首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Therapeutic footwear is frequently prescribed in cases of rheumatoid arthritis and diabetes to relieve or redistribute high plantar pressures in the region of the metatarsal heads. Few guidelines exist as to how these interventions should be designed and what effect such interventions actually have on the plantar pressure distribution. Finite element analysis has the potential to assist in the design process by refining a given intervention or identifying an optimal intervention without having to actually build and test each condition. However, complete and detailed foot models based on medical image segmentation have proven time consuming to build and computationally expensive to solve, hindering their utility in practice. Therefore, the goal of the current work was to determine if a simplified patient-specific model could be used to assist in the design of foot orthoses to reduce the plantar pressure in the metatarsal head region. The approach is illustrated by a case study of a diabetic patient experiencing high pressures and pain over the fifth metatarsal head. The simple foot model was initially calibrated by adjusting the individual loads on the metatarsals to approximate measured peak plantar pressure distributions in the barefoot condition to within 3%. This loading was used in various shod conditions to identify an effective orthosis. Model results for metatarsal pads were considerably higher than measured values but predictions for uniform surfaces were generally within 16% of measured values. The approach enabled virtual prototyping of the orthoses, identifying the most favorable approach to redistribute the patient’s plantar pressures.  相似文献   

2.
The purpose of this study was to analyze the influence of a custom foot orthotic (CFO) intervention on lower extremity intralimb coupling during a 30-min run in a group of injured runners and to compare the results to a control group of healthy runners. Three-dimensional kinematic data were collected during a 30-min run on healthy female runners (Shoe-only) and a group of female runners who had a recent history of overuse injury (Shoe-only and Shoe with custom foot orthoses). Results from the study revealed that the coordination variability and pattern for the some couplings were influenced by history of injury, foot orthotic intervention and the duration of the run. These data suggest that custom foot orthoses worn by injured runners may play a role in the maintenance of coordination variability of the tibia (transverse plane) and calcaneus (frontal plane) coupling during the Early Stance phase. In addition, it appears that the coupling angle between the knee (transverse plane) and rearfoot (frontal plane) joints becomes more symmetrical in the late stance phase as a run progresses.  相似文献   

3.
There is a lack of evidence about the effect of different type of foot orthoses on plantar surface temperature. Moreover, that effect could be different depending on gender due to anatomical and physiological differences between men and women. The aim of the study was to analyze the effect of a prefabricated thermoformable foot orthosis on plantar surface temperature after running and taking gender differences into account. Thirty recreational runners (15 males, mean (standard deviation): 28 (7) years, 69.7 (6.5) kg, 1.74 (0.05) cm and 22.9 (1.7) kg/m2; and 15 females: 35 (7) years, 55.2 (6.9) kg, 1.63 (0.06) cm and 20.6 (1.9) kg/m2) carried out a maximum incremental test as pre-test, and two running tests on a treadmill at the laboratory wearing previously randomized different foot orthoses (thermoformable and prefabricated generic). The plantar surface temperature of the dominant foot sole in ten regions of interest was assessed before and immediately after 30-min running at 75% of VO2max. The use of thermoformable foot orthoses produced lower temperatures only in men after the run in medial heel (P = 0.033, ES = 0.7), which then disappeared in temperature variation (after – before) (P = 0.910). Regarding gender, women showed lower temperatures before the run in both orthosis conditions (P < 0.039, ES > 0.8), but no differences in temperatures after the run (P = 0.910) in comparison with men. Moreover, absolute temperatures after running were always greater than before the run (P < 0.001, ES > 5.0). In conclusion, the thermoformable foot orthoses do not modify plantar surface temperature after running in healthy runners of either gender, compared to prefabricated generic foot orthoses. Although women present lower baseline plantar temperatures than men, these differences disappear after exercise.  相似文献   

4.
In contrast to western countries, foot complaints are rare in Africa. This is remarkable, as many African adults walk many hours each day, often barefoot or with worn-out shoes. The reason why Africans can withstand such loading without developing foot complaints might be related to the way the foot is loaded. Therefore, static foot geometry and dynamic plantar pressure distribution of 77 adults from Malawi were compared to 77 adults from the Netherlands. None of the subjects had a history of foot complaints. The plantar pressure pattern as well as the Arch Index (AI) and the trajectory of the center of pressure during the stance phase were calculated and compared between both groups. Standardized pictures were taken from the feet to assess the height of the Medial Longitudinal Arch (MLA). We found that Malawian adults: (1) loaded the midfoot for a longer and the forefoot for a shorter period during roll off, (2) had significantly lower plantar pressures under the heel and a part of the forefoot, and (3) had a larger AI and a lower MLA compared to the Dutch. These findings demonstrate that differences in static foot geometry, foot loading, and roll off technique exist between the two groups. The advantage of the foot loading pattern as shown by the Malawian group is that the plantar pressure is distributed more equally over the foot. This might prevent foot complaints.  相似文献   

