首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G P Kraan  N M Drayer 《Steroids》1990,55(4):159-164
A urinary method of determining the cortisol production rate (CPR) in children was studied under physiologic conditions by administration of low amounts of [1,2,3,4-13C]cortisol. The CPR in three patients with multiple pituitary deficiency ranged from 7 to 16 mumoles d-1 m-2, and the CPR in three patients with congenital adrenal hyperplasia (CAH) due to 11 beta-hydroxylase deficiency (11 beta OHD) and 17 alpha-hydroxylase deficiency (17 alpha OHD) from 0.1 to 2.11 mumoles d-1 m-2. Results showed that with this method, very low CPRs can be reliably measured. The metabolism of [13C4]cortisol or [9,12,12-2H]cortisol was compared with that of native cortisol in adrenalectomized piglets. For the urinary cortisol metabolites, small to substantial differences in isotope dilution were noted relative to that in the original cortisol mixture. With [13C4]cortisol, the so-called secondary isotope effects were approximately 2% to 3% for tetrahydrocortisone (THE) and tetrahydrocortisol (THF), and about 10% for the cortolones, relative to the cortisol mixture. When [2H3]cortisol was used, the cortisol metabolites THE and THF contained only two deuterium atoms. Together with this apparent loss of one deuterium atom, the secondary isotope effects in these steroids amounted to 5% to 10%. It was concluded that [13C4]cortisol was the better tracer to use for the measurement of urinary CPR.  相似文献   

2.
K Shimizu  N Yamaga  H Kohara 《Steroids》1988,51(3-4):283-297
A synthesis is reported of 17-hydroxyprogesterone, labeled with four atoms of deuterium at ring C and suitable for use as an internal standard for isotope dilution mass spectrometry. Base-catalyzed equilibration of methyl 3 alpha-acetoxy-12-oxo-cholanate (III) with 2H2O, followed by reduction of the 12-oxo group by the modified Wolff-Kisher method using [2H]diethylene glycol and [2H]hydrazine hydrate afforded [11,11,12,12,23,23(-2)H]lithocholic acid (V). The Meystre-Miescher degradation of the side chain of V yielded 3 alpha-hydroxy-5 beta-[11,11,12,12(-2)H]pregnan-20-one (X). Oxidation of the 3,20-enol-diacetate of X with perbenzoic acid followed by saponification afforded 3 alpha,17-dihydroxy-5 beta-[11,11,12,12(-2)H]pregnan-20-one (XI). Oxidation of XI with N-bromoacetamide yielded 17-hydroxy-5 beta-[11,11,12,12(-2)H]pregnane-3,20-dione (XII). Bromination of XII followed by dehydrobromination yielded 17-hydroxy-[11,11,12,12(-2)H] progesterone (XIV), consisting of 0.3% 2H0-, 1.1% 2H1-, 8.6% 2H2-, 37.1% 2H3-, 52.1% 2H4-, and 0.8% 2H5-species.  相似文献   

3.
Furuta T  Namekawa T  Shibasaki H  Kasuya Y 《Steroids》1999,64(12):805-811
A method is described for the preparation of multi-labeled tetrahydrocortisol (3alpha,11beta,17alpha,21-tetrahydroxy-5beta-[1, 2,3,4,5-2H5]pregnan-20-one, THF-d5), allo-tetrahydrocortisol (3alpha,11beta,17alpha,21-tetrahydroxy-5alpha-[1 ,2,3,4,5-2H5]pregnan-20-one, allo-THF-d5), and tetrahydrocortisone (3alpha,17alpha,21-trihydroxy-5beta-[1,2,3,4,5-2H5]pre gnane-11,20-dione, THE-d5) containing five non-exchangeable deuterium atoms in the steroid ring A. Reductive deuteration at C-1, C-2, C-3, C-4, and C-5 of prednisolone or prednisone was performed in CH3COOD with rhodium (5%) on alumina under the deuterium atmosphere. The isotopic purities of the labeled compounds as [2H5]-form were estimated to be 86.17 atom%D for THF-d5, 74.46 atom%D for allo-THF-d5 and 81.90 atom%D for THE-d5, based on the ion intensities in the region of the molecular ion of methoxime-trimethylsilyl (MO-TMS) derivatives measured by GC-MS.  相似文献   

