ from those of mammalian osteoblasts and are reflected in the characteristics of medullary bone in vivo.  相似文献   

3.
Bone remodelling after the implantation of freeze-dried autogenous bone in rat parietal bone was compared with fresh autogenous bone transplantation, using a scanning electron and light microscope revealed the time intervals after transplantation/implantation. The light microscope revealed the time delay of the bone remodelling in the implantation, compared with the transplantations. The scanning electron microscope showed that the differences between the two groups were in the states of bone union and bone resorption. In the fresh bone group, the newly-formed bone filled the spaces between host and the transplanted bones at 2 to 3 weeks after the transplantation: the newly-formed bone fused and melted into the transplanted bone. New bone formation was more dominant on the bone surface in the dura mater side than in the skin side. The union was almost completed at 5 weeks. In freeze-dried bone implantation, the bone union in the contact space was very poor and the implanted bone was mainly covered by the new bone, which developed from the host bone surface in the dura mater side at 2 to 3 weeks after the implantation. What is noteworthy is that bone resorbed areas showing numerous Howship's lacunae were mainly observed on the host bone surface in the vicinity of newly-formed bone. However in freeze-dried bone implantation, the bone resorption was greater on the host and implanted bone surface than that of fresh bone transplantation: the resorption of host bone was considerably larger at certain periods after freeze-dried bone implantation. The present results show that the healing process of freeze-dried bone implantation, even though autogenous bone was used, differed from that of fresh autogenous bone transplantation, and the differences are concerned not only with time sequences but also with qualitative changes. This suggests that the host would have some different responses to the freeze-dried autogenous bone from fresh materials.  相似文献   

4.
Endochondral bone formation can take place in the embryo, during fracture healing, or in postnatal animals after induction by implanted demineralized bone matrix. This matrix-induced bone formation recapitulates the embryonic sequence of bone formation morphologically and biochemically. The steps in bone formation in both systems include differentiation of cartilage from mesenchyme, cartilage maturation, invasion of the cartilage by blood vessels and marrow precursors, and formation of bone and bone marrow. Recently, bone inductive molecules from demineralized bone matrix have been purified, sequenced and produced as recombinant proteins. While there are similarities between bone development in the embryo and that after induction by these purified molecules, the molecules responsible for bone induction in the embryo have not yet been defined. Because of similarities between the two methods of bone formation, studies of bone induction by demineralized bone matrix may help to elucidate mechanisms of embryonic bone induction.  相似文献   

5.
FORMATION OF BONE TISSUE IN CULTURE FROM ISOLATED BONE CELLS   总被引:8,自引:4,他引:4       下载免费PDF全文
A system is described for the formation of bone tissue in culture from isolated rat bone cells. The isolated bone cells were obtained from embryonic rat calvarium and periosteum or from traumatized, lifted periosteum of young rats. The cells were cultured for a period of up to 8 wk, during which time the morphological, biochemical, and functional properties of the cultures were studied. Formation of bone tissue by these isolated bone cells was shown, in that the cells demonstrated osteoblastic morphology in light and electron microscopy, the collagen formed was similar to bone collagen, there was mineralization specific for bone, and the cells reacted to the hormone calcitonin by increased calcium ion uptake. Calcification of the fine structure of the cells and the matrix is described. Three stages in the calcification process were observed by electron microscopy. It is concluded that these bone cells growing in vitro are able to function in a way similar to such cells in vivo. This tissue culture system starting from isolated bone cells is therefore suitable for studies on the structure and function of bone.  相似文献   