5.
While it is not uncommon for athletes to use foot orthoses to relieve pain and improve sports performance, little has been known about their effects on basketball performance. Free-throw basketball shooting is very important. However, fatigue deteriorates postural balance which might decrease free-throw shooting performance. This study investigated the effects of foot orthoses on dynamic balance and accuracy performance during free-throw shooting before and after physical fatigue was induced. Thirteen male recreational basketball players were tested with two foot orthoses (medial-arch support versus flat control) and fatigue conditions (before and after fatigue), when they performed standard free-throw shooting on a force platform. Results revealed that fatigue significantly increased coefficient of variance of medial-lateral center of pressure (CoP) excursion when participants worn flat control orthoses (p < 0.05). Meanwhile, foot orthoses improved dynamic balance during shooting as they significantly reduced total resultant and anterior-posterior sway excursions as well as resultant and anterior-posterior CoP velocities, and base of support area. Although this study found that fatigue and orthoses did not significantly affect the scores gained by free-throw shooting, the significant improvements in dynamic balance during shooting with the use of foot orthoses could have considerable impact on motor control during basketball shooting.  相似文献   

6.
The pressure distribution on the plantar surface of the foot may provide insights into the stresses within the subsurface tissues of patients with diabetes mellitus and peripheral neuropathy (PN) who are at risk for skin breakdown. The purposes of this study were to (1) estimate the stress distribution in the subsurface soft tissue from a measured surface pressure distribution and determine any differences between values in the forefoot and rearfoot, and (2) determine the relationship between maximum shear stress (MSS) (magnitude and depth) and characteristics of the pressure distribution. The measured in-shoe pressure distributions during walking characterized by the peak plantar pressure and maximum pressure gradient on the plantar surface of the feet for 20 subjects with diabetes, PN and history of a mid foot or forefoot plantar ulcer were analyzed. The effects of peak pressure and maximum pressure gradient at the peak pressure location on the stress components in the subsurface soft tissue were studied using a potential function method to estimate the subsurface tissue stress. The calculated MSSs are larger in magnitude and located closer to the surface in the forefoot, where most skin breakdown occurs, compared to the rearfoot. In addition, the MSS (magnitude and depth) is highly correlated with the pressure gradient (r=-0.77 & 0.61) and the peak pressure (r=-0.61 & 0.91). The peak pressure and the maximum pressure gradient obtained from the surface pressure distribution appear to be important variables to identify where MSSs are located in the subsurface tissues on the plantar foot that may lead to skin break down.  相似文献   

7.
The use of anatomically accurate finite element (FE) models of the human foot in research studies has increased rapidly in recent years. Uses for FE foot models include advancing knowledge of orthotic design, shoe design, ankle–foot orthoses, pathomechanics, locomotion, plantar pressure, tissue mechanics, plantar fasciitis, joint stress and surgical interventions. Similar applications but for clinical use on a per-patient basis would also be on the rise if it were not for the high costs associated with developing patient-specific anatomical foot models. High costs arise primarily from the expense and challenges of acquiring anatomical data via magnetic resonance imaging (MRI) or computed tomography (CT) and reconstructing the three-dimensional models. The proposed solution morphs detailed anatomy from skin surface geometry and anatomical landmarks of a generic foot model (developed from CT or MRI) to surface geometry and anatomical landmarks acquired from an inexpensive structured light scan of a foot. The method yields a patient-specific anatomical foot model at a fraction of the cost of standard methods. Average error for bone surfaces was 2.53 mm for the six experiments completed. Highest accuracy occurred in the mid-foot and lowest in the forefoot due to the small, irregular bones of the toes. The method must be validated in the intended application to determine if the resulting errors are acceptable.  相似文献   

