首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel series of 5-HT2A ligands that contain a (phenylpiperazinyl-propyl)arylsulfonamides skeleton was synthesized. Thirty-seven N-(cycloalkylmethyl)-4-methoxy-N-(3-(4-arylpiperazin-1-yl)propyl)-arylsulfonamide and N-(4-(4-arylpiperazin-1-yl)butan-2-yl)-arylsulfonamide compounds were obtained. The binding of these compounds to the 5-HT2A, 5-HT2C, and 5-HT7 receptors was evaluated. Most of the compounds showed IC50 values of less than 100 nM and exhibited high selectivity for the 5-HT2A receptor. Among the synthesized compounds, 16a and 16d showed good affinity at 5-HT2A (IC50 = 0.7 nM and 0.5 nM) and good selectivity over 5-HT2C (50–100 times) and 5-HT7 (1500–3000 times).  相似文献   

2.
N′-Cyanoisonicotinamidine derivatives, linked to an arylpiperazine moiety, were prepared to identify highly selective and potent 5-HT1A ligands as potential pharmacological tools in studies of wide spread psychiatric disorders. The combination of structural elements (heterocyclic nucleus, alkyl chain and 4-substituted piperazine) known to be critical in order to have affinity on 5-HT1A receptor and the proper selection of substituents led to compounds with high specificity and affinity towards serotoninergic receptors. In binding studies, several molecules showed affinity in nanomolar and subnanomolar range at 5-HT1A and moderate to no affinity for other relevant receptors (5-HT2A, 5-HT2C, D1, D2, α1 and α2). N′-Cyano-N-(3-(4-(pyridin-2-yl)piperazin-1-yl)propyl)isonicotinamidine (4o) with Ki = 0.038 nM, was the most active and selective derivative for the 5-HT1A receptor with respect to other serotoninergic, dopaminergic and adrenergic receptors.  相似文献   

3.
A series of novel 3β-aminotropane derivatives containing a 2-naphthalene or a 2-quinoline moiety was synthesised and evaluated for their affinity for 5-HT1A, 5-HT2A and D2 receptors. Their affinity for the receptors was in the nanomolar to micromolar range. p-Substitution (6c, 6f, 6i, 6l, 6o), as well as substitution with chlorine atoms (6g, 6h, 6i), led to a significant increase in binding affinity for D2 receptors with compounds 6f (Ki = 0.6 nM), 6c and 6i (Ki = 0.4 nM), having the highest binding affinities. m-Substituted derivatives were the most promising ligands in terms of 5-HT2A receptor binding affinity whereas 2-quinoline derivatives (10a, 10b) displayed the highest affinity for 5-HT1AR and were the most selective ligands with Ki = 62.7 nM and Ki = 30.5 nM, respectively. Finally, the selected ligands 6b, 6d, 6e, 6g, 6h, 6k, 6n and 6o, with triple binding activity for the D2, 5-HT1A and 5-HT2A receptors, were subjected to in vivo tests, such as those for induced hypothermia, climbing behaviour and the head twitch response, in order to determine their pharmacological profile. The tested ligands presented neither agonist nor antagonist properties for the 5-HT1A receptors in the induced hypothermia and lower lip retraction (LLR) tests. All tested compounds displayed antagonistic activity against 5-HT2A, with 6n and 6o being the most active. Four (6b, 6k, 6n and 6o) out of eight tested compounds could be classified as D2 antagonists. Additionally, evaluation of metabolic stability was performed for selected ligands, and introduction of halogen atoms into the benzene ring of 6h, 6k, 6n and 6o improved their metabolic stability. The project resulted in the selection of the lead compounds 6n and 6o, which had antipsychotic profiles, combining dopamine D2-receptor and 5-HT2A antagonism and metabolic stability.  相似文献   

4.
A number of 3-(phenylsulfonyl)thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidines were prepared and their 5-HT6 receptor binding affinity and ability to inhibit the functional cellular responses to serotonin were evaluated. 3-[(3-Chlorophenyl)sulfonyl]-N-(tetrahydrofuran-2-ylmethyl)thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidin-5-amine 2{5,26} appeared to be the most active in a functional assay (IC50 = 29.0 nM) and 3-(phenylsulfonyl)-N-(2-thienylmethyl) thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidin-5-amine 2{1,28} demonstrated the greatest affinity in a 5-HT6 receptor radioligand binding assay (Ki = 1.7 nM). A screening of 5-HT2A and 5-HT2B receptor affinity revealed that 3-(phenylsulfonyl)thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidines are highly selective 5-HT6 receptor ligands.  相似文献   

