首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 717 毫秒
1.
Ghrelin, a nature ligand for the growth hormone secretagogue receptor (GHS-R), stimulates a release of growth hormone, prolactin and adrenocorticotropic hormone. Also, ghrelin increases food intake in adult rats and humans and exhibits gastroprotective effect against experimental ulcers induced by ethanol or stress. The aim of present study was to examine the influence of ghrelin administration on gastric and duodenal growth and expression of pepsin and enterokinase in young mature rats with intact or removed pituitary. METHODS: Two week after sham operation or hypophysectomy, eight week old Wistar male rats were treated with saline (control) or ghrelin (4, 8 or 16 nmol/kg/dose) i.p. twice a day for 4 days. Expression of pepsin in the stomach and enterokinase in the duodenum was evaluated by real-time PCR. RESULTS: In animals with intact pituitary, treatment with ghrelin increased food intake, body weight gain and serum level of growth hormone and insulin-like growth factor-1 (IGF-1). These effects were accompanied with stimulation of gastric and duodenal growth. It was recognized as the significant increase in gastric and duodenal weight and mucosal DNA synthesis. In both organs, ghrelin administered at the dose of 8 nmol/kg caused maximal growth-promoting effect. In contrast to these growth-promoting effects, administration of ghrelin reduced expression of mRNA for pepsin in the stomach and was without effect on expression of mRNA for enterokinase in the duodenum. Hypophysectomy alone lowered serum concentration of growth hormone under the detection limit and reduced serum level of IGF-1 by 90%. These effects were associated with reduction in daily food intake, body weight gain and gastroduodenal growth. In hypophysectomized rats, administration of ghrelin was without significant effect on food intake, body weight gain or growth of gastroduodenal mucosa. Also, serum concentration of growth hormone or IGF-1 was not affected by ghrelin administration in rats with removed pituitary. CONCLUSION: Administration of ghrelin stimulates gastric and duodenal growth in young mature rats with intact pituitary, but inhibits expression of mRNA for pepsin in the stomach. Growth hormone and insulin-like growth factor-1 play an essential role in growth-promoting effects of ghrelin in the stomach and duodenum.  相似文献   

2.
Wang LN  Li SL  Li CH  Zhang CX  Yuan H  Li XP 《生理学报》2012,64(2):187-192
The present study was to investigate the effects of diltiazem, a ghrelin receptor agonist, on food intake and gastrointestinal functions in rats. Rats were intragastrically administered with diltiazem solution (daily 16 mg/kg, 30 mg/kg or 80 mg/kg, 30 d), and the rats with saline as control. To detect the effects of diltiazem on food intake and body weight, the average daily food intake and body weight were recorded, and the serum metabolic hormones of plasma growth hormone (GH) and neuropeptide Y (NPY) were tested by radioimmunoassay. By means of the spectrophotometer and the modified Mett's method, the effects of diltiazem on rat's gastrointestinal function and pepsin activity were tested, respectively. In addition, the gastric juice's acidity of rats was detected by titration and the secretion amount was calculated. The results showed that the food intake and body weight were maximally promoted by diltiazem at the dose of 30 mg/kg daily (30 d). The average daily food intake and body weight were significantly increased, and the serum concentrations of GH and NPY were also remarkably increased in diltiazem-treated groups compared with those in control group. The results also showed that the gastric emptying rate, gastric acid secretion and the activity of pepsin were significantly increased in diltiazem-treated group compared with those in control group. These results suggest that diltiazem induces enhancement of eating, in the same time, it can also stimulate the gastrointestinal function and regulate growth of rat.  相似文献   

