首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Azospirillum lipoferum 4B and non-motile A. lipoferum 4T have been simultaneously isolated from rice rhizosphere at the same frequency. A. lipoferum 4T showed stable morphological and metabolic traits which are atypical for A. lipoferum species such as lack of motility, carbohydrate metabolism and laccase activity. Inoculation experiments showed that A. lipoferum 4T, but not A. lipoferum 4B, needed rice roots to stabilize in sterile soil. Both strains were able to colonize efficiently rice roots (108 cfu g−1 fresh roots) but motile form 4B remained dominant. In spite of their phenotypical differences, A. lipoferum 4B and 4T co-existed without exclusion in sterile soil (planted or not) and rice rhizosphere. Inoculation of rice roots with A. lipoferum 4B showed that rice rhizosphere enhanced the frequency of appearance of stable non-motile forms (40%). This percentage was weaker in plantlet growth medium (4%). However, these non-motile bacteria kept the same biochemical traits than the motile parental strain 4B (carbohydrates metabolism, laccase activity).  相似文献   

2.
The plant growth-promoting rhizobacterium Azospirillum lipoferum 4B generates in vitro at high frequency a stable nonswimming phase variant designated 4V(I), which is distinguishable from the wild type by the differential absorption of dyes. The frequency of variants generated by a recA mutant of A. lipoferum 4B was increased up to 10-fold. The pleiotropic modifications characteristic of the phase variant are well documented, but the molecular processes involved are unknown. Here, the objective was to assess whether genomic rearrangements take place during phase variation of strain 4B. The random amplified polymorphic DNA (RAPD) profiles of strains 4B and 4V(I) differed. RAPD fragments observed only with the wild type were cloned, and three cosmids carrying the corresponding fragments were isolated. The three cosmids hybridized with a 750-kb plasmid and pulse-field gel electrophoresis analysis revealed that this replicon was missing in the 4V(I) genome. The same rearrangements took place during phase variation of 4BrecA. Large-scale genomic rearrangements during phase variation were demonstrated for two additional strains. In Azospirillum brasilense WN1, generation of stable variants was correlated with the disappearance of a replicon of 260 kb. For Azospirillum irakense KBC1, the variant was not stable and coincided with the formation of a new replicon, whereas the revertant recovered the parental genomic architecture. This study shows large-scale genomic rearrangements in Azospirillum strains and correlates them with phase variation.  相似文献   

3.
The plant-growth promoting rhizobacterium Azospirillum lipoferum strain 4B generates in vitro a stable phase variant designated 4VI at frequencies of 10(-4) to 10(-3) per cell per generation. Variant 4VI displays pleitropic modifications, such as the loss of swimming motility and the inability to assimilate certain sugars compared to the wild type. The mechanism underlying phase variation is unknown. To determine whether RecA-mediated processes are involved in phase variation, the recA gene of A. lipoferum 4B was cloned and sequenced and a recA mutant (termed 4BrecA) was constructed by allelic exchange. Strain 4BrecA showed increased sensitivity to UV and MMS compared with 4B and impaired recombinase activity. The ability to generate variants in vitro was not altered; the variants from 4BrecA exhibited all morphological and biochemical features characteristic of the variant generated by strain 4B. However, the frequency of variants generated by 4BrecA was increased by up to 10-fold. So, in contrast with many studies showing the abolition or a large reduction of the frequency of phase variation in recA mutants, this study describes an enhancement of phase variation in the absence of a functional recA.  相似文献   

4.
Laccase, a p-diphenol oxidase typical of plants and fungi, has been found recently in a proteobacterium, Azospirillum lipoferum. Laccase activity was detected in both a natural isolate and an in vitro-obtained phase variant that originated from the laccase-negative wild type. In this study, the electron transport systems of the laccase-positive variant and its parental laccase-negative forms were compared. During exponential (but not stationary) growth under fully aerobic (but not under microaerobic) conditions, the laccase-positive variant lost a respiratory branch that is terminated in a cytochrome c oxidase of the aa(3) type; this was most likely due to a defect in the biosynthesis of a heme component essential for the oxidase. The laccase-positive variant was significantly less sensitive to the inhibitory action of quinone analogs and fully resistant to inhibitors of the bc(1) complex, apparently due to the rearrangements of its respiratory system. We propose that the loss of the cytochrome c oxidase-containing branch in the variant is an adaptive strategy to the presence of intracellular oxidized quinones, the products of laccase activity.  相似文献   