4.
To determine the steric course of the reaction of bacterial ornithine decarboxylase [EC 4.1.1.17], we have carried out the decarboxylation of L-ornithine in 2H2O and that of DL-[2-2H]ornithine in H2O, and obtained putrescine bearing a single deuterium atom in the C-1 position. The stereochemistry of [1-2H]putrescine was established by conversion to 1-(2-pyrrolidinyl)-2-propanone with acetoacetate and the pro-S hydrogen-specific diamine oxidase from pea seedlings. Analysis of deuterium content by gas chromatography-mass spectrometry showed that the deuterium label was fully retained during the conversion of [1-2H]putrescine produced by the decarboxylation of L-ornithine in 2H2O to 1-(2-pyrrolidinyl)-2-propanone, in contrast with the considerable loss of label from [1-2H]putrescine which was produced by the decarboxylation of DL-[2-2H]ornithine in H2O. The extent of loss of the deuterium label was in good agreement with the estimated value based on the isotope effect in the diamine oxidase reaction. These results indicate that the introduced deuterium (or hydrogen) is in the pro-R position at C-1 of putrescine, and consequently the ornithine decarboxylase reaction proceeds with retention of configuration.  相似文献   

5.
Hepatocytes were isolated from female rats and incubated with [1,1,3,3-2H4]glycerol or [2-2H]glycerol. The deuterium excess in phosphatidylcholines, sn-glycerol 3-phosphate and other organic acids was determined by g.l.c./mass spectrometry. The unlabelled fraction of the major phosphatidylcholines decreased exponentially, and the turnover was not changed by the presence of ethanol. The relative contribution of the two deuterated glycerols was about the same in the major phosphatidylcholine as in sn-glycerol 3-phosphate, indicating that formation by acylation of dihydroxyacetone phosphate is insignificant. [1,1,3,3-2H4]Glycerol had lost deuterium to a larger extent when it was incorporated in the phosphatidylcholine than when it was incorporated in sn-glycerol-3-phosphate, indicating that the phosphatidylcholines are formed from a separate pool of sn-glycerol 3-phosphate. Deuterium at C-2 was transferred between sn-glycerol 3-phosphate molecules to about 25%. Ethanol decreased the extent of deuterium transfer, the extent of glycerol uptake and the loss of deuterium at C-1 and C-3 in sn-glycerol 3-phosphate. The results indicate that the oxidation to dihydroxyacetone phosphate was inhibited by the NADH formed during ethanol oxidation. [2-2H]Glycerol also labelled an alcohol dehydrogenase substrate, malate and lactate, indicating oxidation of sn-glycerol 3-phosphate in the cytosol. The two acids appeared to be formed in reductions with different pools of NADH.  相似文献   