3.
Ghrelin, produced and secreted by the A-like cells of the stomach, stimulates growth hormone secretion, gastric motility, and food intake. Cysteamine inhibits the release of somatostatin and induces the formation of duodenal ulcers in rats. The present study was conducted to investigate the dynamics of ghrelin secretion in rats treated with cysteamine. Male Wistar rats (7 wk old) were administered three doses of cysteamine (400 mg/kg) orally; at 50 h after the first dose, duodenal ulcers were induced, and the plasma level of somatostatin and gastric density of somatostatin-immunoreactive cells were significantly reduced. The plasma total and active ghrelin levels were significantly higher in the cysteamine-treated rats than in the control rats, whereas the gastric ghrelin levels, number of gastric ghrelin-immunoreactive cells, and preproghrelin mRNA expression levels were significantly lower. Even at the time points of 2 and 10 h after the first dose of cysteamine, at which time no significant ulcer formation or antral neutrophil accumulation was yet noted, a significant increase in the plasma ghrelin level and decrease in the gastric ghrelin level were observed. Furthermore, although lansoprazole treatment attenuated the duodenal ulceration induced by cysteamine, the increase in the plasma level of ghrelin could still be demonstrated. Because an inverse correlation was found between the plasma ghrelin and somatostatin levels, the inhibition of somatostatin secretion may be associated with the increased ghrelin secretion. In conclusion, an increase in the plasma ghrelin level precedes the formation of duodenal ulcers in rats treated with cysteamine.  相似文献   

4.
The hypothalamic peptide melanin-concentrating hormone (MCH) and the gastric hormone ghrelin take part in the regulation of energy homeostasis and stimulate food intake. In the present study, ghrelin was administered centrally to MCH-receptor knockout (MCHr KO) mice. MCHr KO mice and wild type (WT) controls both consumed more food when treated with ghrelin. After ghrelin administration, the serum levels of insulin increased only in WT mice whereas the serum levels of corticosterone increased both in WT and MCHr KO mice. The level of growth hormone (GH) mRNA in the pituitary gland was markedly increased in response to ghrelin injection in the WT mice but was unaffected in the MCHr KO mice. The different ghrelin responses could not be explained by a difference in growth hormone secretagogue receptor expression between MCHr KO and WT mice in the pituitary or hypothalamus. In summary, the MCHr is not required for ghrelin induced feeding. However, the MCHr does play a role for the effect of ghrelin on GH expression in the pituitary and serum insulin levels.  相似文献   

5.
To examine the effect of obestatin, a recently identified peptide derived from preproghrelin, on pituitary hormone secretion, obestatin was administered in anesthetized male rats. Intravenous administration of obestatin did not show any effect on plasma GH, PRL, ACTH and TSH levels. Since obestatin has been reported to have opposite effects of ghrelin in regulating food intake, gastric emptying and intestinal contractility, GH suppressive effect, which is opposite effect of ghrelin, was tested. Intravenous administration of GHRH or GHRP-2, a ghrelin receptor ligand, resulted in a marked plasma GH elevation. However obestatin did not show any effect on GHRH- or GHRP-2-induced GH rise. Furthermore intracerebroventricular administration of obestatin also did not influence plasma GH, PRL, ACTH and TSH levels. These findings suggest that obestatin has no effect on pituitary hormone secretions despite the presence of GPR39, a receptor for obestatin, in the pituitary.  相似文献   

6.
Ghrelin, an acylated 28 amino acid gastric peptide, was isolated from the stomach as an endogenous ligand for growth hormone (GH) secretagogue receptor in 1999. Circulating ghrelin is mainly produced by specific cells in the stomach's oxyntic glands. Ghrelin potently stimulates GH release and food intake and exhibits diverse effects, including ones on glucose metabolism and on secretion and motility of the gastrointestinal tract. Besides these effects on food intake and energy homeostasis, ghrelin is also involved in controlling reproductive functions, and a role for it as a novel regulator of the hypothalamic-pituitary gonadal axis is clearly emerging.We review recent ghrelin research with emphasis on its roles in the reproductive axis.  相似文献   

7.
The stomach hormone ghrelin is the endogenous ligand for the growth hormone secretagogue receptor (GHS-R). Systemic administration of ghrelin will cause elevations in growth hormone (GH) secretion, food intake, adiposity, and body growth. Ghrelin also affects insulin secretion, gastric acid secretion, and gastric motility. Several reports indicate that repeated or continuous activation of GHS-R by exogenous GHSs or ghrelin results in a diminished GH secretory response. The purpose of this study was to examine the extent to which the acute stimulation of food intake by exogenous ghrelin is altered by chronic hyperghrelinemia in transgenic mice that overexpress the human ghrelin gene. The present findings show that the orexigenic action of exogenous ghrelin is not diminished by a chronic hyperghrelinemia and indicate that the food ingestive pathway of the GHS-R is not susceptible to desensitization. In contrast, the epididymal fat pad growth response, like the GH response, to exogenous ghrelin is blunted in ghrelin transgenic mice with chronic hyperghrelinemia.  相似文献   