5.
Multiple replacements at amino acid position 3 of bacteriophage T4 lysozyme have shown that the conformational stability of the protein is directly governed by the hydrophobicity of the residue substituted (Matsumura, M., Becktel, W. J., and Matthews, B. W. (1988) Nature 334, 406-410). Of the 13 mutant lysozymes made by site-directed mutagenesis, two variants, one with valine (I3V) and the other with tyrosine (I3Y), were crystallized and their structures solved. In this report we describe the crystal structures of these variants at 1.7 A resolution. While the structure of the I3V mutant is essentially the same as that of wild-type lysozyme, the I3Y mutant has substantial changes in its structure. The most significant of these are that the side chain of the tyrosine is not accommodated within the interior of the protein and the amino-terminal polypeptide (residues 1-9) moves 0.6-1.1 A relative to the wild-type structure. Using coordinates based on the wild-type and available mutant structures, solvent accessible surface area of residue 3 as well as the adjacent 9 residues in the folded form were calculated. The free energy of stabilization based on the transfer of these residues from a fully extended form to the interior to the folded protein was found to correlate well with the protein stability determined by thermodynamic analysis. The enhanced thermostability of the variant Ile-3----Leu, relative to wild-type lysozyme, can also be rationalized by surface-area calculations based on a model-built structure. Noncrystallization of most lysozyme variants at position 3 appears to be due to disruption of intermolecular contacts in the crystal. The Ile-3----Val variant is closely isomorphous with wild-type and maintains the same crystal contacts. In the Ile-3----Tyr variant, however, a new set of contacts is made in which direct protein-protein hydrogen bonds are replaced by protein-water-protein hydrogen bonds as well as a novel hydrogen bond involving the phenolic hydroxyl of the substituted tyrosine.  相似文献   

6.
The large subunit (HycE, 569 amino acids) of Escherichia coli hydrogenase 3 produces hydrogen from formate via its Ni–Fe-binding site. In this paper, we engineered HycE for enhanced hydrogen production by an error-prone polymerase chain reaction (epPCR) using a host that lacked hydrogenase activity via the hyaB hybC hycE mutations. Seven enhanced HycE variants were obtained with a novel chemochromic membrane screen that directly detected hydrogen from individual colonies. The best epPCR variant contained eight mutations (S2T, Y50F, I171T, A291V, T366S, V433L, M444I, and L523Q) and had 17-fold higher hydrogen-producing activity than wild-type HycE. In addition, this variant had eightfold higher hydrogen yield from formate compared to wild-type HycE. Deoxyribonucleic acid shuffling using the three most-active HycE variants created a variant that has 23-fold higher hydrogen production and ninefold higher yield on formate due to a 74-amino acid carboxy-terminal truncation. Saturation mutagenesis at T366 of HycE also led to increased hydrogen production via a truncation at this position; hence, 204 amino acids at the carboxy terminus may be deleted to increase hydrogen production by 30-fold. This is the first random protein engineering of a hydrogenase.  相似文献   

7.
Abstract In non-motile forms of Azospirillum lipoferum isolated from the rhizosphere of rice, polyphenol oxidase activity was observed which correlated with production of a dark-brown pigment. Using a combination of substrate/inhibitor specificity tests, intracellular enzyme extracts of non-motile strains were clearly demonstrated to have a laccase activity by oxidising various o - and p -diphenols. This work is the first report on laccase activity in Azospirillum .  相似文献   

8.
Saturation mutagenesis was used to generate 10 mutants of toluene-o-xylene monooxygenase (ToMO) at alpha subunit (TouA) positions A101 and A110: A101G, A101I, A101M, A101VE, A101V, A110G, A110C, A110S, A110P, and A110T; by testing the substrates toluene, o-cresol, m-cresol, p-cresol, phenol, naphthalene, o-methoxyphenol, m-methoxyphenol, p-methoxyphenol, o-xylene, and nitrobenzene, these positions were found to influence the regiospecific oxidation of aromatics. For example, compared to wild-type ToMO, TouA variant A101V produced threefold more 3-methoxycatechol from m-methoxyphenol as well as produced methylhydroquinone from o-cresol whereas wild-type ToMO did not. Similarly, variant A110C synthesized 1.8-fold more o-cresol from toluene and 1.8-fold more 3-methoxycatechol from m-methoxyphenol, and variant A110G synthesized more m-nitrophenol and twofold less p-nitrophenol from nitrobenzene. The A101V and A110C mutations did not affect the rate of reaction with the natural substrate toluene, so the variants had high activity. This is the first report that these or analogous residues influence the catalysis with this class of enzymes. Wild-type ToMO was found to oxidize o-methoxyphenol to methoxyhydroquinone (60%) and 4-methoxyresorcinol (40%), m-methoxyphenol to 4-methoxycatechol (96%) and 3-methoxycatechol (4%), and p-methoxyphenol to 4-methoxycatechol (100%).  相似文献   