5.
Aplysinopsins are tryptophan-derived natural products that have been isolated from a variety of marine organisms and have been shown to possess a range of biological activities. In vitro receptor binding assays showed that of the 12 serotonin receptor subtypes, analogues showed a high affinity for the 5-HT2B and 5-HT2C receptor subtypes, with selectivity for 5-HT2B over 5-HT2C. While no conclusions could be drawn about the number and position of N-methylations, bromination at C-4 and C-5 of the indole ring resulted in greater binding affinities, with Ki’s as low as 35 nM. This data, combined with previous knowledge of the CNS activity of aplysinopsin analogs, suggested that these compounds may have potential as leads for antidepressant drugs. Compounds 3c, 3u, and 3x were evaluated in the chick anxiety–depression model to assess their in vivo efficacy. Compound 3c showed a modest antidepressant effect at a dose of 30 nM/kg in the animal model.  相似文献   

6.
The 5-HT1AR partial agonist PET radiotracer, [11C]CUMI-101, has advantages over an antagonist radiotracer as it binds preferentially to the high affinity state of the receptor and thereby provides more functionally meaningful information. The major drawback of C-11 tracers is the lack of cyclotron facility in many health care centers thereby limiting widespread clinical or research use. We identified the fluoroethyl derivative, 2-(4-(4-(2-(2-fluoroethoxy)phenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)dione (FECUMI-101) (Ki = 0.1 nM; Emax = 77%; EC50 = 0.65 nM) as a partial agonist 5-HT1AR ligand of the parent ligand CUMI-101. FECUMI-101 is radiolabeled with F-18 by O-fluoroethylation of the corresponding desmethyl analogue (1) with [18F]fluoroethyltosylate in DMSO in the presence of 1.6 equiv of K2CO3 in 45 ± 5% yield (EOS). PET shows [18F]FECUMI-101 binds specifically to 5-HT1AR enriched brain regions of baboon. The specificity of [18F]FECUMI-101 binding to 5-HT1AR was confirmed by challenge studies with the known 5-HT1AR ligand WAY100635. These findings indicate that [18F]FECUMI-101 can be a viable agonist ligand for the in vivo quantification of high affinity 5-HT1AR with PET.  相似文献   

7.
An effective and rapid method for the microwave-assisted preparation of the key intermediate for the total synthesis of tetrahydroprotoberberines (THPBs) including l-stepholidine (l-SPD) was developed. Thirty-one THPB derivatives with diverse substituents on A and D ring were synthesized, and their binding affinity to dopamine D1, D2 and serotonin 5-HT1A and 5-HT2A receptors were determined. Compounds 18k and 18m were identified as partial agonists at the D1 receptor with Ki values of 50 and 6.3 nM, while both compounds act as D2 receptor antagonists (Ki = 305 and 145 nM, respectively) and 5-HT1A receptor full agonists (Ki = 149 and 908 nM, respectively). These two THPBs compounds exerted antipsychotic actions in animal models. Further electrophysiological studies employing single-unit recording in intact animals demonstrated that 18k-excited dopaminergic (DA) neurons are associated with its 5-HT1A receptor agonistic activity. These results suggest that these two compounds targeted to multiple neurotransmitter receptors may present novel lead drugs with new pharmacological profiles for the treatment of schizophrenia.  相似文献   

8.
A series of 9-disubstituted N-(9H-fluorene-2-carbonyl)guanidine derivatives have been discovered as potent and orally active dual 5-HT2B and 5-HT7 receptor antagonists. Upon screening several compounds, N-(diaminomethylene)-4′,5′-dihydro-3′H-spiro[fluorene-9,2′-furan]-2-carboxamide (17) exhibited potent affinity for both 5-HT2B (Ki = 5.1 nM) and 5-HT7 (Ki = 1.7 nM) receptors with high selectivity over 5-HT2A, 5-HT2C, α1, D2 and M1 receptors. Optical resolution of the intermediate carboxylic acid 16 via the formation of diastereomeric salts using chiral alkaloids gave the optically pure compounds (R)-17 and (S)-17. Both enantiomers suppressed 5-HT-induced dural protein extravasation in guinea pigs in a dose-dependent manner and the amount of leaked protein was suppressed to near normal levels when orally administrated at 10 mg/kg. (R)-17 and (S)-17 were therefore selected as candidates for human clinical trials.  相似文献   