8.
The gastrointestinal (GI) tract is one of the most susceptible organs to ischemia. We previously reported altered gastric motility after gastric ischemia and reperfusion (I/R). However, there have also been few reports of alterations in the eating behavior after gastric I/R. Ghrelin is a GI peptide that stimulates food intake and GI motility. Although ghrelin itself has been demonstrated to attenuate the mucosal injuries induced by gastric I/R, the endogenous ghrelin dynamics after I/R has not yet been elucidated. The present study was designed to investigate the relationship between food intake and the ghrelin dynamics after gastric I/R. Wistar rats were exposed to 80-min gastric ischemia, followed by 12-h or 48-h reperfusion. The food intake, plasma ghrelin levels, gastric preproghrelin mRNA expression levels, and the histological localization of ghrelin-immunoreactive cells were evaluated. The effect of exogenous ghrelin on the food intake after I/R was also examined. Food intake, the plasma ghrelin levels, the count of ghrelin-immunoreactive cells corrected by the percentage areas of the remaining mucosa, and the expression levels of preproghrelin mRNA in the stomach were significantly reduced at 12 h and 48 h after I/R compared with the levels in the sham-operated rats. Intraperitoneal administration of ghrelin significantly reversed the decrease of food intake after I/R. These data show that gastric I/R evoked anorexia with decreased plasma ghrelin levels and ghrelin production, which appears to be attributable to the I/R-induced gastric mucosal injuries. The decrease in the plasma ghrelin levels may have been responsible for the decreased food intake after gastric I/R.  相似文献   

9.
Yamaguchi  Naomi  Hosomi  Eriko  Hori  Yutaro  Ro  Shoki  Maezawa  Kosuke  Ochiai  Mitsuko  Nagoshi  Sumiko  Takayama  Kiyoshige  Yakabi  Koji 《Neurochemical research》2020,45(9):2173-2183

Cholecystokinin (CCK) had been the first gastrointestinal hormone known to exert anorexic effects. CCK had been inferred to contribute to the onset of functional dyspepsia (FD) symptoms. To understand the pathophysiology of FD, the roles of stress have to be clarified. In this study, we aimed to clarify the influence of stress on the action of cholecystokinin (CCK) on appetite and gastric emptying. Using rats, stress was simulated by giving restraint stress or intraperitoneal injection of the stress-related peptide hormone urocortin 1 (UCN1). The effects of CCK and restraint stress, alone or in combination, on food intake and gastric motility were examined, and c-Fos expression in the neurons of appetite control network in the central nervous system was assessed by immunohistochemical staining. CCK inhibited food intake and gastric emptying in a dose-dependent manner. Food intake for 1 h was significantly lower with UCN1 (2 nmol/kg) than with the saline control. Restraint stress amplified the suppressive effects of CCK on food intake for 1 h and on gastric emptying. With regard to brain function, the CCK induced c-Fos expression in the neurons of the nucleus tractus solitarius and paraventricular nucleus of the hypothalamus was markedly and significantly amplified by the addition of restraint stress with CCK. The results suggested that stress might amplify the anorexic effects of CCK through activation of the nuclei that comprise the brain neuronal network for satiation; this might play a role in the pathogenesis of the postprandial distress syndromes of functional dyspepsia.

