首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Haucke V 《Current biology : CB》2012,22(11):R455-R457
Membrane bending is accomplished in part by amphipathic helix insertion into the bilayer and the assembly of BAR domain scaffolds preparing the membrane for fission. Two recent studies highlight the roles of amphipathic helices and BAR scaffolds in membrane fission and establish the structural basis of membrane bending by the N-BAR protein endophilin.  相似文献   

2.
Shallow hydrophobic insertions and crescent-shaped BAR scaffolds promote membrane curvature. Here, we investigate membrane fission by shallow hydrophobic insertions quantitatively and mechanistically. We provide evidence that membrane insertion of the ENTH domain of epsin leads to liposome vesiculation, and that epsin is required for clathrin-coated vesicle budding in cells. We also show that BAR-domain scaffolds from endophilin, amphiphysin, GRAF, and β2-centaurin limit membrane fission driven by hydrophobic insertions. A quantitative assay for vesiculation reveals an antagonistic relationship between amphipathic helices and scaffolds of N-BAR domains in fission. The extent of vesiculation by these proteins and vesicle size depend on the number and length of amphipathic helices per BAR domain, in accord with theoretical considerations. This fission mechanism gives a new framework for understanding membrane scission in the absence of mechanoenzymes such as dynamin and suggests how Arf and Sar proteins work in vesicle scission.  相似文献   

3.
N-BAR domains are protein modules that bind to and induce curvature in membranes via a charged concave surface and N-terminal amphipathic helices. Recently, molecular dynamics simulations have demonstrated that the N-BAR domain can induce a strong local curvature that matches the curvature of the BAR domain surface facing the bilayer. Here we present further molecular dynamics simulations that examine in greater detail the roles of the concave surface and amphipathic helices in driving local membrane curvature. We find that the strong curvature induction observed in our previous simulations requires the stable presentation of the charged concave surface to the membrane and is not driven by the membrane-embedded amphipathic helices. Nevertheless, without these amphipathic helices embedded in the membrane, the N-BAR domain does not maintain a close association with the bilayer, and fails to drive membrane curvature. Increasing the membrane negative charge through the addition of PIP2 facilitates closer association with the membrane in the absence of embedded helices. At sufficiently high concentrations, amphipathic helices embedded in the membrane drive membrane curvature independently of the BAR domain.  相似文献   

4.
Endophilin N-BAR (N-terminal helix and Bin/amphiphysin/Rvs) domain tubulates and vesiculates lipid membranes in vitro via its crescent-shaped dimer and four amphipathic helices that penetrate into membranes as wedges. Like F-BAR domains, endophilin N-BAR also forms a scaffold on membrane tubes. Unlike F-BARs, endophilin N-BARs have N-terminal H0 amphipathic helices that are proposed to interact with other N-BARs in oligomer lattices. Recent cryo-electron microscopy reconstructions shed light on the organization of the N-BAR lattice coats on a nanometer scale. However, because of the resolution of the reconstructions, the precise positioning of the amphipathic helices is still ambiguous. In this work, we applied a coarse-grained model to study various membrane remodeling scenarios induced by endophilin N-BARs. We found that H0 helices of N-BARs prefer to align in an antiparallel manner at two ends of the protein to form a stable lattice. The deletion of H0 helices causes disruption of the lattice. In addition, we analyzed the persistence lengths of the protein-coated tubes and found that the stiffness of endophilin N-BAR-coated tubules qualitatively agrees with previous experimental work studying N-BAR-coated tubules. Large-scale simulations on membrane liposomes revealed a systematic relation between H0 helix density and local membrane curvature fluctuations. The data also suggest that the H0 helix is required for BARs to form organized structures on the liposome, further illustrating its important function.  相似文献   

5.
Control of membrane curvature is required in many important cellular processes, including endocytosis and vesicular trafficking. Endophilin is a bin/amphiphysin/rvs (BAR) domain protein that induces vesicle formation by promotion of membrane curvature through membrane binding as a dimer. Using site-directed spin labeling and EPR spectroscopy, we show that the overall BAR domain structure of the rat endophilin A1 dimer determined crystallographically is maintained under predominantly vesiculating conditions. Spin-labeled side chains on the concave surface of the BAR domain do not penetrate into the acyl chain interior, indicating that the BAR domain interacts only peripherally with the surface of a curved bilayer. Using a combination of EPR data and computational refinement, we determined the structure of residues 63–86, a region that is disordered in the crystal structure of rat endophilin A1. Upon membrane binding, residues 63–75 in each subunit of the endophilin dimer form a slightly tilted, amphipathic α-helix that directly interacts with the membrane. In their predominant conformation, these helices are located orthogonal to the long axis of the BAR domain. In this conformation, the amphipathic helices are positioned to act as molecular wedges that induce membrane curvature along the concave surface of the BAR domain.  相似文献   