8.
The purpose of the present investigation was to examine the effects of 30 days of treatment with a topical cream consisting of cetylated fatty acids on static postural stability and plantar pressures in patients with osteoarthritis (OA) of one or both knees. Forty patients diagnosed with knee OA were randomly assigned to 1 of 2 topical treatment groups: (a) cetylated fatty acid (CFA; N = 20; age = 62.7 +/- 11.7 years); or (b) placebo (P; N = 20; age = 64.6 +/- 10.5 years). Patients were tested on 2 occasions: (a) baseline (T1), and (b) following a 30-day treatment period consisting of cream application twice per day (T2). Assessments included 20- and 40-second quiet standing protocols on a force plate to measure center of pressure (COP) total excursion length, COP velocity, and rearfoot and forefoot plantar pressure distribution. In the CFA group, a significant reduction in the COP excursion length and velocity were observed at T2, whereas no significant differences were observed in the P group. No significant differences in mean forefoot, rearfoot, or rearfoot-to-forefoot plantar pressure ratios were observed in either group at T2. However, in a subgroup of participants designated to be right- or left-side dominant, improvements in the right-to-left forefoot plantar pressure ratios were observed in both groups. These data indicate that 30 days of treatment with a topical cream consisting of cetylated fatty acids improves static postural stability in patients with knee OA presumably due to pain relief during quiet standing. Such over-the-counter treatment may help improve the exercise trainability of people with OA.  相似文献   

9.
Plantar pressure measurement provides important information about the structure and function of the foot and is a helpful tool to evaluate patients with foot complaints. In general, average and maximum plantar pressure of 6–11 areas under the foot are used to compare groups of subjects. However, masking the foot means a loss of important information about the plantar pressure distribution pattern. Therefore, the purpose of this study was to develop and test a simple method that normalizes the plantar pressure pattern for foot size, foot progression angle, and total plantar pressure. Moreover, scaling the plantar pressure to a standard foot opens the door for more sophisticated analysis techniques such as pattern recognition and machine learning.Twelve subjects walked at preferred and half of the preferred walking speed over a pressure plate. To test the method, subjects walked in a straight line and in an approaching angle of approximately 40°. To calculate the normalized foot, the plantar pressure pattern was rotated over the foot progression angle and normalized for foot size.After normalization, the mean shortest distance between the contour lines of straight walking and walking at an angle had a mean of 0.22 cm (SD: 0.06 cm) for the forefoot and 0.14 cm (SD: 0.06 cm) for the heel. In addition, the contour lines of normalized feet for the various subjects were almost identical.The proposed method appeared to be successful in aligning plantar pressure of various feet without losing information.  相似文献   

10.

Background

Current international guidelines advocate achieving at least a 30 % reduction in maximum plantar pressure to reduce the risk of foot ulcers in people with diabetes. However, whether plantar pressures differ in cases with foot ulcers to controls without ulcers is not clear. The aim of this study was to assess if plantar pressures were higher in patients with active plantar diabetic foot ulcers (cases) compared to patients with diabetes without a foot ulcer history (diabetes controls) and people without diabetes or a foot ulcer history (healthy controls).

Methods

Twenty-one cases with diabetic foot ulcers, 69 diabetes controls and 56 healthy controls were recruited for this case-control study. Plantar pressures at ten sites on both feet and stance phase duration were measured using a pre-established protocol. Primary outcomes were mean peak plantar pressure, pressure-time integral and stance phase duration. Non-parametric analyses were used with Holm’s correction to correct for multiple testing. Binary logistic regression models were used to adjust outcomes for age, sex and body mass index. Median differences with 95 % confidence intervals and Cohen’s d values (standardised mean difference) were reported for all significant outcomes.

Results

The majority of ulcers were located on the plantar surface of the hallux and toes. When adjusted for age, sex and body mass index, the mean peak plantar pressure and pressure-time integral of toes and the mid-foot were significantly higher in cases compared to diabetes and healthy controls (p?<?0.05). The stance phase duration was also significantly higher in cases compared to both control groups (p?<?0.05). The main limitations of the study were the small number of cases studied and the inability to adjust analyses for multiple factors.