  相似文献   

10.
Chronic stress is associated with gastrointestinal functional diseases. Although the pathophysiology seems to be associated with gastrointestinal motility, their mechanisms remain unclear. We investigated gastric emptying and chemical mediators under conditions of continuous stress, which were produced using 8-week-old male Wistar rats kept in a cage filled with water to 2 cm height for 5 days. We examined gastric emptying by the phenol red method and chemical mediators at 4, 8, and 24 h and 3 and 5 days after initiation of stress restraint. Plasma ACTH level was significantly higher in the stress throughout the period of measurement. Continuous stress delayed gastric emptying until 24 h: peak delay was observed at 8 h, whereas gastric emptying was accelerated on days 3 and 5. Plasma noradrenalin level was significantly elevated at every time point until 24 h. Guanethidine pretreatment eliminated the delay in gastric emptying at 8 h. Active ghrelin was significantly increased on days 3 and 5 after peak (at 24 h) plasma total and desacyl ghrelin in the stress group. Number of ghrelin-immunoreactive cells and level of preproghrelin mRNA expression in the gastric body increased in parallel with plasma active ghrelin level. Pretreatment with growth hormone secretagogue receptor antagonist at 5 days partially inhibited the stress-induced acceleration of gastric emptying. Delayed gastric emptying at acute phase of continuous stress was mediated via sympathetic pathway, while acceleration at chronic phase was mediated via increased active ghrelin release from the stomach.  相似文献   

11.
Ghrelin, a recently discovered peptide hormone, is produced by endocrine cells in the stomach, the so-called A-like cells. Ghrelin binds to the growth hormone (GH) secretagogue receptor and releases GH. It is claimed to be orexigenic and to control gastric acid secretion and gastric motility. In this study, we examined the effects of ghrelin, des-Gln14-ghrelin, des-octanoyl ghrelin, ghrelin-18, -10 and -5 (and motilin) on gastric emptying in mice and on gastric acid secretion in chronic fistula rats and pylorus-ligated rats. We also examined whether ghrelin affected the activity of the predominant gastric endocrine cell populations, G cells, ECL cells and D cells. Ghrelin and des-Gln14-ghrelin stimulated gastric emptying in a dose-dependent manner while des-octanoyl ghrelin and motilin were without effect. The C-terminally truncated ghrelin fragments were effective but much less potent than ghrelin itself. Ghrelin, des-Gln14-ghrelin and des-octanoyl ghrelin neither stimulated nor inhibited gastric acid secretion, and ghrelin, finally, did not affect secretion from either G cells, ECL cells or D cells.  相似文献   

12.
目的:观察Nesfatin-1对大鼠摄食、胃酸分泌、胃运动及胃排空的影响并探究其可能机制。方法:将大鼠随机分为摄食实验组、胃酸实验组、胃运动实验组以及胃排空实验组。大鼠经腹内侧核置管后给予nasfatin-1,检测大鼠摄食量,使用Na OH滴定法测定大鼠胃酸分泌,记录清醒大鼠胃运动,以比色法测定大鼠胃排空。结果:低剂量和高剂量nesfatin-1均减少2小时累积食物摄入量;高剂量组4小时累积食物摄入量仍显著低于NS对照组。Nesfatin-1能够抑制2-DG对胃酸分泌的促进作用。SHU9119能够部分阻断nesfatin-1对2-DG的抑制作用。Nesfatin-1能够抑制胃运动及胃排空,SHU9119可部分阻断nesfatin-1对胃运动及胃排空的抑制作用。结论:Nesfatin-1能够调控大鼠摄食、胃酸分泌、胃运动及胃排空,黑皮质素信号通路可能也参与该调控过程。  相似文献   

13.
Objective: Tachygastria is known to be associated with gastric hypomotility. This study investigated the effect of tachygastrial electrical stimulation (TES) on food intake and its effects on gastric motility. Research Methods and Procedures: Five experiments were performed to study the effects of TES on gastric slow waves, gastric tone, accommodation, and antral contractions, gastric emptying, acute food intake, and chronic food intake in dogs. Results: TES at tachygastrial frequencies induced tachygastria and reduced normal slow waves. TES significantly reduced gastric tone or induced gastric distention, impaired gastric accommodation, and inhibited antral contractions. TES significantly delayed gastric emptying. Acute TES reduced food intake but did not induce any noticeable symptoms. Chronic TES resulted in a 20% reduction in food intake, and the effect of TES was found to be related to specific parameters. Discussion: TES at the distal antrum results in a significant reduction in food intake in dogs, and this inhibitory effect is probably attributed to TES‐induced reduction in proximal gastric tone, gastric accommodation, antral contractility, and gastric emptying. These data suggest a therapeutic potential of the specific method of TES for obesity.  相似文献   