6.
The nematocide and soil fumigant 1,2-dibromo-3-chloropropane (DBCP) is a carcinogen and a mutagen and displays target-organ toxicity to the testes and the kidney. It has been proposed that both cytochrome P-450 mediated activation and glutathione (GSH) conjugation pathways are operative in DNA damage and organotropy induced by DBCP. To determine the chemical mechanisms involved in the bioactivation of DBCP and to assess a role for an episulfonium ion intermediate, the mechanism of formation of GSH conjugate metabolites of DBCP was investigated. Five biliary GSH conjugates of DBCP were isolated from rats and identified by fast atom bombardment tandem mass spectrometry: S-(2,3-dihydroxy-propyl)glutathione (I), S-(2-hydroxypropyl)glutathione (IIA), S-(3-chloro-2-hydroxypropyl)glutathione (III), 1,3-di(S-glutathionyl)propan-2-ol (IV), and 1-(glycyl-S-cysteinyl)-3- (S-glutathionyl)propan-2-ol (V). The mechanisms of conjugate formation were addressed by assessing deuterium retention in conjugates derived from [1,1,2,3,3-2H5] DBCP (D5-DBCP). GSH conjugates I, III, IV, and V displayed quantitative retention of deuterium, an observation consistent with the formation of an episulfonium ion intermediate. GSH conjugate IIA, however, retained three atoms of deuterium, thus invoking a P-450 mechanism in its genesis. The involvement of glutathione transferase (GST) and sequential episulfonium ion intermediates in the formation of metabolites I, III, and IV was demonstrated in vitro. Upon incubation of DBCP with GST, metabolites I, III, and IV were identified by tandem mass spectrometry and were found to arise with quantitative retention of deuterium when D5-DBCP was employed as a substrate. An additional GSH conjugate, 1,2,3-tri(S-glutathionyl)propane (VI), was observed as the major metabolite in incubations of GST with DBCP. When the incubations of DBCP with GST were performed in H2(18)O, metabolite I incorporated two atoms of 18O, and metabolites III and IV incorporated one atom of 18O. The ability of GST to catalyze the formation of the four GSH conjugates observed in vivo, with quantitative retention of deuterium and incorporation of 18O from H2(18)O, may be rationalized by a mechanism invoking the initial formation of S-(2-bromo-3-chloropropyl)glutathione. Rearrangement of this unstable conjugate via several reactive episulfonium ions, with either hydrolysis by water or alkylation of GSH at various stages, would account for the pattern of metabolites and their status of isotopic enrichment observed under various incubation conditions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Cortisol labeled with four deuterium atoms at chemically stable sites ([9,11,12,12-(2)H4]cortisol, cortisol-d4) was prepared by hydrogen-deuterium exchange and reductive deuteration reactions. After protecting the C-17 dihydroxyacetone side chain of cortisone (cortisone-BMD), hydrogen-deuterium exchange was carried out with 6.5% NaOD in MeOD, which was followed by protection of the C-3 carbonyl as the semicarbazone. Subsequent reductive deuteration at C-11 with NaBD4 followed by removal of exchangeable deuterium under the same exchange-reaction conditions in a medium of 6.5% NaOH in MeOH and deprotection afforded the desired cortisol-d4 with high isotopic content (d3, 21.2%; d4, 78.1%; d5, 0.74%). The method was applied to the synthesis of cortisol labeled with nine deuterium atoms [( 1,1,9,11,12,12,19,19,19-(2)H9]cortisol, cortisol-d9) starting from [1,1,19,19,19-(2)H5]cortisone (cortisone-d5).  相似文献   

8.
D N Kirk  C Z Smith  J W Honour 《Steroids》1990,55(5):222-227
Hecogenin has been transformed into [11,11,12,12-2H4]progesterone via base-catalyzed isotope exchange with D2O (at C-11), carbenic decomposition of the 12-tosylhydrazone formed by the use of [N,N,N'-2H3]toluene-p-sulfonylhydrazine, and reduction with [2H2]diimide to give [11,11,12,12-2H4]tigogenin, followed by standard degradation of the spiroketal side chain and dehydrogenation in ring A.  相似文献   

9.
One approach to the quantitative analysis of platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycerol-3-phosphocholine; also referred to as AGEPC, alkyl glyceryl ether phosphocholine) is hydrolytic removal of the phosphocholine group and conversion to an electron-capturing derivative for gas chromatography-negative ion mass spectrometry. [2H3]Acetyl-AGEPC has been commonly employed as an internal standard. When 1-hexadecyl-2-[2H3]acetyl glycerol (obtained by enzymatic hydrolysis of [2H3]-C16:0 AGEPC) is treated with pentafluorobenzoyl chloride at 120 degrees C, the resulting 3-pentafluorobenzoate derivative shows extensive loss of the deuterium label. This exchange is evidently acid-catalyzed since derivatization of 1-hexadecyl-2-acetyl glycerol under the same conditions in the presence of a trace of 2HCl results in the incorporation of up to three deuterium atoms. Isotope exchange can be avoided if the reaction is carried out at low temperature in the presence of base. Direct derivatization of [2H3]-C16:0 AGEPC by treatment with pentafluorobenzoyl chloride or heptafluorobutyric anhydride also results in loss of the deuterium label. The use of [13C2]-C16:0 AGEPC as an internal standard is recommended for rigorous quantitative analysis.  相似文献   