9.
4-Methyl-5-nitrocatechol (4M5NC) monooxygenase (DntB) from Burkholderia sp. strain DNT catalyzes the second step of 2,4-dinitrotoluene degradation by converting 4M5NC to 2-hydroxy-5-methylquinone with the concomitant removal of the nitro group. DntB is a flavoprotein that has a very narrow substrate range. Here, error-prone PCR was used to create variant DntB M22L/L380I, which accepts the two new substrates 4-nitrophenol (4NP) and 3-methyl-4-nitrophenol (3M4NP). At 300 microM of 4NP, the initial rate of the variant expressing M22L/L380I enzyme (39 +/- 6 nmol/min/mg protein) was 10-fold higher than that of the wild-type enzyme (4 +/- 2 nmol/min/mg protein). The values of kcat/Km of the purified wild-type DntB enzyme and purified variant M22L/L380I were 40 and 450 (s(-1) M(-1)), respectively, which corroborates that the variant M22L/L380I enzyme has 11-fold-higher efficiency than the wild-type enzyme for 4NP degradation. In addition, the variant M22L/L380I enzyme has fourfold-higher activity toward 3M4NP; at 300 microM, the initial nitrite release rate of M22L/L380I enzyme was 17 +/- 4 nmol/min/mg protein, while that of the wild-type enzyme was 4.4 +/- 0.7 nmol/min/mg protein. Saturation mutagenesis was also used to further investigate the role of the individual amino acid residues at positions M22, L380, and M22/L380 simultaneously. Mutagenesis at the individual positions M22L and L380I did not show appreciable enhancement in 4NP activity, which suggested that these two sites should be mutated together; simultaneous saturation mutagenesis led to the identification of the variant M22S/L380V, with 20% enhanced degradation of 4NP compared to the variant M22L/L380I. This is the first report of protein engineering for nitrite removal by a flavoprotein.  相似文献   

10.
Error-prone PCR was used to create more active or enantioselective variants of Penicillium expansum lipase (PEL). A variant with a valine to glycine substitution at residue 72 in the lid structure exhibited higher activity and enantioselectivity than those of wild-type PEL. Site-directed saturation mutagenesis was used to explore the sequence-function relationship and the substitution of Val72 of P. expansum lipase changed both catalytic activity and enantioselectivity greatly. The variant V72A, displayed a highest enantioselectivity enhanced to about twofold for the resolution of (R, S)-naproxen (E value increased from 104 to 200.7 for wild-type PEL and V72A variant, respectively). In comparison to PEL, the variant V72A showed a remarkable increase in specific activity towards p-nitrophenyl palmitate (11- and 4-fold increase at 25 and 35?°C, respectively) whereas it had a decreased thermostability. The results suggest that the enantioselective variant V72A could be used for the production of pharmaceutical drugs such as enantiomerically pure (S)-naproxen and the residue Val 72 of P. expansum lipase plays a significant role in the enantioselectivity and activity of this enantioselective lipase.  相似文献   

11.
During growth of Bacillus stearothermophilus NRS 2004/3a in continuous culture on complex medium, the chemical properties of the S-layer glycoprotein and the characteristic oblique lattice were maintained only if glucose was used as the sole carbon source. With increased aeration, amino acids were also metabolized, accompanied by liberation of ammonium and by changes in the S-layer protein. Depending on the stage of fermentation at which oxygen limitation was relieved, two different variants, one with a more delicate oblique S-layer lattice (variant 3a/V1) and one with a square S-layer lattice (variant 3a/V2), were isolated. During the switch from the wild-type strain to a variant or from variant 3a/V2 to variant 3a/V1, monolayers of two types of S-layer lattices could be demonstrated on the surfaces of single cells. S-layer proteins from variants had different molecular sizes and a significantly lower carbohydrate content than S-layer proteins from the wild-type strain did. Although the S-layer lattices from the wild-type and variant strains showed quite different protein mass distributions in two- and three-dimensional reconstructions, neither the amino acid composition nor the pore size, as determined by permeability studies, was significantly changed. Peptide mapping and N-terminal sequencing results strongly indicated that the three S-layer proteins are encoded by different genes and are not derived from a universal precursor form.  相似文献   

