首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nitric oxide (NO) is a free radical produced during inflammation following activation of an inducible NO synthase by pro-inflammatory cytokines such as IL-1beta. Since both NO and IL-1beta are involved in the physiopathology of inflammatory arthropathies, we investigated the effects of exogenous NO on glycolytic pathways in cultured human osteoarthritic synovial cells. NO generated from S-nitroso-N-acetyl penicillamine (SNAP) or sodium nitroprusside (SNP) inhibited glucose uptake (by 50% after 1 h of incubation) and lactate production by 16% (SNAP) and 8.5% (SNP) after 3 h. Both NO donors also reduced production of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an enzyme of the glycolytic pathway. This effect was reversed by haemoglobin, a NO scavenger with higher affinity for the radical. In contrast, the effect on glucose uptake appeared to be irreversible.  相似文献   

2.
Allergen-specific CTL have a protective effect on allergic airway inflammation, a function thought to be mediated by cytokines, especially IFN-γ. However, the contribution of cytotoxic function to this protective effect has not been investigated. We examined the contribution of cytotoxic function to the therapeutic effect of allergen-specific CTL in allergic airway inflammation. We used a murine model of allergic airway inflammation in which mice were sensitized to OVA and then challenged with the same Ag via the intranasal route. CTL were elicited in these mice by immunization with dendritic cells (DC) or by adoptive transfer of in vitro-activated CD8(+) T cells. Hallmark features of allergic asthma, such as infiltration of eosinophils in the bronchoalveolar lavage fluid and mucus production, were assessed. Suppression of allergic airway inflammation by allergen-specific CTL was critically dependent on the expression of perforin, a key component of the cytotoxic machinery. Both perforin-sufficient and perforin-deficient allergen-specific CTL were recovered from the lungs of allergen-sensitized mice and upregulated CD69 expression and secreted the cytokines IFN-γ and TNF-α upon intranasal allergen challenge. However, only perforin-sufficient CTL inhibited eosinophil infiltration in the airway, mucus production, and cytokine accumulation in the bronchoalveolar lavage fluid. Treatment with allergen-specific CTL, but not their perforin-deficient counterparts, was also associated with a decrease in the number of DC in the mediastinal lymph node. Our data suggest that the cytotoxic function of allergen-specific CD8(+) T cells is critical to their ability to moderate allergic airway inflammation.  相似文献   

3.
Migita H  Satozawa N  Lin JH  Morser J  Kawai K 《FEBS letters》2004,557(1-3):269-274
Retinoic acid receptor-related orphan receptor-alpha (RORalpha) is a nuclear orphan receptor. Adenovirus-mediated overexpression of RORalpha1 and RORalpha4 suppressed tumor necrosis factor-alpha (TNF-alpha)-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1) in human umbilical vein endothelial cells. Overexpression of RORalpha1 and RORalpha4 also suppressed TNF-alpha-stimulated translocation of p50 and p65 to the nucleus. In contrast, dominant-negative deletion mutants of RORalpha1 and RORalpha4 failed to suppress the induction of VCAM-1 and ICAM-1 and translocations of p50 and p65. These results suggest that RORalpha1 and RORalpha4 regulate the inflammatory responses via inhibition of the nuclear factor-kappaB signaling pathway in endothelial cells.  相似文献   

4.
Growing evidence demonstrates that inducible NO synthase (iNOS) is induced in the airways of asthmatic patients. However, the precise role of NO in the lung inflammation is unknown. This study investigated the effect of both selective and nonselective iNOS inhibitors in an allergen-driven murine lung inflammation model. OVA challenge resulted in an accumulation of eosinophils and neutrophils in the airways. Expression of iNOS immunostaining in lung sections together with an increase in calcium-independent NOS activity in lung homogenates was also observed after OVA challenge. Treatment with iNOS inhibitors from the day of challenge to the day of sacrifice resulted in an inhibition of the inflammatory cell influx together with a down-regulation of macrophage inflammatory protein-2 and monocyte chemoattractant protein-1 production. In contrast, eosinophilic and neutrophilic inhibition was not observed with treatment during the sensitization. Both treatments induced an increased production of Th2-type cytokines (IL-4 and IL-5) with a concomitant decrease in production of Th1-type cytokine (IFN-gamma). In vitro exposure of primary cultures of murine lung fibroblasts to a NO donor, hydroxylamine, induced a dose-dependent release of macrophage inflammatory protein-2 and monocyte chemoattractant protein-1. Our results suggest that lung inflammation after allergen challenge in mice is partially dependent on NO produced mainly by iNOS. NO appears to increase lung chemokine expression and, thereby, to facilitate influx of inflammatory cells into the airways.  相似文献   