9.
1-[2-(4-Methoxyphenyl)phenyl]piperazine (4) is a potent serotonin 5-HT7 receptor antagonist (Ki = 2.6 nM) with a low binding affinity for the 5-HT1A receptor (Ki = 476 nM). As a potential positron emission tomography (PET) radiotracer for the 5-HT7 receptor, [11C]4 was synthesized at high radiochemical yield and specific activity, by O-[11C]methylation of 2′-(piperazin-1-yl)-[1,1′-biphenyl]-4-ol (6) with [11C]methyl iodide. Autoradiography revealed that [11C]4 showed in vitro specific binding with 5-HT7 in the rat brain regions, such as the thalamus which is a region with high 5-HT7 expression. Metabolite analysis indicated that intact [11C]4 in the brain exceeded 90% of the radioactive components at 15 min after the radiotracer injection, although two radiolabeled metabolites were found in the rat plasma. The PET study of rats showed moderated uptake of [11C]4 in the brain (1.2 SUV), but no significant regional difference in radioactivity in the brain. Pretreatment with 5-HT7-selective antagonist SB269970 (3) did not decrease the uptake of [11C]4 in the rat brain. Further studies are warranted that focus on the development of PET ligand candidates with higher binding affinity for 5-HT7 and higher in vivo stability in brain than 4.  相似文献   

10.
Synthesis, radioligand binding and molecular modeling studies of several 9-aminomethyl-9,10-dihydroanthracene (AMDA) analogs were carried out to determine the extent of the steric tolerance associated with expansion of the tricyclic ring system and amine substitution at 5-HT2A and H1 receptors. A mixture of (7,12-dihydrotetraphene-12-yl)methanamine and (6,11-dihydrotetracene-11-yl)methanamine in a 75–25% ratio was found to have an apparent Ki of 10 nM at the 5-HT2A receptor. A substantial binding affinity for (7,12-dihydrotetraphene-3-methoxy-12-yl)methanamine at the 5-HT2A receptor (Ki = 21 nM) was also observed. Interestingly, this compound was found to have 100-fold selectivity for 5-HT2A over the H1 receptor (Ki = 2500 nM). N-Phenylalkyl-AMDA derivatives, in which the length of the alkyl chain varied from methylene to n-butylene, were found to have only weak affinity for both 5-HT2A and H1 receptors (Ki = 223 to 964 nM). Our results show that large rigid annulated AMDA analogs can be sterically accommodated within the proposed 5-HT2A binding site.  相似文献   

11.
A series of benzoxazole/benzothiazole-2,3-dihydrobenzo[b][1,4]dioxine derivatives (5a5d and 8a8j) was synthesized. Compounds were evaluated for binding affinities at the 5-HT1A and 5-HT2A receptors. Antidepressant activities of the compounds were screened using the forced swimming test (FST) and the tail suspension test (TST). The results indicated that the compounds exhibited high affinities for the 5-HT1A and 5-HT2A receptors and showed a marked antidepressant-like activity. Compound 8g exhibited high affinities for the 5-HT1A (Ki = 17 nM) and 5-HT2A (Ki = 0.71 nM) receptors; it also produced a decrease of the immobility time and exhibited potent antidepressant-like effects in the FST and TST in mice.  相似文献   

12.
To identify potent dual 5-HT2B and 5-HT7 receptor antagonists, we synthesized a series of novel carbonyl guanidine derivatives and examined their structure–activity relationships. Among these compounds, N-(9-hydroxy-9H-fluorene-2-carbonyl)guanidine (10) had a good in vitro profile, that is, potent affinity for human 5-HT2B and 5-HT7 receptor subtypes (Ki = 1.8 nM and Ki = 17.6 nM, respectively) and high selectivity over 5-HT2A, 5-HT2C, α1, D2 and M1 receptors. Compound 10 also showed a suppressing effect on 5-HT-induced dural protein extravasation in guinea pigs when orally administered.  相似文献   