14.
Ghrelin is known to enhance gastric motility and accelerate gastric emptying of liquid and solid food in rats. As solid gastric emptying is regulated by the coordinated motor pattern between the antrum and pylorus (antro-pyloric coordination), we studied the correlation between solid gastric emptying and antro-pyloric coordination in response to ghrelin. Rats were given 1.5 g of solid food after a 24-h fasting. Immediately after the ingestion, ghrelin (0.4-8.0 microg/kg) or saline was administered by intraperitoneal (i.p.) injection. Ninety minutes after the feeding, rats were euthanized and gastric content was removed to calculate gastric emptying. To evaluate the antro-pyloric coordination, strain gauge transducers were sutured on the antrum and pylorus. The incidence of postprandial antro-pyloric coordination was compared between ghrelin-and saline-injected rats. In saline-injected rats, gastric emptying was 58.3+/-3.7% (n=6). Ghrelin (4.0-8.0 microg/kg), accelerated gastric emptying. Maximum effect was obtained by ghrelin (4.0 microg/kg), which significantly accelerated gastric emptying to 77.4+/-3.7% (n=6, p<0.05). The number of antro-pyloric coordination 20-40 min after feeding was significantly increased in ghrelin-injected rats, compared to that of saline-injected rats (n=4, p<0.05). It is suggested that enhanced antro-pyloric coordination play an important role in accelerated solid gastric emptying induced by ghrelin.  相似文献   

15.
目的:探讨侧脑室注射obestatin对大鼠血浆酰基化ghrelin、去酰基化ghrelin、nesfatin-1水平的影响以及对胃排空的调控。方法:侧脑室注射obestatin,采用酶免疫测定(EIA)法检测血浆酰基化ghrelin、去酰基化ghrelin、nesfatin-1水平以及胃排空率的变化。结果:侧脑室分别注射0.1、0.3或1.0 nmol obestatin,大鼠血浆酰基化ghrelin、去酰基化ghrelin以及nesfatin-1水平无显著改变(P0.05),且酰基化ghrelin与去酰基化ghrelin比率无显著改变(P0.05);侧脑室注射obestatin,大鼠摄食量无显著改变,但胃排空率明显增加(P0.05);胃排空率明显延迟(P0.05)。与侧脑室注射1.0 nmol Obestatin组相比,注射1.0 nmol Obestatin+CRF,大鼠摄食量无显著改变,胃排空率明显延迟(P0.05)。各组摄食量及进入十二指肠内食物量无明显差异(P0.05)。结论:中枢obestatin促进大鼠的胃排空,可能与h/r CRF通路有关。  相似文献   

16.
目的:探讨下丘脑室旁核orexin-A对大鼠摄食和胃动力影响及调控机制。方法:采用免疫组化观察下丘脑室旁核(paraventricular nucleus,PVN)orexin受体表达情况;PVN注射orexin-A观察大鼠摄食、胃运动、胃酸分泌和胃排空的改变。结果:免疫组化实验显示大鼠PVN中存在orexin受体免疫阳性细胞。PVN注射orexin-A后,大鼠前三小时摄食增加,6 h和24 h摄食无显著改变。PVN微量注射orexin-A后,大鼠胃运动幅度和频率增加、胃排空增快并且胃酸分泌增多。[D-Lys-3]-GHRP-6可部分阻断orexin-A对摄食、胃运动、胃排空和胃酸分泌的促进作用,SB334867可完全阻断orexin-A对胃运动、胃排空和胃酸分泌的促进作用。结论:下丘脑室旁核orexin-A可能通过生长激素促泌素GHSR受体信号通路调控大鼠摄食及胃功能。  相似文献   

17.
Ghrelin, an endogenous growth hormone (GH) secretagogue, is shown to increase food intake, which action is similar to that of orexin, also a hypothalamic peptide. Since orexin suppresses pulsatile LH secretion in ovariectomized (OVX) rats, the present study was undertaken to investigate whether ghrelin also suppresses LH secretion. Effects of intracerebroventricularly injected ghrelin (0.1 nmol/0.3 microl) were examined in OVX rats treated with a small dose of 17beta-estradiol (E(2)). After ghrelin injection, pulsatile LH secretions which were ongoing in these E(2)-treated OVX rats were significantly suppressed for about 1 h, whereas GH secretion increased, peaking at 30 min. The main parameter suppressed by ghrelin was the pulse frequency, not the pulse amplitude, suggesting the hypothalamus as the site of ghrelin action. This study provides evidence that ghrelin acts not only in the control of food intake but also in the control of LH secretion.  相似文献   