12.
To engineer dehairing alkaline protease (DHAP) variants to improve cold activity and increase thermostability so these variants are suitable for the leather processing industry. Based on previous studies with bacterial alkaline proteases, double-site mutations (W106K/V149I and W106K/M124L) were introduced into the DHAP from Bacillus pumilus. Compared with the wild-type DHAP hydrolytic activity, the double-site variant W106K/V149I showed an increase in specific hydrolytic activity at 15 °C by 2.3-fold toward casein in terms of hydrolytic rate and 2.7-fold toward the synthetic peptide AAPF-pN by means of kcat/Km value. The thermostability of the variant (W106K/V149I) was improved with the half-life at 60 and 70 °C increased by 2.7- and 5.0-fold, respectively, when compared with the thermostability of the wild-type DHAP. Conclusively, an increase in the cold activity and thermostability of a bacterial alkaline protease was achieved by protein engineering.  相似文献   

13.
Human salivary cystatin SN (CsnSN) is a member of the cystatin superfamily of cysteine proteinase inhibitors. In this study we used a baculovirus expression system to produce a full-length unaltered CsnSN and its variants. The variants were constructed with the changes in the three predicted proteinase-binding regions: the N-terminus (variant N(12-13), G12A-G13A), beta-hairpin loop I (variant L(56-58), Q56G-T57G-V58G) and beta-hairpin loop II (variant L(106-107), P106G-W107G). The secreted CsnSNs were purified using sequential spiral cartridge ultrafiltration and DE-52 radial flow chromatography. The purified proteins were examined for papain- and cathepsin C-inhibition. The wild-type CsnSN, and variants N(12-13) and L(106-107) bound tightly to papain (K(i) < 10 pM), whereas mutation in the loop I reduced binding affinity 5700-fold (K(i) = 57 nM). On the other hand, the wild-type CsnSN bound to cathepsin C less tightly (K(i) = 100 nM). The mutation in the N-terminus or loop I reduced binding affinity by 16 (K(i) = 1.6 microM)- and 19-fold (K(i) = 1.9 microM), respectively, while mutation in loop II resulted in an ineffective cathepsin C inhibitor (K(i) = 14 microM). Collectively, these results suggest that the N-terminal G12-G13 residues of CsnSN are not essential for papain inhibition but play a role in cathepsin C inhibition; residues Q56-T57-V58 in the loop I are essential for both papain and cathepsin C inhibitions, and residues P106-W107 in the loop II are not important for papain inhibition but essential for cathepsin C inhibition. These results demonstrated that CsnSN variants have different effects toward different cysteine proteinases.  相似文献   

14.
15.
DNA shuffling and saturation mutagenesis of positions F108, L190, I219, D235, and C248 were used to generate variants of the epoxide hydrolase of Agrobacterium radiobacter AD1 (EchA) with enhanced enantioselectivity and activity for styrene oxide and enhanced activity for 1,2-epoxyhexane and epoxypropane. EchA variant I219F has more than fivefold-enhanced enantioselectivity toward racemic styrene oxide, with the enantiomeric ratio value (E value) for the production of (R)-1-phenylethane-1,2-diol increased from 17 for the wild-type enzyme to 91, as well as twofold-improved activity for the production of (R)-1-phenylethane-1,2-diol (1.96 +/- 0.09 versus 1.04 +/- 0.07 micromol/min/mg for wild-type EchA). Computer modeling indicated that this mutation significantly alters (R)-styrene oxide binding in the active site. Another three variants from EchA active-site engineering, F108L/C248I, I219L/C248I, and F108L/I219L/C248I, also exhibited improved enantioselectivity toward racemic styrene oxide in favor of production of the corresponding diol in the (R) configuration (twofold enhancement in their E values). Variant F108L/I219L/C248I also demonstrated 10-fold- and 2-fold-increased activity on 5 mM epoxypropane (24 +/- 2 versus 2.4 +/- 0.3 micromol/min/mg for the wild-type enzyme) and 5 mM 1,2-epoxyhexane (5.2 +/- 0.5 versus 2.6 +/- 0.0 micromol/min/mg for the wild-type enzyme). Both variants L190F (isolated from a DNA shuffling library) and L190Y (created from subsequent saturation mutagenesis) showed significantly enhanced activity for racemic styrene oxide hydrolysis, with 4.8-fold (8.6 +/- 0.3 versus 1.8 +/- 0.2 micromol/min/mg for the wild-type enzyme) and 2.7-fold (4.8 +/- 0.8 versus 1.8 +/- 0.2 micromol/min/mg for the wild-type enzyme) improvements, respectively. L190Y also hydrolyzed 1,2-epoxyhexane 2.5 times faster than the wild-type enzyme.  相似文献   