5.
6.
TGF-β can induce Foxp3(+) inducible regulatory T cells (Treg) and also synergize with IL-6 and IL-4 to induce Th17 and Th9 cells. We now report that NO modulates TGF-β activity away from Treg but toward the Th1 lineage. NO potentiated Th1 differentiation in the presence of TGF-β in both IL-12-independent and -dependent fashions by augmenting IFN-γ-activated STAT-1 and T-bet. Differentiation into Treg, Th1, and Th17 lineages could be modulated by NO competing with other cofactors, such as IL-6 and retinoic acid. NO antagonized IL-6 to block TGF-β-directed Th17 differentiation, and together with IL-6, NO suppressed Treg development induced by TGF-β and retinoic acid. Furthermore, we show that physiologically produced NO from TNF and inducible NO synthase-producing dendritic cells can contribute to Th1 development predominating over Treg development through a synergistic activity induced when these cells cocluster with conventional dendritic cells presenting Ag to naive Th cells. This illustrates that NO is another cofactor allowing TGF-β to participate in development of multiple Th lineages and suggests a new mechanism by which NO, which is associated with protection against intracellular pathogens, might maintain effective Th1 immunity.  相似文献   

7.
Chronic inflammation of gastrointestinal tissues is a well-recognized risk factor for the development of epithelial cell-derived malignancies. Although the inflammatory mediators linking chronic inflammation to carcinogenesis are numerous, current information suggests that nitric oxide (NO) contributes to carcinogenesis during chronic inflammation. Inducible nitric oxide synthase (iNOS), expressed by both macrophages and epithelial cells during inflammation, generates the bioreactive molecule NO. In addition to causing DNA lesions, NO can directly interact with proteins by nitrosylation and nitosation reactions. The consequences of protein damage by NO appear to be procarcinogenic. For example, NO inhibits DNA repair enzymes such as human 8-oxodeoxyguanosine DNA glycosylase 1 and blocks apoptosis via nitrosylation of caspases. These cellular events permit DNA damage to accumulate, which is required for the numerous mutations necessary for development of invasive cancer. NO also promotes cancer progression by functioning as an angiogenesis factor. Strategies to inhibit NO generation during chronic inflammation or to scavenge reactive nitrogen species may prove useful in decreasing the risk of cancer development in chronic inflammatory gastrointestinal diseases.  相似文献   

8.
As a signalling molecule of the integral membrane protein family, caveolin participates in cellular signal transduction via interaction with other signalling molecules. The nature of interaction between nitric oxide (NO) and caveolin in the brain, however, remains largely unknown. In this study we investigated the role(s) of NO in regulating caveolin-1 expression in rat ischemic brains with middle cerebral artery occlusion (MCAO). Exposure to 1 h ischemia induced the increases in neuronal nitric oxide synthase (nNOS) and NO concentration with concurrent down-regulation of caveolin-1 expression in the ischemic core of rat brains. Subsequent 24 h or more reperfusion time led to an increase in inducible NOS (iNOS) expression and NO production, as well as a decline of caveolin-1 protein at the core and penumbra of the ischemic brain. Afterwards, NOS inhibitors and an NO donor were utilized to clarify the link between NO production and caveolin-1 expression in the rats with 1 h ischemia plus 24 h reperfusion. N(G)-nitro-l-arginine methyl ester (L-NAME, a non-selective NOS inhibitor), N(6)-(1-iminoethyl)-lysine (NIL, an iNOS inhibitor), and 7-nitroindazole (7-NI, a nNOS inhibitor) prevented the loss of caveolin-1 in the core and penumbra of the ischemic brain, whereas l-N(5)-(1-iminoethyl)-ornithine (L-NIO, an endothelial NOS inhibitor) showed less effect than the other NOS inhibitors. S-Nitroso-N-acetylpenicillamine (SNAP, a NO donor) down-regulated the expression of caveolin-1 protein in normal and ischemic brains. These results, when taken together, suggest that NO modulates the expression of caveolin-1 in the brain and that the loss of caveolin-1 is associated with NO production in the ischemic brain.  相似文献   