Conclusions

This study shows that plantar pressures are higher in cases with active diabetic foot ulcers despite having a longer stance phase duration which would be expected to lower plantar pressure. Whether plantar pressure changes can predict ulcer healing should be the focus of future research. These results highlight the importance of offloading feet during active ulceration in addition to before ulceration.
  相似文献   

11.
目的:总结类风湿关节炎(RA)患者拇长屈肌腱(FHL)病变的超声特点及二者间的相关性。方法:回顾性分析2010年2月至2011年6月因足部疼痛于我院就诊的60例(120足)RA患者资料。应用彩色多普勒超声诊断仪探查拇长屈肌腱,根据超声探查拇长屈肌腱病变情况的结果将患者分为3组:肌腱完整组(A组,45足),肌腱周围炎症组(B组,49足),肌腱断裂组(C组,26足)。对拇长屈肌腱病变的特点及部位进行描述,并将拇长屈肌腱病变严重程度与患者年龄及病程进行相关性分析。结果:45足肌腱完整,49足出现不同部位的肌腱周围炎症(内踝转折处17足,henrry’s结节处11足,第一跖趾关节跖侧21足),26足发生肌腱断裂(9足发生于内踝转折处,17足发生于跖趾关节跖侧)。肌腱病变的发生率71%。A组平均年龄49.9±9.2岁,病程4.7±2.6年;B组平均年龄56.2±9.2岁,病程16.2±7.4年;C组平均年龄54.7±8.0岁,病程20.9±4.4年。三组间上述参数差异具有统计学意义(P0.05)。结论:拇长屈肌腱是类风湿关节炎足部结构的常见受累部位,其病变多发生于内踝转折处,henrry's结节处及第一跖趾关节跖侧,但henrry’s结节处的断裂少见。在对类风湿关节炎平足患者进行肌腱转位手术时,应充分考量拇长屈肌腱的病变。  相似文献   

12.
The functions of the gastrocnemius-soleus (G-S) complex and other plantar flexor muscles are to stabilize and control major bony joints, as well as to provide primary coordination of the foot during the stance phase of gait. Geometric positioning of the foot and transferring of plantar loads can be adversely affected when muscular control is abnormal (e.g., equinus contracture). Although manipulation of the G-S muscle complex by surgical intervention (e.g., tendo-Achilles lengthening) is believed to be effective in restoring normal plantar load transfer in the foot, there is lack of quantitative data supporting that notion. Thus, the objective of this study is to formulate a three-dimensional musculoskeletal finite element model of the foot to quantify the precise role of the G-S complex in terms of biomechanical response of the foot. The model established corresponds to a muscle-demanding posture during heel rise, with simulated activation of major extrinsic plantar flexors. In the baseline (reference) case, required muscle forces were determined from what would be necessary to generate the targeted resultant ground reaction forces. The predicted plantar load transfer through the forefoot plantar surface, as indicated by plantar pressure distribution, was verified by comparison with experimental observations. This baseline model served as a reference for subsequent parametric analysis, where muscle forces applied by the G-S complex were decreased in a step-wise manner. Adaptive changes of the foot mechanism, in terms of internal joint configurations and plantar stress distributions, in response to altered muscular loads were analyzed. Movements of the ankle and metatarsophalangeal joints, as well as forefoot plantar pressure peaks and pressure distribution under the metatarsal heads (MTHs), were all found to be extremely sensitive to reduction in the muscle load in the G-S complex. A 40% reduction in G-S muscle stabilization can result in dorsal-directed rotations of 8.81° at the ankle, and a decreased metatarsophalangeal joint extension of 4.65°. The resulting peak pressure reductions at individual MTHs, however, may be site-specific and possibly dependent on foot structure, such as intrinsic alignment of the metatarsals. The relationships between muscular control, internal joint movements, and plantar load distributions are envisaged to have important clinical implications on tendo-Achilles lengthening procedures, and to provide surgeons with an understanding of the underlying mechanism for relieving forefoot pressure in diabetic patients suffering from ankle equinus contracture.  相似文献   

13.
ObjectiveElevated dynamic plantar foot pressures significantly increase the risk of foot ulceration in diabetes mellitus. The aim was to determine which factors predict plantar pressures in a population of diabetic patients who are at high-risk of foot ulceration.MethodsPatients with diabetes, peripheral neuropathy and a history of ulceration were eligible for inclusion in this cross sectional study. Demographic data, foot structure and function, and disease-related factors were recorded and used as potential predictor variables in the analyses. Barefoot peak pressures during walking were calculated for the heel, midfoot, forefoot, lesser toes, and hallux regions. Potential predictors were investigated using multivariate linear regression analyses. 167 participants with mean age of 63 years contributed 329 feet to the analyses.ResultsThe regression models were able to predict between 6% (heel) and 41% (midfoot) of the variation in peak plantar pressures. The largest contributing factor in the heel model was glycosylated haemoglobin concentration, in the midfoot Charcot deformity, in the forefoot prominent metatarsal heads, in the lesser toes hammer toe deformity and in the hallux previous ulceration. Variables with local effects (e.g. foot deformity) were stronger predictors of plantar pressure than global features (e.g. body mass, age, gender, or diabetes duration).ConclusionThe presence of local deformity was the largest contributing factor to barefoot dynamic plantar pressure in high-risk diabetic patients and should therefore be adequately managed to reduce plantar pressure and ulcer risk. However, a significant amount of variance is unexplained by the models, which advocates the quantitative measurement of plantar pressures in the clinical risk assessment of the patient.  相似文献   

14.