16.
Human thiopurine S-methyltransferase (TPMT) is an enzyme responsible for the detoxification of widely used thiopurine drugs such as azathioprine (Aza). Its activity is inversely related to the risk of developing severe hematopoietic toxicity in certain patients treated with standard doses of thiopurines. DNA samples from four leucopenic patients treated with Aza were screened by PCR-SSCP analysis for mutations in the 10 exons of the TPMT gene. Four missense mutations comprising two novel mutations, A83T (TPMT*13, Glu(28)Val) and C374T (TPMT*12, Ser(125)Leu), and two previously described mutations, G430C (TPMT*10, Gly(144)Arg) and T681G (TPMT*7, His(227)Gln) were identified. Using a recombinant yeast expression system, kinetic parameters (K(m) and V(max)) of 6-thioguanine S-methylation of the four TPMT variants were determined and compared to those obtained with wild-type TPMT. This functional analysis suggests that these rare allelic variants are defective TPMT alleles. The His(227)Gln variant retained only 10% of the intrinsic clearance value (V(max)/K(m) ratio) of the wild-type enzyme. The Ser(125)Leu and Gly(144)Arg variants were associated with a significant decrease in intrinsic clearance values, retaining about 30% of the wild-type enzyme, whereas the Glu(28)Val variant produced a more modest decrease (57% of the wild-type enzyme). The data suggest that the sporadic contribution of the rare Glu(28)Val, Ser(125)Leu, Gly(144)Arg, and His(227)Gln variants may account for the occurrence of altered metabolism of TPMT substrates. These findings improve our knowledge of the genetic basis of interindividual variability in TPMT activity and would enhance the efficiency of genotyping methods to predict patients at risk of inadequate responses to thiopurine therapy.  相似文献   

17.
18.
Amylosucrase is a transglucosidase that catalyzes amylose-like polymer synthesis from sucrose substrate. About 60,000 amylosucrase variants from two libraries generated by the MutaGen random mutagenesis method were submitted to an in vivo selection procedure leading to the isolation of more than 7000 active variants. These clones were then screened for increased thermostability using an automated screening process. This experiment yielded three improved variants (two double mutants and one single mutant) showing 3.5- to 10-fold increased half-lives at 50 degrees C compared to the wild-type enzyme. Structural analysis revealed that the main differences between wild-type amylosucrase and the most improved variant (R20C/A451T) might reside in the reorganization of salt bridges involving the surface residue R20 and the introduction of a hydrogen-bonding interaction between T451 of the B' domain and D488 of flexible loop 8. This double mutant is the most thermostable amylosucrase known to date and the only one usable at 50 degrees C. At this temperature, amylose synthesis by this variant using high sucrose concentration (600 mM) led to the production of amylose chains twice as long as those obtained by the wild-type enzyme at 30 degrees C.  相似文献   

19.
Azospirillum lipoferum 4B harbors five cryptic plasmids. Several suicide plasmids were used to transfer Tn5-Mob to A. lipoferum 4B. Tn5-Mob insertion mutations of this strain could be obtained at frequencies of 10(-8)-10(-7) per recipient cell. One hundred Tn5-Mob A. lipoferum 4B mutants were used in bacterial matings with a plasmid-free Agrobacterium tumefaciens recipient strain. This is the first report of mobilization, transfer, and replication of an Azospirillum plasmid in Agrobacterium tumefaciens. One transconjugant was found which had lost an indigenous plasmid.  相似文献   

20.
The recombinant phage antibody system pCANTAB 5E has been used to display functionally active leech-derived tryptase inhibitor (LDTI) on the tip of the filamentous M13 phage. A limited combinatorial library of 5.2 x 10(4) mutants was created with a synthetic LDTI gene, using a degenerated oligonucleotide and the pCANTAB 5E phagemid. The mutations were restricted to the P1-P4' positions of the reactive site. Fusion phages and appropriate host strains containing the phagemids were selected after binding to thrombin and DNA sequencing. The variants LDTI-2T (K8R, I9V, S10, K11W, P12A), LDTI-5T (K8R, I9V, S10, K11S, P12L) and LDTI-10T (K8R, I9L, S10, K11D, P12I) were produced with a Saccharomyces cerevisiae expression system. The new inhibitors, LDTI-2T and -5T, prolong the blood clotting time, inhibit thrombin (Ki 302 nM and 28 nM) and trypsin (Ki 6.4 nM and 2.1 nM) but not factor Xa, plasma kallikrein or neutrophil elastase. The variant LDTI-10T binds to thrombin but does not inhibit it. The relevant reactive site sequences of the thrombin inhibiting variants showed a strong preference for arginine in position P1 (K8R) and for valine in P1' (I9V). The data indicate further that LDTI-5T might be a model candidate for generation of active-site directed thrombin inhibitors and that LDTI in general may be useful to generate specific inhibitors suitable for a better understanding of enzyme-inhibitor interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号