10.
F F Sun  B M Taylor 《Biochemistry》1978,17(19):4096-4101
Following a single intravenous administration of [11-3H]prostacyclin in rat, 77% of the administered dose was excreted within 3 days with 33% in urine and 44% in feces. Urinary metabolites were accumulated by chronic intravenous infusions of [11-3H]prostacyclin for 14 days. The drug was extensively metabolized and the structures of seven metabolites were elucidated by combined gas chromatography and mass spectrometry. The urinary products include the dinor and 19-hydroxy dinor derivatives of 6-keto-PGF1alpha and 13,14-dihydro-6,15-diketo-PGF1alpha, omega-hydroxy and omega-carboxyl dinor derivates of dihydro-6,15-diketo-PGF1alpha, and a dihydrodiketotetranordicarboxylic acid. The metabolic pathways of PGI2 in rat are similar to that of PGF2alpha.  相似文献   

11.
A Clostridia strain (R-strain) which hydrogenates tiglinate (1b) and alpha-methylcinnamate (1c) in the presence of hydrogenase gas in 2H2O to (2R, 3S)2-methyl-[2,3-2H]butyrate (5b, H = 2H) and (alphaR, betaR)alpha-methyl[alpha,beta-2H]dihydrocinnamate (5c, H = 2H), respectively, was isolated. The configuration at C-3 was determined by 1H-NMR spectroscopy in the presence of Eu(fod)3. The stereochemistry of this hydrogenation is the mirror image of that which has been determined with intact cells of another strain of Clostridium kluyveri (S-strain). In the presence of hydrogen gas, the R-strain hydrogenates crotonate in 2H2O to butyrate with the following deuterium distribution: C-2, 1.85; C-3, 1.35; and C-4, 0.63 deuterium atoms. Crotonate seems to be the substrate of two reductases with sterically different actions. Tiglinate (1b) and alpha-methylcinnamate, however, are hydrogenated only by that reductase which is different from the butyryl-CoA dehydrogenase.  相似文献   

12.
A method is described for the preparation of two types of multi-labeled 6 beta-hydroxycortisol containing either five deuterium atoms at C-19 methyl and C-1 methylene or four 13C atoms at C-1, C-2, C-4, and C-19 in addition to the five deuterium atoms for use as analytical internal standards for gas chromatography-mass spectrometry (GC-MS). BMD derivatives of [1,1,19,19,19-2H(5)]cortisone and [1,2,4,19-13C(4),1,1,19,19,19-2H(5)]cortisone (cortisone-2H(5)-BMD and cortisone-13C(4),2H(5)-BMD) were first synthesized via indan synthon method starting from optical active 11-oxoindanylpropionic acid and labeled isopropenyl anion ([1,1,3,3,3-2H(5)]- or [1,3-13C(2),1,1,3,3,3-2H(5)]isopropenyl anion). The labeled isopropenyl anion was prepared from commercially available [1,1,1,3,3,3-2H(6)]- or [1,3-13C(2),1,1,1,3,3,3-2H(6)]acetone. Ultraviolet (UV) irradiated autoxidation at C-6 position of 3-ethyl-3,5-dienol ether derivatives of the labeled cortisone-BMDs gave 6 beta-hydroxy-[1,1,19,19,19-2H(5)]cortisone-BMD and 6 beta-hydroxy-[1,2,4,19-13C(4),1,1,19,19,19-2H(5)]cortisone-BMD, respectively, as a mixture of 6 beta- and 6 alpha-epimers in a ratio of 4:1. Separation of 6 beta- and 6 alpha-epimers by thin-layer chromatography (TLC) and subsequent hydrolysis of the BMD group at C-17 gave pure labeled 6 beta-hydroxycortisone. After protecting the keto group at C-3 of the labeled 6 beta-hydroxycortisone-BMD as semicarbazone, reduction of 11-keto group with NaBH(4) and subsequent removal of the C-3 and C-17 protecting groups gave 6beta-hydroxy-[1,1,19,19,19-2H(5)]cortisol (6 beta-hydroxycortisol-2H(5)) and 6 beta-hydroxy-[1,2,4,19-13C(4),1,1,19,19,19-2H(5)]cortisol (6 beta-hydroxycortisol-13C(4),2H(5)), respectively, as a mixture of 6 beta- and 6 alpha-epimers (6 beta:6 alpha=4.4:1). The isotopic compositions of 6 beta-hydroxycortisol-2H(5) and 6 beta-hydroxycortisol-13C(4),2H(5) were 90.9 and 92.1 at.%, respectively. Furthermore, 6 beta-hydroxy-[1 alpha,16,16,17 alpha-2H(4)]testosterone was synthesized by the UV irradiated autoxidation at C-6 position of 3-ethyl-3,5-dienol ether derivative of deuterium-labeled testosterone ([1 alpha,16,16,17 alpha-2H(4)]testosterone) obtained by using catalytic deuteration and hydrogen-deuterium exchange reactions.  相似文献   