9.
10.
We have previously observed an increased of angiotensin II (ANG II) type 1 receptor (AT(1)R) with enhanced AT(1)R-mediated sympathetic outflow and concomitant downregulation of neuronal nitric oxide (NO) synthase (nNOS) with reduced NO-mediated inhibition from the paraventricular nucleus (PVN) in rats with heart failure. To test the hypothesis that NO exerts an inhibitory effect on AT(1)R expression in the PVN, we used primary cultured hypothalamic cells of neonatal rats and neuronal cell line NG108-15 as in vitro models. In hypothalamic primary culture, NO donor sodium nitroprusside (SNP) induced dose-dependent decreases in mRNA and protein of AT(1)R (10(-5) M SNP, AT(1)R protein was 10 ± 2% of control level) while NOS inhibitor N(G)-monomethyl-l-arginine (l-NMMA) induced dose-dependent increases in mRNA and protein levels of AT(1)R (10(-5) M l-NMMA, AT(1)R protein was 148 ± 8% of control level). Similar effects of SNP and l-NMMA on AT(1)R expression were also observed in NG108-15 cell line (10(-6) M SNP, AT(1)R protein was 30 ± 4% of control level while at the dose of 10(-6) M l-NMMA, AT(1)R protein was 171 ± 15% of the control level). Specific inhibition of nNOS, using antisense, caused an increase in AT(1)R expression while overexpression of nNOS, using adenoviral gene transfer (Ad.nNOS), caused an inhibition of AT(1)R expression in NG108 cells. Antisense nNOS transfection augmented the increase while Ad.nNOS infection blunted the increase in intracellular calcium concentration in response to ANG II treatment in NG108 cells. In addition, downregulation of AT(1)R mRNA as well as protein level in neuronal cell line in response to S-nitroso-N-acetyl pencillamine (SNAP) treatment was blocked by protein kinase G (PKG) inhibitor, while the peroxynitrite scavenger deforxamine had no effect. These results suggest that NO acts as an inhibitory regulator of AT(1)R expression and the activation of PKG is the required step in the regulation of AT(1)R gene expression via cGMP-dependent signaling pathway.  相似文献   

11.
Nitric oxide signaling during myocardial angiogenesis   总被引:2,自引:0,他引:2  
Ischemic heart disease develops as a consequence of coronary atherosclerotic lesion formation. Coronary collateral vessels and microvascular angiogenesis develop as an adaptive response to myocardial ischemia, which ameliorates the function of the damaged heart. Angiogenesis, the formation of new blood vessels from pre-existing vascular bed, is of paramount importance in the maintenance of vascular integrity both in the repair process of damaged tissue and in the formation of collateral vessels in response to tissue ischemia. Angiogenesis is modulated by a multitude of cytokines/chemokines and growth factors. In this regard, angiogenesis cannot be viewed as a single process. It is likely that different mediators are involved in different phases of angiogenesis. Vascular endothelial cells (ECs) produce nitric oxide (NO), an endothelium-derived labile molecule, which maintains vascular homeostasis and thereby prevents vascular atherosclerotic changes. In patients with ischemic heart disease, the release of endothelium-derived NO is decreased, which plays an important role in the atherosclerotic disease progression. In recent years, endothelium-derived NO has been shown to modulate angiogenesis in vitro and in vivo. In this review, we summarize recent progress in the field of the NO-mediated regulation of postnatal angiogenesis, particularly in response to myocardial ischemia.  相似文献   

12.
Ischemic heart disease develops as a consequence of coronary atherosclerotic lesion formation. Coronary collateral vessels and microvascular angiogenesis develop as an adaptive response to myocardial ischemia, which ameliorates the function of the damaged heart. Angiogenesis, the formation of new blood vessels from pre-existing vascular bed, is of paramount importance in the maintenance of vascular integrity both in the repair process of damaged tissue and in the formation of collateral vessels in response to tissue ischemia. Angiogenesis is modulated by a multitude of cytokines/chemokines and growth factors. In this regard, angiogenesis cannot be viewed as a single process. It is likely that different mediators are involved in different phases of angiogenesis. Vascular endothelial cells (ECs) produce nitric oxide (NO), an endothelium-derived labile molecule, which maintains vascular homeostasis and thereby prevents vascular atherosclerotic changes. In patients with ischemic heart disease, the release of endothelium-derived NO is decreased, which plays an important role in the atherosclerotic disease progression. In recent years, endothelium-derived NO has been shown to modulate angiogenesis in vitro and in vivo. In this review, we summarize recent progress in the field of the NO-mediated regulation of postnatal angiogenesis, particularly in response to myocardial ischemia. (Mol Cell Biochem 264: 25–34, 2004)  相似文献   