Background

The aim of this study was to identify groups of subjects with similar patterns of forefoot loading and verify if specific groups of patients with diabetes could be isolated from non-diabetics.

Methodology/Principal Findings

Ninety-seven patients with diabetes and 33 control participants between 45 and 70 years were prospectively recruited in two Belgian Diabetic Foot Clinics. Barefoot plantar pressure measurements were recorded and subsequently analysed using a semi-automatic total mapping technique. Kmeans cluster analysis was applied on relative regional impulses of six forefoot segments in order to pursue a classification for the control group separately, the diabetic group separately and both groups together. Cluster analysis led to identification of three distinct groups when considering only the control group. For the diabetic group, and the computation considering both groups together, four distinct groups were isolated. Compared to the cluster analysis of the control group an additional forefoot loading pattern was identified. This group comprised diabetic feet only. The relevance of the reported clusters was supported by ANOVA statistics indicating significant differences between different regions of interest and different clusters.

Conclusion/s Significance

There seems to emerge a new era in diabetic foot medicine which embraces the classification of diabetic patients according to their biomechanical profile. Classification of the plantar pressure distribution has the potential to provide a means to determine mechanical interventions for the prevention and/or treatment of the diabetic foot.  相似文献   

15.
The present study was designed to assess the effects of experimentally-induced plantar pain on the displacement of centre of foot pressure during unperturbed upright stance in different sensory conditions of availability and/or reliability of visual input and somatosensory input from the vestibular system and neck. To achieve this goal, fourteen young healthy adults were asked to stand as still as possible in three sensory conditions: (1) No-vision, (2) Vision, and (3) No-vision – Head tilted backward, during two experimental conditions: (1) a No-pain condition, and (2) a condition when a painful stimulation was applied to the plantar surfaces of both feet (Plantar-pain condition). Centre of foot pressure (CoP) displacements were recorded using a force platform. Results showed that (1) experimentally-induced plantar pain increased CoP displacements in the absence of vision (No-vision condition), (2) this deleterious effect was more accentuated when somatosensory information from the vestibular and neck was altered (No-vision – Head tilted backward condition) and (3) this deleterious effect was suppressed when visual information was available (Vision condition). From a fundamental point of view, these results lend support to the sensory re-weighting hypothesis whereby the central nervous system dynamically and selectively adjusts the relative contributions of sensory inputs (i.e. the sensory weightings) in order to maintain balance when one or more sensory channels are altered by the task (novel or challenging), environmental or individual conditions. From a clinical point of view, the present findings further suggest that prevention and treatment of plantar pain may be relevant for the preservation or improvement of balance control, particularly in situations (or individuals) in which information provided by the visual, neck proprioceptive and vestibular systems is unavailable or disrupted.  相似文献   

16.
Information on the internal stresses/strains in the human foot and the pressure distribution at the plantar support interface under loading is useful in enhancing knowledge on the biomechanics of the ankle-foot complex. While techniques for plantar pressure measurements are well established, direct measurement of the internal stresses/strains is difficult. A three-dimensional (3D) finite element model of the human foot and ankle was developed using the actual geometry of the foot skeleton and soft tissues, which were obtained from 3D reconstruction of MR images. Except the phalanges that were fused, the interaction among the metatarsals, cuneiforms, cuboid, navicular, talus, calcaneus, tibia and fibula were defined as contact surfaces, which allow relative articulating movement. The plantar fascia and 72 major ligaments were simulated using tension-only truss elements by connecting the corresponding attachment points on the bone surfaces. The bony and ligamentous structures were embedded in a volume of soft tissues. The encapsulated soft tissue was defined as hyperelastic, while the bony and ligamentous structures were assumed to be linearly elastic. The effects of soft tissue stiffening on the stress distribution of the plantar surface and bony structures during balanced standing were investigated. Increases of soft tissue stiffness from 2 and up to 5 times the normal values were used to approximate the pathologically stiffened tissue behaviour with increasing stages of diabetic neuropathy. The results showed that a five-fold increase in soft tissue stiffness led to about 35% and 33% increase in the peak plantar pressure at the forefoot and rearfoot regions, respectively. This corresponded to about 47% decrease in the total contact area between the plantar foot and the horizontal support surface. Peak bone stress was found at the third metatarsal in all calculated cases with a minimal increase of about 7% with soft tissue stiffening.  相似文献   