13.
The biosynthesis of sphinganine and 4-D-hydroxysphinganine was studied in rat liver microsomes and whole cells of yeast (Hansenula ciferri). It was shown in both cases that the condensation of [2,3,3-2H3]serine and palmitic acid yielded long chain bases containing only two deuterium atoms, both of which were located on the terminal (C-1) carbon atom by combined gas-liquid chromatography/mass spectrometry. When the reaction with the liver microsomal system was carried out in 2H2O with the protium species of serine, the sphinganine contained a deuterium atom on C-2. These results suggest that the synthesis of 3-ketosphinganine involves the replacement of the alpha-hydrogen atom and the carboxyl group of serine by a proton from the medium and a palmitoyl group, rather than a previously proposed mechanism in which the alpha-hydrogen of serine is retained. Some stereochemical requirements of 3-ketosphinganine synthetase are discussed.  相似文献   

14.
A synthesis is reported of 3beta-hydroxy-5alpha-pregnan-20-one sulphate and the disulphate and 3-monosulphate of 5alpha-pregnane-3beta,20alpha-diol, labelled specifically with deuterium in high isotopic purity for metabolic studies in humans. Base-catalyzed equilibration of 3beta-hydroxy-5alpha-25R-spirostan-12-one (hemcogenin, II) with deuterium oxide, followed by removal of the 12-keto group and degradation of the sapogenin side-chain afforded 3beta-hydroxy-5alpha-[11,11-2H2]pregn-16-en-20-one (VII). Further deuterium atoms were introduced at the 3alpha and 20beta positions by reductions with sodium borodeuteride and lithium aluminum deuteride, respectively. These reactions led to 3beta-hydroxy-5alpha-[3alpha,11,11-2H3]pregnan-20-one (X; isotopic purity 87.2%) and 5alpha-[3alpha,11,11,20beta-2H4]pregnane-3beta,20alpha-diol (XIV; isotopic purity 83.9%). The 3-sulphate of the pregnanolone and the 3,20-disulphate of the pregnanediol were prepared directly form the free alcohols, while the 3-monosulphate of the pregnanediol was obtained via 5alpha-[3alpha,11,11,20beta-2H4]pregnane-3beta,20alpha-diol 20-acetate (XVII).  相似文献   

15.
The purified mitochondrial NADH dehydrogenase enzyme has been shown to catalyze a rapid [4B-3H] NADH-H2O exchange reaction. When the enzyme is subjected to a single freeze-thaw cycle there is a complete loss of NADH dehydrogenation without a measurable decrease in the [4B-3H] NADH-H2O exchange. Complete loss of the [4B-3H] NADH-H2O exchange follows brief exposure to ultraviolet photoirradiation. The differential sensitivity of the water exchange reaction and the dehydrogenase activity suggests a direct involvement of the enzymes flavin cofactor in the catalysis of the [4B-3H] NADH-H2O exchange. Arylazido-beta-alanyl NAD+ (A3'-0-[3-[N-4-azido-2-nitrophenyl)amino] propionyl]NAD+) is shown to be a potent photodependent inhibitor of the [4B-3H] NADH-H2O exchange activity following photoirradiation with visible light. This is consistent with the observed photodependent inhibition of the dehydrogenase activity by this photoprobe (Chen, S. and Guillory, R.J. (1981) J. Biol. Chem. 256, 8318-8323).  相似文献   