13.
14.
Nitric oxide signaling is crucial for effecting long lasting changes in cells, including gene expression, cell cycle arrest, apoptosis, and differentiation. We have determined the temporal order of gene activation induced by NO in mammalian cells and have examined the signaling pathways that mediate the action of NO. Using microarrays to study the kinetics of gene activation by NO, we have determined that NO induces three distinct waves of gene activity. The first wave is induced within 30 min of exposure to NO and represents the primary gene targets of NO. It is followed by subsequent waves of gene activity that may reflect further cascades of NO-induced gene expression. We verified our results using quantitative real time PCR and further validated our conclusions about the effects of NO by using cytokines to induce endogenous NO production. We next applied pharmacological and genetic approaches to determine the signaling pathways that are used by NO to regulate gene expression. We used inhibitors of particular signaling pathways, as well as cells from animals with a deleted p53 gene, to define groups of genes that require phosphatidylinositol 3-kinase, protein kinase C, NF-kappaB, p53, or combinations thereof for activation by NO. Our results demonstrate that NO utilizes several independent signaling pathways to induce gene expression.  相似文献   

15.
Apoptosis is a critical determinant of tissue mass homeostasis and may play a role in carcinogenesis. The aim of the present study was to investigate anoxia-induced cell death in colon-derived HT29 cells and the effect of nitric oxide on this phenomenon. It was found that HT29 cells subjected to anoxia undergo apoptosis in a time dependent manner, as determined by DNA fragmentation and Hoechst-33258 dye staining. Cytochrome c release from mitochondria to cytosol is a key step in this process and this release precedes DNA fragmentation. NO inhibits anoxia induced apoptosis in these cells by inhibiting the release of cytochrome c and thus may play a role in modulating the apoptotic cell death of colon-derived epithelial cells.  相似文献   

16.
17.
As arterial partial pressure of O(2) (Pa(O(2))) is reduced during systemic hypoxia, right ventricular (RV) work and myocardial O(2) consumption (MVo(2)) increase. Mechanisms responsible for maintaining RV O(2) demand/supply balance during hypoxia have not been delineated. To address this problem, right coronary (RC) blood flow and RV O(2) extraction were measured in nine conscious, instrumented dogs exposed to normobaric hypoxia. Catheters were implanted in the right ventricle for measuring pressure, in the ascending aorta for measuring arterial pressure and for sampling arterial blood, and in an RC vein. A flow transducer was placed around the RC artery. After recovery from surgery, dogs were exposed to hypoxia in a chamber ventilated with N(2), and blood samples and hemodynamic data were collected as chamber O(2) was reduced progressively to approximately 8%. After control measurements were made, the chamber was opened and the dog was allowed to recover. N(omega)-nitro-L-arginine (L-NNA) was then administered (35 mg/kg, via RV catheter) to inhibit nitric oxide (NO) production, and the hypoxia protocol was repeated. RC blood flow increased during hypoxia due to coronary vasodilation, because RC conductance increased from 0.65 +/- 0.05 to 1.32 +/- 0.12 ml x min(-1) x 100 g(-1) x L-NNA blunted the hypoxia-induced increase in RC conductance. RV O(2) extraction remained constant at 64 +/- 4% as Pa(O(2)) was decreased, but after L-NNA, extraction increased to 70 +/- 3% during normoxia and then to 78 +/- 3% during hypoxia. RV MVo(2) increased during hypoxia, but after L-NNA, MVo(2) was lower at any respective Pa(O(2)). The relationship between heart rate times RV systolic pressure (rate-pressure product) and RV MVo(2) was not altered by l-NNA. To account for L-NNA-mediated decreases in RV MVo(2), O(2) demand/supply variables were plotted as functions of MVo(2). Slope of the conductance-MVo(2) relationship was depressed by L-NNA (P = 0.03), whereas the slope of the extraction-MVo(2) relationship increased (P = 0.003). In summary, increases in RV MVo(2) during hypoxia are met normally by increasing RC blood flow. When NO synthesis is blocked, the large RV O(2) extraction reserve is mobilized to maintain RV O(2) demand/supply balance. We conclude that NO contributes to RC vasodilation during systemic hypoxia.  相似文献   