6.
7.
During invasion, the obligate intracellular pathogen, Toxoplasma gondii , secretes into its host cell a variety of effector molecules, several of which have been implicated in strain-specific variation in disease. The largest family of these effectors, defined by the canonical member ROP2, quickly associates with the nascent parasitophorous vacuole membrane (PVM) after secretion. Here we demonstrate that the NH2-terminal domain of the ROP2 family contains a series of amphipathic helices that are necessary and sufficient for membrane association. While each of the amphipathic helices is individually competent to bind cellular membranes, together they act to bind the PVM preferentially, possibly through sensing its strong negative curvature. This previously uncharacterized helical domain is an evolutionarily robust and energetically efficient design for membrane association.  相似文献   

8.
Pex11 is a key player in peroxisome proliferation, but the molecular mechanisms of its function are still unknown. Here, we show that Pex11 contains a conserved sequence at the N-terminus that can adopt the structure of an amphipathic helix. Using Penicillium chrysogenum Pex11, we show that this amphipathic helix, termed Pex11-Amph, associates with liposomes in vitro. This interaction is especially evident when negatively charged liposomes are used with a phospholipid content resembling that of peroxisomal membranes. Binding of Pex11-Amph to negatively charged membrane vesicles resulted in strong tubulation. This tubulation of vesicles was also observed when the entire soluble N-terminal domain of Pex11 was used. Using mutant peptides, we demonstrate that maintaining the amphipathic properties of Pex11-Amph in conjunction with retaining its α-helical structure are crucial for its function. We show that the membrane remodelling capacity of the amphipathic helix in Pex11 is conserved from yeast to man. Finally, we demonstrate that mutations abolishing the membrane remodelling activity of the Pex11-Amph domain also hamper the function of full-length Pex11 in peroxisome fission in vivo.  相似文献   

9.
Interferon‐induced transmembrane protein 3 (IFITM3) is a cellular factor that blocks virus fusion with cell membranes. IFITM3 has been suggested to alter membrane curvature and fluidity, though its exact mechanism of action is unclear. Using a bioinformatic approach, we predict IFITM3 secondary structures and identify a highly conserved, short amphipathic helix within a hydrophobic region of IFITM3 previously thought to be a transmembrane domain. Consistent with the known ability of amphipathic helices to alter membrane properties, we show that this helix and its amphipathicity are required for the IFITM3‐dependent inhibition of influenza virus, Zika virus, vesicular stomatitis virus, Ebola virus, and human immunodeficiency virus infections. The homologous amphipathic helix within IFITM1 is also required for the inhibition of infection, indicating that IFITM proteins possess a conserved mechanism of antiviral action. We further demonstrate that the amphipathic helix of IFITM3 is required to block influenza virus hemagglutinin‐mediated membrane fusion. Overall, our results provide evidence that IFITM proteins utilize an amphipathic helix for inhibiting virus fusion.  相似文献   

10.
A structural model of the transmembrane portion of the acetylcholine receptor was developed from sequences of all its subunits by using transfer energy calculations to locate transmembrane alpha-helices and to calculate which helical side chains should be in contact with water inside the channel, with portions of other transmembrane helices, or with lipid hydrocarbon chains. "Knobs-into-holes" side chain packing calculations were used with other factors to stack the transmembrane alpha-helices together. In the model each subunit has the following structures in order along the sequence from the NH2 terminus: a large extracellular domain of undetermined structure, a short apolar alpha-helix that lies on the extracellular lipid surface of the membrane; three apolar transmembrane alpha-helices (I, II, and III), a cytoplasmic domain of undetermined structure, an amphipathic transmembrane alpha-helix (L) that forms the channel lining, a short extracellular alpha-helix, another apolar transmembrane alpha-helix (IV), and a small cytoplasmic domain formed by the COOH-terminal end of the chain. Three concentric layers form the pore. A bundle of five amphipathic L helices forms the channel lining. This bundle is surrounded by a bundle of 10 alternating II and III helices. Helices I and IV cover portions of the outer surface of the bundle formed by helices II and III. Positions of disulfide bridges are predicted and a mechanism for opening and closing conformational changes is proposed that requires tilting transmembrane helices and possibly a thiol-disulfide interchange reaction.  相似文献   