6.
Although it is clear that osteoporosis is associated with a reduction in bone mass and a fragile skeleton, it is not understood whether the chemical composition of osteoporotic bone is different from normal bone. In this study, cynomolgus monkeys (Macaca fascicularis) were administered fluorochrome labels at one and two years after ovariectomy (Ovx) or Sham ovariectomy (intact), that were taken up into newly remodeled bone. Using fluorescence-assisted synchrotron infrared microspectroscopy, the chemical composition of bone from intact versus Ovx monkeys has been compared. Results from overall composition distributions (labeled + non-labeled bone) reveal similar carbonate/protein and phosphate/protein ratios, but increased acid phosphate content and different collagen structure in the Ovx animals. Analysis of the fluorochrome-labeled bone indicates similar degrees of mineralization in bone remodeled after one year, but decreased mineralization in Ovx bone remodeled two years after surgery. Thus, bone from monkeys with osteoporosis can be characterized as having abnormal collagen structure and reduced rates of mineralization. Coupled with factors such as trabecular architecture and bone shape and size, these ultrastructural factors may play a contributing role in the increased bone fragility in osteoporosis.  相似文献   

7.
Osteocalcin detected from serum samples is considered a specific marker of osteoblast activity and bone formation rate. However, osteocalcin embedded in bone matrix must also be released during bone resorption. To understand the contribution of each type of bone cell in circulating osteocalcin levels, we used immunoassays detecting different molecular forms of osteocalcin to monitor bone resorption in vitro. Osteoclasts were obtained from rat long bones and cultured on bovine bone slices using osteocalcin-depleted fetal bovine serum. In addition, human osteoclasts differentiated from peripheral blood mononuclear cells were used. Both rat and human osteoclasts released osteocalcin from bovine bone into medium. The amount of osteocalcin increased in the presence of parathyroid hormone, a stimulator of resorption, and decreased in the presence of bafilomycin A1, an inhibitor of resorption. The amount of osteocalcin in the medium correlated with a well characterized marker of bone resorption, the C-terminal telopeptide of type I collagen (r > 0.9, p < 0.0001). The heterogeneity of released osteocalcin was determined using reverse phase high performance liquid chromatography, and several molecular forms of osteocalcin, including intact molecule, were identified in the culture medium. In conclusion, osteocalcin is released from the bone matrix during bone resorption as intact molecules and fragments. In addition to the conventional use as a marker of bone formation, osteocalcin can be used as a marker of bone resorption in vitro. Furthermore, bone matrix-derived osteocalcin may contribute to circulating osteocalcin levels, suggesting that serum osteocalcin should be considered as a marker of bone turnover rather than bone formation.  相似文献   

8.
The bone marrow is believed to play important roles during fracture healing such as providing progenitor cells for inflammation, matrix remodeling, and cartilage and bone formation. Given the complex nature of bone repair, it remains difficult to distinguish the contributions of various cell types. Here we describe a mouse model based on bone marrow transplantation and genetic labeling to track cells originating from bone marrow during fracture healing. Following lethal irradiation and engraftment of bone marrow expressing the LacZ transgene constitutively, wild type mice underwent tibial fracture. Donor bone marrow-derived cells, which originated from the hematopoietic compartment, did not participate in the chondrogenic and osteogenic lineages during fracture healing. Instead, the donor bone marrow contributed to inflammatory and bone resorbing cells. This model can be exploited in the future to investigate the role of inflammation and matrix remodeling during bone repair, independent from osteogenesis and chondrogenesis.  相似文献   

9.
The Placodermi are extinct basal gnathostomes which had extensive dermal and perichondral bone, but which lacked the endochondral bone which characterizes the more derived bony fishes. Thin sections of bone from a specimen of the antiarch placoderm Bothriolepis canadensis, from the Escuminac Formation (Frasnian, Upper Devonian), Québec, Canada, reveal that part of the cancellous layer in its dermal and endoskeletal bone formed from perichondral bone trabeculae growing around cartilage spheres. The resultant structure mimics that of osteichthyan endochondral bone. The layout and dimensions of this polygonal mosaic patterning of the bone trabeculae and flattened cartilage spheres resemble those of the prismatic layers of calcified cartilage in chondrichthyans. If the lack of endoskeletal bone in chondrichthyans is a derived character, then the structure identified in B. canadensis could represent a 'template' for the formation of prismatic calcified cartilage in the absence of bone.  相似文献   