16.
The formation of poly(beta-hydroxybutyrate), PHB, by Rhodobacter sphaeroides and Alcaligenes eutrophus was studied using the following carbon sources and solvents: (1), acetate in H2O; (2), D3-acetate in H2O; (3), acetate in 90 to 92% D2O; and (4), D3-acetate in 90 to 92% D2O. The growth of Rb. sphaeroides cultured under condition (2) showed no apparent deuterium isotope effect, while considerably slowed growth in the presence of D2O was observed under conditions (3) and (4). In all cases, the PHB produced under deuterium enriched conditions was of high molecular weight. Interestingly, comparatively high volumetric formation of partially deuterated PHB was obtained using culture condition (4) for A. eutrophus. Fourier transform infrared spectroscopy (FT-i.r.), pyrolysis gas chromatography mass spectrometry (PGC-m.s.), and nuclear magnetic resonance (n.m.r.) were used to establish the extent and distribution of deuterium in the PHB samples produced. Partially deuterated PHB was obtained in each case, using a deuterium enriched culture. Considerable differences in the extent and distribution of deuterium were found between micro-organisms and culture conditions.  相似文献   

17.
15-Keto-13,14-dihydro 6-ketoprostaglandin E1 was positively identified by gas chromatography-mass spectrometry with negative-ion chemical ionisation detection from samples of rat kidney high-speed supernatant incubated with prostaglandin I2 in the presence of NAD+. A decreased formation of this product was observed when NAD+ was substituted with NADP+ and none was observed in the absence of nucleotide or substrate prostaglandin I2. Experiments with [9 beta-3H]prostaglandin I2 showed a time- and concentration-dependent loss of tritium which appeared as tritiated water, typical of reaction of [9 beta-3H]prostaglandin substrates with the enzyme, 9-hydroxyprostaglandin dehydrogenase. Time-course measurements of the appearance of tritiated water showed similar rates with 6-keto[9 beta-3H]prostaglandin F1 alpha and 15-keto-13,14-dihydro 6-keto[9 beta-3H]prostaglandin F1 alpha as substrates. These experiments suggest that the transformation of prostaglandin I2 and 6-ketoprostaglandin F1 alpha into the 15-keto-13,14-dihydro 6-ketoprostaglandin E1 catabolite occurs in this in vitro preparation via the corresponding 15-keto-13,14-dihydro catabolite of 6-ketoprostaglandin F1 alpha.  相似文献   

18.
The application of positron emission tomography (PET) to the study of biochemical transformations in the living human and animal body requires the development of highly selective radiotracers whose concentrations in tissue provide a record of a discrete metabolic process. L-N-[11C-methyl]Deprenyl ([11C]L-deprenyl), a suicide inactivator of monoamine oxidase (MAO) type B, has been developed as a radiotracer for mapping MAO B in the living human and animal brain. In this investigation, [11C]L-deprenyl (1) and [11C]L-deprenyl-alpha, alpha-2H2 (2) have been compared in three different baboons by PET measurement of carbon-11 uptake and retention in the brain and the measurement of the amount of unchanged tracer in the arterial plasma over a 90-min time interval. For one baboon, N-[11C-methyl-2H3]L-deprenyl (3) was also studied. Kinetic parameters calculated using a three-compartment model revealed a deuterium isotope effect of 3.8 +/- 1.1. Comparison of the two tracers (1 and 2) in mouse brain demonstrated that deuterium substitution significantly reduced the amount of radioactivity bound to protein. HPLC and GLC analysis of the soluble radioactivity in mouse brain after injection of [11C]L-deprenyl showed the presence of [11C]methamphetamine as a major product along with unidentified labeled products. Sodium dodecyl sulfate-polyacrylamide electrophoresis with carbon-14-labeled L-deprenyl showed that a protein of molecular weight 58,000 was labeled. These results establish that MAO-catalyzed cleavage of the alpha carbon-hydrogen bond on the propargyl group is the rate limiting (or a major rate contributing) step in the retention of carbon-11 in brain and that the in vivo detection of labeled products in brain after the injection of [11C]L-deprenyl provides a record of MAO activity.  相似文献   