18.
Gui X  Guzman G  Dobner PR  Kadkol SS 《Peptides》2008,29(9):1609-1615
The high affinity neurotensin receptor (NTSR1) mediates most of the biologic effects of neurotensin (NT), a 13-amino acid peptide that stimulates growth in certain cell types. NT is expressed in fetal but not differentiated colonic epithelium and is re-expressed in colonic adenocarcinoma. The cognate receptor, NTSR1, is also not expressed or is present at a low level in adult colonic epithelial cells but is expressed in most colon cancer cell lines. These observations suggest that altered NT-NTSR1 signaling may be associated with malignant transformation in the colon. To further understand the possible role of NTSR1 expression in colonic tumorigenesis and progression, we examined NTSR1 mRNA by in situ hybridization in normal colonic mucosa, adenomas, and colonic adenocarcinomas. NTSR1 mRNA expression was undetectable or weak in superficial differentiated epithelial cells of normal colonic epithelium, but adenomas and adenocarcinomas showed moderate to strong expression (p<0.05). Adenocarcinomas showed a higher level of expression compared to adenomas (p<0.05). Furthermore, adenocarcinomas that infiltrated into and beyond the muscularis propria showed a higher intensity of NTSR1 expression compared with tumors that were localized to the mucosa or submucosa. In some cases, infiltrating margins and foci of lymphovascular invasion showed a higher intensity of expression than the main mass of the tumor. These results suggest that increased NTSR1 expression may be an early event during colonic tumorigenesis and also contribute to tumor progression and aggressive behavior in colonic adenocarcinomas. NTSR1 may thus be a potential target for preventive or therapeutic strategies in colon cancer.  相似文献   

19.
Nitric oxide is known to modulate intracellular glutathione levels, but the relationship between nitric oxide synthesis and glutathione metabolism during endotoxemia is unknown. The present study was designed to examine the effects of increased nitric oxide formation on hepatic glutathione synthesis and antioxidant defense in endotoxemic mice. Our results demonstrate that hepatic glutathione synthesis is decreased for 24 h following injection of lipopolysaccharide (LPS). Administration of the cysteine precursor, L-2-oxothiazolidine-4-carboxylic acid (OTZ), failed to normalize hepatic glutathione concentration, and suggests that decreased γ-glutamylcysteine ligase activity is primarily responsible for the decrease in hepatic glutathione levels during endotoxemia. Inhibition of nitric oxide synthesis prevented the endotoxin-induced changes in hepatic and plasma glutathione status and up-regulated liver glutathione and cysteine synthesis pathways at the level of gene expression. Furthermore, whereas the activity of glutathione peroxidase and glutathione S-transferase decreased during endotoxemia, both of these changes were prevented by inhibition of nitric oxide synthesis. In conclusion, increased nitric oxide synthesis during endotoxemia causes marked changes in glutathione flux and defenses against oxidative stress in the liver.  相似文献   

20.
Nitric oxide is known to modulate intracellular glutathione levels, but the relationship between nitric oxide synthesis and glutathione metabolism during endotoxemia is unknown. The present study was designed to examine the effects of increased nitric oxide formation on hepatic glutathione synthesis and antioxidant defense in endotoxemic mice. Our results demonstrate that hepatic glutathione synthesis is decreased for 24 h following injection of lipopolysaccharide (LPS). Administration of the cysteine precursor, L-2-oxothiazolidine-4-carboxylic acid (OTZ), failed to normalize hepatic glutathione concentration, and suggests that decreased γ-glutamylcysteine ligase activity is primarily responsible for the decrease in hepatic glutathione levels during endotoxemia. Inhibition of nitric oxide synthesis prevented the endotoxin-induced changes in hepatic and plasma glutathione status and up-regulated liver glutathione and cysteine synthesis pathways at the level of gene expression. Furthermore, whereas the activity of glutathione peroxidase and glutathione S-transferase decreased during endotoxemia, both of these changes were prevented by inhibition of nitric oxide synthesis. In conclusion, increased nitric oxide synthesis during endotoxemia causes marked changes in glutathione flux and defenses against oxidative stress in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号