10.
Chronic arthritis typically leads to loss of periarticular bone, which results from an imbalance between bone formation and bone resorption. Recent research has focused on the role of osteoclastogenesis and bone resorption in arthritis. Bone resorption cannot be observed isolated, however, since it is closely linked to bone formation and altered bone formation may also affect inflammatory bone loss. To simultaneously assess bone resorption and bone formation in inflammatory arthritis, we developed a histological technique that allows visualization of osteoblast function by in-situ hybridization for osteocalcin and osteoclast function by histochemistry for tartrate-resistant acid phosphatase. Paw sections from human tumor necrosis factor transgenic mice, which develop an erosive arthritis, were analyzed at three different skeletal sites: subchondral bone erosions, adjacent cortical bone channels, and endosteal regions distant from bone erosions. In subchondral bone erosions, osteoclasts were far more common than osteoblasts. In contrast, cortical bone channels underneath subchondral bone erosions showed an accumulation of osteoclasts but also of functional osteoblasts resembling a status of high bone turnover. In contrast, more distant skeletal sites showed only very low bone turnover with few scattered osteoclasts and osteoblasts. Within subchondral bone erosions, osteoclasts populated the subchondral as well as the inner wall, whereas osteoblasts were almost exclusively found along the cortical surface. Blockade of tumor necrosis factor reversed the negative balance of bone turnover, leading to a reduction of osteoclast numbers and enhanced osteoblast numbers, whereas the blockade of osteoclastogenesis by osteoprotegerin also abrogated the osteoblastic response. These data indicate that bone resorption dominates at skeletal sites close to synovial inflammatory tissue, whereas bone formation is induced at more distant sites attempting to counter-regulate bone resorption.  相似文献   

11.
Chronic arthritis typically leads to loss of periarticular bone, which results from an imbalance between bone formation and bone resorption. Recent research has focused on the role of osteoclastogenesis and bone resorption in arthritis. Bone resorption cannot be observed isolated, however, since it is closely linked to bone formation and altered bone formation may also affect inflammatory bone loss. To simultaneously assess bone resorption and bone formation in inflammatory arthritis, we developed a histological technique that allows visualization of osteoblast function by in-situ hybridization for osteocalcin and osteoclast function by histochemistry for tartrate-resistant acid phosphatase. Paw sections from human tumor necrosis factor transgenic mice, which develop an erosive arthritis, were analyzed at three different skeletal sites: subchondral bone erosions, adjacent cortical bone channels, and endosteal regions distant from bone erosions. In subchondral bone erosions, osteoclasts were far more common than osteoblasts. In contrast, cortical bone channels underneath subchondral bone erosions showed an accumulation of osteoclasts but also of functional osteoblasts resembling a status of high bone turnover. In contrast, more distant skeletal sites showed only very low bone turnover with few scattered osteoclasts and osteoblasts. Within subchondral bone erosions, osteoclasts populated the subchondral as well as the inner wall, whereas osteoblasts were almost exclusively found along the cortical surface. Blockade of tumor necrosis factor reversed the negative balance of bone turnover, leading to a reduction of osteoclast numbers and enhanced osteoblast numbers, whereas the blockade of osteoclastogenesis by osteoprotegerin also abrogated the osteoblastic response. These data indicate that bone resorption dominates at skeletal sites close to synovial inflammatory tissue, whereas bone formation is induced at more distant sites attempting to counter-regulate bone resorption.  相似文献   

12.
Studies of bone from summer-active little brown bats, Myotis lucifugus lucifugus, have demonstrated sex differences in the renewal of skeletal mineral reserves following spring-arousal from hibernation. Patterns of bone remodeling in both sexes of bats indicate that new bone formation does not occur during hibernation: All new bone formation occurs during the summer-active season. Results show that a short period of time elapses after hibernation before the initial demands of a large fetus and rapidly growing neonate are expressed on maternal skeletal reserves. Bone loss in summer-active females was associated with pregnancy and lactation, whereas summer-active males did not show evidence of bone loss but, instead, uninterrupted bone accretion throughout the summer-active season. Osteoclasts and bone-forming osteoblasts, absent during the hibernation period, reappeared on bone surfaces following spring-arousal from hibernation. There was no apparent increase in osteoclast numbers or activity during lactation but resorption cavities were found in deep cortical lamellae distant from bone surfaces. The increase in bone resorption in lactating bats appeared to be by osteocytic osteolysis, suggesting that it might be a significant mechanism of bone/calcium regulation in this hibernating mammal throughout the year.  相似文献   