19.
Samuel A. Sholl 《Steroids》1982,40(4):475-485
There is indirect evidence that cortisol synthesis in the fetal rhesus monkey adrenal gland is limited at Day 135 of gestation but increases thereafter. This study was conducted to ascertain whether a reduced synthetic capacity is caused by a deficiency in 17-, 21- or 11-hydroxylase activity. For the sake of comparison 11- and 21-hydroxylases were also estimated in adult adrenals. 11-, 21-Hydroxylases were measured in the entire adrenal by the oxidation of NADPH by mitochondria and microsomes, respectively. 17-Hydroxylase was evaluated in outer and inner regions of the fetal gland by the formation of [3H]17-hydroxyprogesterone, -11-deoxycortisol, -cortisol and -androstenedione from [3H]progesterone. The maximum velocity of both the 11- and 21-hydroxylase was similar in fetal and adult glands indicating that corticoid formation in the fetus is not constrained by levels of these enzymes.[3H]Progesterone was extensively metabolized to -17-hydroxyprogesterone, -androstenedione, -11-deoxycortisol and -cortisol by homogenates from both regions of the fetal adrenal. The ratio of [3H]-cortisol to [3H]11-deoxycortisol was consistently higher in incubations of the inner glandular area. Together, these findings indicate that 17-hydroxylase is also active at Day 135 and that the 11-hydroxylase may be more concentrated in the fetal cortex. These data suggest in addition that the restriction in cortisol formation occurs at a step prior to the metabolism of progesterone to cortisol.  相似文献   

20.
11 beta-Hydroxysteroid dehydrogenase (11 beta-HSD) dictates specificity for the mineralocorticoid receptor (MR) by converting the active steroid cortisol to cortisone in man (corticosterone to 11-dehydrocorticosterone in rodents), leaving aldosterone to occupy the MR. However cortisol is the principal circulating glucocorticoid in man and 11 beta-HSD, distributed in a tissue specific fashion, may represent a powerful mechanism in regulating exposure of active steroid to the glucocorticoid receptor (GR). A detailed localization study of 11 beta-HSD gene expression and activity in numerous rat tissues has been performed and compared with the presence of GR mRNA. 11 beta-HSD mRNA (1.4 kB) measured by hybridization to a cDNA derived from hepatic 11 beta-HSD, and enzyme activity, measured by percentage conversion of [3H]corticosterone to [3H]11-dehydrocorticosterone by tissue homogenate, was widespread, present in all tissues studied except spleen, brain cortex and heart. There was a close correlation between tissue 11 beta-HSD mRNA levels and activity (r = 0.91, P less than 0.001) suggesting pretranslational regulation of the enzyme at a tissue level. There was also close co-localization of GR mRNA (7 kB), measured by hybridization to a rat GR cRNA probe, and enzyme mRNA/activity in every tissue studied except heart and brain cortex in which GR mRNA was found. In the mineralocorticoid target tissues kidney and colon, additional 11 beta-HSD mRNA bands were seen (kidney 1.8 kB, colon 3.4 kB), suggesting the presence of multiple dehydrogenase species. 11 beta-HSD is widely distributed and suitably placed to modulate ligand occupancy of the GR. The possibility of multiple dehydrogenase species in mineralocorticoid target tissues is consistent with the hypothesis that the ubiquitous 'native' 1.4 kB hepatic enzyme regulates the GR, and these separate dehydrogenases regulate the MR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号