13.
5-HT7 receptor (5-HT7R) is a promising target for the treatment of depression and neuropathic pain. 5-HT7R antagonists exhibited antidepressant effects, while the agonists produced strong anti-hyperalgesic effects. In our efforts to discover selective 5-HT7R antagonists or agonists, N-biphenylylmethyl 2-methoxyphenylpiperazinylalkanamides 1 were designed, synthesized, and biologically evaluated against 5-HT7R. Among the synthesized compounds, N-2′-chlorobiphenylylmethyl 2-methoxyphenylpiperazinylpentanamide 18 showed the best binding affinity with a Ki value of 8.69 nM and it was verified as a novel antagonist according to functional assays. The compound 18 was very selective over 5-HT1DR, 5-HT2AR, 5-HT3R, 5-HT5AR and 5-HT6R and moderately selective over 5-HT1AR, 5-HT1BR and 5-HT2CR. The novel 5-HT7R antagonist 18 exhibited an antidepressant effect at a dose of 25 mg/kg in the forced swimming test in mice and showed a U-shaped dose–response curve which typically appears in 5-HT7R antagonists such as SB-269970 and lurasidone.  相似文献   

14.
Compounds 7, 8, and 9, derived from the novel scaffolds 3, 5, and 6, were synthesized and evaluated in vitro. The b,c  c,d shift of the E-phenyl ring resulted in a large decrease (ca. 20- to 1000-fold) in binding to the 5-HT2A, 5-HT2C and H2, receptors, and a modest decrease (ca. 10- to 20-fold) in binding to the 5-HT5A, D2, D5, and α1D, receptors. The b,c  d,e shift resulted in a large decrease in binding to the 5-HT1D, 5-HT2C, 5-HT6, and H1 receptors, a modest decrease in binding to 5-HT1A, 5-HT5A and D2, D5, α2B, and H2 receptors, and a large increase in affinity to the 5-HT3, 5-HT6, and σ1 receptors.  相似文献   

15.
(Piperazin-1-yl-phenyl)-arylsulfonamides were synthesized and identified to show high affinities for both 5-HT2C and 5-HT6 receptors. Among them, naphthalene-2-sulfonic acid isopropyl-[3-(4-methyl-piperazin-1-yl)-phenyl]-amide (6b) exhibits the highest affinity towards both 5-HT2C (IC50 = 4 nM) and 5-HT6 receptors (IC50 = 3 nM) with good selectivity over other serotonin (5-HT1A, 5-HT2A, and 5-HT7) and dopamine (D2–D4) receptor subtypes. In 5-HT2C and 5-HT6 receptor functional assays, this compound showed considerable antagonistic activity for both receptors.  相似文献   

16.
We previously reported that the novel dual 5-HT2B and 5-HT7 receptor antagonist N-(9-hydroxy-9H-fluorene-2-carbonyl)guanidine (4) exerted a suppressing effect on 5-HT-induced dural protein extravasation in guinea pigs. To develop a synthetic strategy, we performed docking studies of lead compound 4 bound to 5-HT2B and 5-HT7 receptors, and observed that the carbonyl guanidine group forms a tight interaction network with an active center Asp (D135:5-HT2B, D162:5-HT7), Tyr (Y370:5-HT2B, Y374:5-HT7) and aromatic residue (W131:5-HT2B, F158:5-HT7). Based on molecular modeling results, we optimized the substituents at the 5- to 8-position and 9-position of the fluorene ring and identified N-(diaminomethylene)-9-hydroxy-9-methyl-9H-fluorene-2-carboxamide (24a) exhibits potent affinity for 5-HT2B (Ki = 4.3 nM) and 5-HT7 receptor (Ki = 4.3 nM) with high selectivity over 5-HT2A, 5-HT2C, α1, D2 and M1 receptors. Compound 24a reversed the hypothermic effect of 5-carboxamidotryptamine (5-CT) in mice and also showed a suppressing effect on 5-HT-induced dural protein extravasation in guinea pigs when orally administered at 30 mg/kg. Compound 24a is therefore a promising candidate for a novel class of anti-migraine agent without any adverse effects.  相似文献   