13.
Subcutaneous implantation of demineralized diaphyseal bone matrix into allogeneic rats results in local formation of cartilage and bone. However, implantation of demineralized bone matrix obtained from rachitic rats did not induce bone. Rachitic bone matrix was therefore dissociatively extracted with 4 M guanidine HCl and then reconstituted with an inactive collagenous residue of control as carrier. Such reconstituted materials also lacked bone inductive potential. On the other hand, reconstitution of guanidine HCl extracts of control bone matrix with inactive vitamin D deficient matrix did result in bone induction. Partial purification (fractions containing proteins (less than 50,000 daltons) of the guanidine HCl extract from rachitic rats on Sepharose CL-6B followed by reconstitution with inactive collagenous residues resulted in a weak (25% of control) inductive response. These observations imply that bone inductive proteins are vitamin D dependent and are reduced in matrix obtained from rachitic rats.  相似文献   

14.
Apparent age-related bone loss among adult female Gombe chimpanzees   总被引:1,自引:0,他引:1  
Apparent age-related bone loss among adult females was observed in a skeletal sample derived from the free-ranging Gombe chimpanzee population of Tanzania. Photon absorptiometric and computed tomographic bone scans indicated that, as in humans, bone was lost from the endosteal surface, but, in contrast to humans, more bone was lost from cortical sites than from cancellous sites. The etiology of this bone loss may be related to a number of factors, including hormonal changes, nutritional inadequacy, and decreased physical activity late in life coupled with the demands of pregnancy and lactation.  相似文献   

15.
Serial cross sections of several adult specimens of the cichlid Astatotilapia elegans were used to investigate the fate and structure of the chondroid bone on the articulation between upper pharyngeal jaws and neurocranial base. The tissue persists in the adult on the three elements on which it previously developed, i.e., infrapharyngobranchial III-IV, parasphenoid, and basioccipital bones. It consists of haphazardly arranged, large vesicular cells without a canalicular system, embedded in a matrix histologically indistinguishable from bone matrix. Except for a narrow zone at the distal side, it is mineralized throughout. As in younger stages, the fibrous covering of the chondroid bone forms the articular tissue proper on each of the three elements. Acellular bone, found at the basal margin of the chondroid bone, it is argued, does not result from endochondral replacement of the latter but rather from dermal ossification projecting from the marrow cavity. Although lacunae may be filled in this way with bone, true obliteration of cells does not occur, so that there is no metaplasia from chondroid bone to bone. The part played by the chondroid bone in the outgrowth of the joint apophyses is discussed.  相似文献   

16.
Osteoclastic bone resorption is modulated in humans by powerful osteotropic factors which are generated in the immediate vicinity of bone resorbing surfaces. These factors are released from marrow mononuclear cells and from some bone cells, and some are actually incorporated into the noncollagenous bone matrix from where they are released when bone is resorbed. They are likely important not only in the control of normal bone remodeling, but also in a number of disease states associated with disordered remodeling. In this review, current concepts of the effects of these factors on cells in the osteoclast lineage will be discussed.  相似文献   