18.
Although it is known that urocortin 1 (UCN) acts on both corticotropin-releasing factor receptors (CRF(1) and CRF(2)), the mechanisms underlying UCN-induced anorexia remain unclear. In contrast, ghrelin, the endogenous ligand for the growth hormone secretagogue receptor, stimulates food intake. In the present study, we examined the effects of CRF(1) and CRF(2) receptor antagonists (CRF(1)a and CRF(2)a) on ghrelin secretion and synthesis, c-fos mRNA expression in the caudal brain stem, and food intake following intracerebroventricular administration of UCN. Eight-week-old, male Sprague-Dawley rats were used after 24-h food deprivation. Acylated and des-acylated ghrelin levels were measured by enzyme-linked immunosorbent assay. The mRNA expressions of preproghrelin and c-fos were measured by real-time RT-PCR. The present study provided the following important insights into the mechanisms underlying the anorectic effects of UCN: 1) UCN increased acylated and des-acylated ghrelin levels in the gastric body and decreased their levels in the plasma; 2) UCN decreased preproghrelin mRNA levels in the gastric body; 3) UCN-induced reduction of plasma ghrelin and food intake were restored by CRF(2)a but not CRF(1)a; 4) UCN-induced increase of c-fos mRNA levels in the caudal brain stem containing the nucleus of the solitary tract (NTS) was inhibited by CRF(2)a; and 5) UCN-induced reduction of food intake was restored by exogenous ghrelin and rikkunshito, an endogenous ghrelin secretion regulator. Thus, UCN increases neuronal activation in the caudal brain stem containing NTS via CRF(2) receptors, which may be related to UCN-induced inhibition of both ghrelin secretion and food intake.  相似文献   

19.
Ghrelin, identified as an endogenous ligand for the growth hormone secretagogue receptor, is a 28 amino acid peptide hormone possessing an unusual octanoyl group on the serine in position 3, crucial for its biological activity. Ghrelin is predominantly produced by the stomach but also by many other tissues such as pituitary, hypothalamus, duodenum, jejunum, ileum, colon, lung, heart, pancreas, kidney, and testis. In addition to stimulation of GH release, ghrelin stimulates appetite and food intake, enhancing fat mass deposition and weight gain. Besides these main actions, ghrelin regulates gastric motility and acid secretion, exerts cardiovascular and anti-inflammatory effects, modulates cell proliferation and influences endocrine and exocrine pancreatic secretion, as well as glucose and lipid metabolism. Therefore, ghrelin agonists and antagonists might be valuable for some clinical aspects.  相似文献   

20.
Ghrelin is a recently discovered peptide in the endocrine cells of the stomach, which may stimulate gastric motility via the vagal nerve pathway. However, the mechanism of ghrelin-induced changes in gastrointestinal motility has not been clearly defined. The purpose of this study was to investigate the pharmacological effects of ghrelin on gastric myoelectrical activity and gastric emptying in rats, and to investigate whether cholinergic activity is involved in the effects of ghrelin. The study was performed on Sprague-Dawley rats implanted with serosal electrodes for electrogastrographic recording. Gastric slow waves were recorded from fasting rats at baseline and after injection of saline, ghrelin, atropine, or atropine+ghrelin. Gastric emptying of non-caloric liquid was measured by the spectrophotometric method in conscious rats. Intravenous administration of rat ghrelin (20 microg/kg) increased not only dominant frequency, dominant power and regularity of the gastric slow wave but also the gastric emptying rate when compared with the control rats (P<0.01, P<0.05, P<0.05, P<0.001 respectively). These stimulatory actions of ghrelin on both gastric myoelectrical activity and gastric emptying were not fully eliminated by pretreatment with atropine sulphate. These results taken together suggest that ghrelin may play a physiological role in the enteric neurotransmission controlling gastric contractions in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号