17.
A series of bridged piperazine derivatives was prepared and the affinity toward σ1 and σ2 receptors by means of radioligand binding assays as well as the inhibition of the growth of six human tumor cell lines was investigated. All possible stereoisomers of the 2-hydroxy, 2-methoxy, 2,2-dimethoxy, 2-oxo, and 2-unsubstituted 6,8-diazabicyclo[3.2.2]nonanes were prepared in a chiral pool synthesis starting with (S)- and (R)-glutamate. A Dieckmann analogous cyclization was the key step in the synthesis of the bicyclic framework. The configuration in position 2 was established by a diastereoselective LiBH4 reduction and subsequent Mitsunobu inversion. Structure–affinity relationships demonstrate that substituents in position 2 decrease σ1 receptor affinity which might be due to unfavorable interactions with the σ1 receptor protein. Without a substituent in position 2 high σ1 affinity was obtained (23a ((+)-(1S,5S)-6-allyl-8-(4-methoxybenzyl)-6,8-diazabicyclo[3.2.2]nonane): Ki = 11 nM). Experiments with six human tumor cell lines showed a weak but selective growth inhibition of the human small cell lung cancer cell line A-427 by the methyl ethers ent-16b (IC50 = 18.9 μM), 21a (IC50 = 16.4 μM), ent-21a (IC50 = 20.4 μM), and 21b (IC50 = 27.1 μM) and the unsubstituted compounds 23a and 23b (42% inhibition at 20 μM).  相似文献   

18.
A series of new xanthone derivatives with piperazine moiety [17] was synthesized and evaluated for their pharmacological properties. They were subject to binding assays for α1 and β1 adrenergic as well as 5-HT1A, 5-HT6 and 5-HT7b serotoninergic receptors. Five of the tested compounds were also evaluated for their anticonvulsant properties. The compound 3a 3-methoxy-5-{[4-(2-methoxyphenyl)piperazin-1-yl]methyl}-9H-xanthen-9-one hydrochloride exhibited significantly higher affinity for serotoninergic 5-HT1A receptors (Ki = 24 nM) than other substances. In terms of anticonvulsant activity, 6-methoxy-2-{[4-(benzyl)piperazin-1-yl]methyl}-9H-xanthen-9-one (5) proved best properties. Its ED50 determined in maximal electroshock (MES) seizure assay was 105 mg/kg b.w. (rats, p.o.). Combining of xanthone with piperazine moiety resulted in obtaining of compounds with increased bioavailability after oral administration.  相似文献   

19.
Salvinorin A (1), the main active ingredient of Salvia divinorum, is a potent and selective κ opioid receptor (KOPR) agonist. Based on the SAR, its C-2 position is one of the key binding sites and has very little space tolerance (3–4 carbons atoms) and limited to only lipophilic groups. In our attempt to prepare PET brain imaging agent for mapping KOPR, a series of C-2 halogenated analogs have been synthesized and screened for binding affinity at κ (KOPR), μ (MOPR), and δ (DOPR). These C-2 halogenated analogs with sequential changes of atomic radius and electron density serve as excellent molecular probes for further investigating the binding pocket at C-2, particularly on the effects of α verses β configuration at C-2 position. The results of KOPR binding and functional studies reveal β isomer in general binds better than α isomer with the exception of iodinated analogs and none of the C-2 halogenated analogs shows any improvement of KOPR binding affinity. Interestingly, functional assay has characterized that 6b is a partial agonist with Emax of 46% of the kappa receptor full agonist U50,488H at 250 nM (Ki). We have also observed that the affinity to the kappa receptor increases with atomic radius (I > Br > Cl > F) which is in good agreement with halogen bonding interactions reported in the literature.  相似文献   

20.
Starting from compounds previously identified as α1-adrenoceptor antagonists that were also found to bind to the 5-HT1A receptor, in an attempt to separate the two activities, a new series of 5-HT1A receptor agonists was identified and shown to have high potency and/or high selectivity. Of these, compound 13, which combines high selectivity (5-HT1A1 = 151) and good agonist potency (pD2 = 7.82; Emax = 76), was found to be the most interesting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号