17.
We studied the expression of osteoblastic markers in cultured cells isolated from the bone of 15 patients with different clinical forms of osteogenesis imperfecta (OI) and of seven fetal and postnatal controls. Cultured bone cells of ten OI patients produced abnormal collagen type I. Similar to controls, OI bone cells produced predominantly collagen type I with traces of collagen types III and V. The 1,25(OH)2 vitamin D3-stimulated synthesis of osteocalcin, a specific osteoblastic marker protein, was similar in OI bone cells and age-matched controls. Bone cells from fetal controls and from patients with the perinatal lethal OI type II produced less osteocalcin than bone cells from postnatal controls and surviving OI patients. OI bone cells responded to parath.yroid hormone (PTH) by increased production of cAMP similar to controls. Bone cells from fetal controls and from OI type II donors showed a decreased response to PTH. Activity of the bone-liver-kidney isoenzyme alkaline phosphatase (AP) was detected in all control and OI bone cells. The expression of all osteoblastic markers was similar in bone cells producing abnormal collagen type I. These observations show that OI bone cells in vitro express a pattern of osteoblastic markers similar to age-matched control bone cells indicating that osteoblastic differentiation is not altered by the underlying defects of collagen type I metabolism in OI bone cells. © 1993 Wiley-Liss, Inc.  相似文献   

18.
In a series of cases of Paget's disease of the bone, two types of cells not previously described were observed in material aspirated from bone marrow in areas of osteitis deformans. One type was mononuclear, the other was giant, multinucleated and syncytial. They have been identified as osteoblasts and osteoclasts, respectively. The identification was based mainly on correlation with the histologic picture of osteitis deformans and of normal-growing bones as seen in section studies. Both osteoblasts and osteoclasts were recovered in aspirated bone marrow material in other instances of metabolic bone diseases associated with increased bone repair and bone resorption-in hyperparathyroidism, osteoblastic malignant lesions, rickets, hemolytic anemia in children, and in normal infants in the growth zone of bone in the tibia. They were not seen in senile and postmenopausal osteoporosis. Recognition of osteoblasts and osteoclasts in smear preparations from aspirated bone marrow material may serve as a diagnostic aid in metabolic bone diseases. The differentiation of osteoblasts from neoplastic cells is important in cases in which metastatic cancer of the bone is suspected and x-ray findings are inconclusive.  相似文献   

19.
In a series of cases of Paget''s disease of the bone, two types of cells not previously described were observed in material aspirated from bone marrow in areas of osteitis deformans. One type was mononuclear, the other was giant, multinucleated and syncytial. They have been identified as osteoblasts and osteoclasts, respectively. The identification was based mainly on correlation with the histologic picture of osteitis deformans and of normal-growing bones as seen in section studies.Both osteoblasts and osteoclasts were recovered in aspirated bone marrow material in other instances of metabolic bone diseases associated with increased bone repair and bone resorption—in hyperparathyroidism, osteoblastic malignant lesions, rickets, hemolytic anemia in children, and in normal infants in the growth zone of bone in the tibia. They were not seen in senile and postmenopausal osteoporosis.Recognition of osteoblasts and osteoclasts in smear preparations from aspirated bone marrow material may serve as a diagnostic aid in metabolic bone diseases.The differentiation of osteoblasts from neoplastic cells is important in cases in which metastatic cancer of the bone is suspected and x-ray findings are inconclusive.  相似文献   

20.
Dermal bone biopsies were collected from the periphery of the carapaces of adult desert tortoises (Gopherus agassizii) from grazed and ungrazed habitats near the Arizona/Utah border (USA). Quantitative bone histomorphometry was performed on these biopsies as well as on dermal bone biopsies collected from captive juvenile desert tortoises. Except for mild osteomalacia, carapaces of adult desert tortoises from the grazed habitat were relatively normal. No signs of osteopenia were observed. Based on the low numbers of osteoblasts and osteoclasts in dermal bone of both populations of adult desert tortoises, it appears that the peripheral carapace is relatively inert with very low levels of dermal bone turnover. Bone cells and osteoid were more common in dermal bone biopsies from the carapace and plastron of captive juvenile desert tortoises than in adult desert tortoises. However, the great variability in the incidence of bone cells among individuals and the difficulty in collecting juvenile desert tortoises in the field limit the usefulness of dermal bone biopsies from animals of this age group. Based on these results, we propose that dermal bone of the peripheral carapace is a poor sample site for evaluating the effects of dietary or environmental conditions on calcified tissues in desert tortoises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号