17.
Fan Y  Fan Y  Li Z  Lv C  Luo D 《PloS one》2011,6(3):e17749
There has been a controversy as to whether or not the non-pathological flat foot and high-arched foot have an effect on human walking activities. The 3D foot scanning system was employed to obtain static footprints from subjects adopting a half-weight-bearing stance. Based upon their footprints, the subjects were divided into two groups: the flat-footed and the high-arched. The plantar pressure measurement system was used to measure and record the subjects' successive natural gaits. Two indices were proposed: distribution of vertical ground reaction force (VGRF) of plantar and the rate of change of footprint areas. Using these two indices to compare the natural gaits of the two subject groups, we found that (1) in stance phase, there is a significant difference (p<0.01) in the distributions of VGRF of plantar; (2) in a stride cycle, there is also a significant difference (p<0.01) in the rate of change of footprint area. Our analysis suggests that when walking, the VGRF of the plantar brings greater muscle tension to the flat-footed while a smaller rate of change of footprint area brings greater stability to the high-arched.  相似文献   

18.
Reliable computational foot models offer an alternative means to enhance knowledge on the biomechanics of human foot.Model validation is one of the most critical aspects of the entire foot modeling and analysis process.This paper presents an invivo experiment combining motion capture system and plantar pressure measure platform to validate a three-dimensional finiteelement model of human foot.The Magnetic Resonance Imaging(MRI)slices for the foot modeling and the experimental datafor validation were both collected from the same volunteer subject.The validated components included the comparison of staticmodel predictions of plantar force,plantar pressure and foot surface deformation during six loading conditions,to equivalentmeasured data.During the whole experiment,foot surface deformation,plantar force and plantar pressure were recorded simultaneouslyduring six different loaded standing conditions.The predictions of the current FE model were in good agreementwith these experimental results.  相似文献   

19.
Abnormal and excessive plantar pressure is a major risk factor for the development of foot ulcers in patients with loss of protective pain sensation. Repeated pressure with each step can result in inflammation at specific points, followed by ulcer formation. Patients with peripheral nerve disease are unable to prevent the development of such lesions, which often lead to amputation. For this reason, it has been suggested that a fundamental therapeutic intervention should be the reduction of high plantar pressure. We have developed a portable, battery-operated ambulatory foot pressure device (AFPD) which has two important functions: (1) to determine the areas of high plantar pressure, and (2) to provide an acoustic alarm, adjusted to a specific pressure load, which is triggered when weight-bearing exceeds the predetermined plantar pressure. A memory of plantar pressure parameters allows for downloading of the data and sequential analysis during the investigation period. Such an alarm device could replace the lack of pain sensation and may play an important role in the prevention of ulcer development and lower extremity amputation.  相似文献   

20.
The midtarsal break was once treated as a dichotomous, non-overlapping trait present in the foot of non-human primates and absent in humans. Recent work indicates that there is considerable variation in human midfoot dorsiflexion, with some overlap with the ape foot. These findings have called into question the uniqueness of the human lateral midfoot, and the use of osteological features in fossil hominins to characterize the midfoot of our extinct ancestors. Here, we present data on plantar pressure and pedal mechanics in a large sample of adults and children (n = 671) to test functional hypotheses concerning variation in midfoot flexibility. Lateral midfoot peak plantar pressure correlates with both sagittal plane flexion at the lateral tarsometatarsal joint, and dorsiflexion at the hallucal metatarsophalangeal joint. The latter finding suggests that midfoot laxity may compromise hallucal propulsion. Multiple regression statistics indicate that a low arch and pronation of the foot explain 40% of variation in midfoot peak plantar pressure, independent of age and BMI. MRI scans on a small subset of study participants (n = 19) reveals that curvature of the base of the 4th metatarsal correlates with lateral midfoot plantar pressure and that specific anatomies of foot bones do indeed reflect relative midfoot flexibility. However, while the shape of the base of the 4th metatarsal may reliably reflect midfoot mobility in individual hominins, given the wide range of overlapping variation in midfoot flexibility in both apes and humans, we caution against generalizing foot function in extinct hominin species until larger fossils samples are available. Am J Phys Anthropol 156:543–552, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号