11.
Protein coats deform lipid membranes into spherical buds, which undergo fission at the neck to become vesicles. To induce membrane curvature, protein coats use basic tools including amphipathic helices and concave protein surfaces, and take advantage of the bulk properties of cellular membranes, such as loose lipid packing in the endoplasmic reticulum and cis-Golgi and the abundance of anionic lipids in the cytosolic leaflet of the plasma membrane. Protein scaffolds, sensors of membrane curvature and finely tuned reactions such as GTP hydrolysis permit the spatial and temporal organization of these tools, making protein coats self-organized molecular machines. Because biological membranes generally adhere to a cytoskeleton, the functioning of protein coats is coupled to other large remodeling events at the membrane interface.  相似文献   

12.
Prieto L  Lazaridis T 《Proteins》2011,79(1):126-141
Colicins are water-soluble toxins that, upon interaction with membranes, undergo a conformational change, insert, and form pores in them. Pore formation activity is localized in a bundle of 10 α-helices named the pore-forming domain (PFD). There is evidence that colicins attach to the membrane via a hydrophobic hairpin embedded in the core of the PFD. Two main models have been suggested for the membrane-bound state: penknife and umbrella, differing in regard to the orientation of the hydrophobic hairpin with respect to the membrane. The arrangement of the amphipathic helices has been described as either a compact three-dimensional structure or a two-dimensional array of loosely interacting helices on the membrane surface. Using molecular dynamics simulations with an implicit membrane model, we studied the structure and stability of the conformations proposed earlier for four colicins. We find that colicins are initially driven towards the membrane by electrostatic interactions between basic residues and the negatively charged membrane surface. They do not have a unique binding orientation, but in the predominant orientations the central hydrophobic hairpin is parallel to the membrane. In the inserted state, the estimated free energy tends to be lower for the compact arrangements of the amphipathic helix, but the more expanded ones are in better agreement with experimental distance distributions. The difference in energy between penknife and umbrella conformations is small enough for equilibrium to exist between them. Elongation of the hydrophobic hairpin helices and membrane thinning were found unable to produce stabilization of the transmembrane configuration of the hydrophobic hairpin.  相似文献   

13.
Perfringolysin O (PFO), a water-soluble monomeric cytolysin secreted by pathogenic Clostridium perfringens, oligomerizes and forms large pores upon encountering cholesterol-containing membranes. Whereas all pore-forming bacterial toxins examined previously have been shown to penetrate the membrane using a single amphipathic beta hairpin per polypeptide, cysteine-scanning mutagenesis and multiple independent fluorescence techniques here reveal that each PFO monomer contains a second domain involved in pore formation, and that each of the two amphipathic beta hairpins completely spans the membrane. In the soluble monomer, these transmembrane segments are folded into six alpha helices. The insertion of two transmembrane hairpins per toxin monomer and the major change in secondary structure are striking and define a novel paradigm for the mechanism of membrane insertion by a cytolytic toxin.  相似文献   

14.
Amphipathic helices have hydrophobic and hydrophilic/charged residues situated on opposite faces of the helix. They can anchor peripheral membrane proteins to the membrane, be attached to integral membrane proteins, or exist as independent peptides. Despite the widespread presence of membrane-interacting amphipathic helices, there is no computational tool within Rosetta to model their interactions with membranes. In order to address this need, we developed the AmphiScan protocol with PyRosetta, which runs a grid search to find the most favorable position of an amphipathic helix with respect to the membrane. The performance of the algorithm was tested in benchmarks with the RosettaMembrane, ref2015_memb, and franklin2019 score functions on six engineered and 44 naturally-occurring amphipathic helices using membrane coordinates from the OPM and PDBTM databases, OREMPRO server, and MD simulations for comparison. The AmphiScan protocol predicted the coordinates of amphipathic helices within less than 3Å of the reference structures and identified membrane-embedded residues with a Matthews Correlation Constant (MCC) of up to 0.57. Overall, AmphiScan stands as fast, accurate, and highly-customizable protocol that can be pipelined with other Rosetta and Python applications.  相似文献   

15.
Membrane-enclosed transport carriers sort biological molecules between stations in the cell in a dynamic process that is fundamental to the physiology of eukaryotic organisms. While much is known about the formation and release of carriers from specific intracellular membranes, the mechanism of carrier formation from the recycling endosome, a compartment central to cellular signaling, remains to be resolved. In Caenorhabditis elegans, formation of transport carriers from the recycling endosome requires the dynamin-like, Eps15-homology domain (EHD) protein, RME-1, functioning with the Bin/Amphiphysin/Rvs (N-BAR) domain protein, AMPH-1. Here we show, using a free-solution single-particle technique known as burst analysis spectroscopy (BAS), that AMPH-1 alone creates small, tubular-vesicular products from large, unilamellar vesicles by membrane fission. Membrane fission requires the amphipathic H0 helix of AMPH-1 and is slowed in the presence of RME-1. Unexpectedly, AMPH-1-induced membrane fission is stimulated in the presence of GTP. Furthermore, the GTP-stimulated membrane fission activity seen for AMPH-1 is recapitulated by the heterodimeric N-BAR amphiphysin protein from yeast, Rvs161/167p, strongly suggesting that GTP-stimulated membrane fission is a general property of this important class of N-BAR proteins.  相似文献   

16.
The membrane-bound closed state of the colicin E1 channel domain was investigated by site-directed fluorescence labeling using a bimane fluorophore attached to each single cysteine residue within helix 2 of each mutant protein. The fluorescence properties of the bimane fluorophore were measured for the membrane-associated form of the closed channel and included fluorescence emission maximum, fluorescence anisotropy, apparent polarity, surface accessibility, and membrane bilayer penetration depth. The fluorescence data show that helix 2 is an amphipathic alpha-helix that is situated parallel to the membrane surface, but it is less deeply embedded within the bilayer interfacial region than is helix 1 in the closed channel. A least squares fit of the various data sets to a harmonic wave function indicated that the periodicity and angular frequency for helix 2 in the membrane-bound state are typical for an amphipathic alpha-helix (3.8 +/- 0.1 residues per turn and 94 +/- 4 degrees, respectively) that is located at an interfacial region of a membrane bilayer. Dual quencher analysis also revealed that helix 2 is peripherally membrane associated, with one face of the helix dipping into the interfacial region of the lipid bilayer and the other face projecting outwardly into the aqueous solvent. Finally, our data show that helices 1 and 2 remain independent helices upon membrane association with a short connector link (Tyr(363)-Gly(364)) and that short amphipathic alpha-helices participate in the formation of a lipid-dependent, toroidal pore for this colicin.  相似文献   

17.
Mim C  Cui H  Gawronski-Salerno JA  Frost A  Lyman E  Voth GA  Unger VM 《Cell》2012,149(1):137-145
Functioning as key players in cellular regulation of membrane curvature, BAR domain proteins bend bilayers and recruit interaction partners through poorly understood mechanisms. Using electron cryomicroscopy, we present reconstructions of full-length endophilin and its N-terminal N-BAR domain in their membrane-bound state. Endophilin lattices expose large areas of membrane surface and are held together by promiscuous interactions between endophilin's amphipathic N-terminal helices. Coarse-grained molecular dynamics simulations reveal that endophilin lattices are highly dynamic and that the?N-terminal helices are required for formation of a stable and regular scaffold. Furthermore, endophilin accommodates different curvatures through?a quantized addition or removal of endophilin dimers, which in some cases causes dimerization of endophilin's SH3 domains, suggesting that the spatial presentation of SH3 domains, rather than affinity, governs the recruitment of downstream interaction partners.  相似文献   

18.
Mitochondria are double‐membrane‐bound organelles that constantly change shape through membrane fusion and fission. Outer mitochondrial membrane fusion is controlled by Mitofusin, whose molecular architecture consists of an N‐terminal GTPase domain, a first heptad repeat domain (HR1), two transmembrane domains, and a second heptad repeat domain (HR2). The mode of action of Mitofusin and the specific roles played by each of these functional domains in mitochondrial fusion are not fully understood. Here, using a combination of in situ and in vitro fusion assays, we show that HR1 induces membrane fusion and possesses a conserved amphipathic helix that folds upon interaction with the lipid bilayer surface. Our results strongly suggest that HR1 facilitates membrane fusion by destabilizing the lipid bilayer structure, notably in membrane regions presenting lipid packing defects. This mechanism for fusion is thus distinct from that described for the heptad repeat domains of SNARE and viral proteins, which assemble as membrane‐bridging complexes, triggering close membrane apposition and fusion, and is more closely related to that of the C‐terminal amphipathic tail of the Atlastin protein.  相似文献   

19.
20.
The amphipathic helix, in which hydrophobia and hydrophilic residues are grouped on opposing faces, is a structural mot if found in many peptides and proteins that bind to membranes. One of the physical properties of membranes that can be altered by the binding of amphipathic helices is membrane monolayer curvature strain. Class A amphipathic helices, which are present in exchangeable plasma lipoproteins, can stabilize membranes by reducing negative monolayer curvature strain; proline-punctuated class A amphipathic helical segments are particularly effective in this regard. This property is suggested to be associated with some of the beneficial biological effects of this protein. On the other hand, lytic amphipathic helical peptides can act by increasing negative curvature strain or by forming pores composed of helical clusters. Thus, different amphipathic helical peptides can be membrane stabilizing or be lytic to membranes, depending on the structural motif of the helix, which in turn determines the nature of its association with membranes. Features of these peptides that are responsible for their specific properties are discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号