首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of neurokinin (NK)-1 receptors but not of NK-3 stimulates amylase release from isolated pancreatic acini of the rat. Immunofluorescence studies show that NK-1 receptors are more strongly expressed than NK-3 receptors on pancreatic acinar cells under basal conditions. No studies have examined the expression of the two NK receptor populations in pancreatic acini during pancreatitis in rats. We therefore investigated the relationships between expression of these two tachykinin receptors and experimental acute pancreatitis induced by stimulating pancreatic amylase with caerulein (CK) in rats. Hyperstimulation of the pancreas by CK caused an increase in plasma amylase and pancreatic water content and resulted in morphological evidence of cytoplasmic vacuolization. Immunofluorescence analysis revealed a similar percentage of NK-1 receptor antibody immunoreactive acinar cells in rats with pancreatitis and in normal rat tissue but a larger percentage of NK-3 receptor immunoreactive cells in acute pancreatitis than in normal pancreas. Western blot analysis of NK-1 and NK-3 receptor protein levels after CK-induced pancreatitis showed no change in NK-1 receptors but a stronger increase in NK-3 receptor expression in pancreatic acini compared with normal rats thus confirming the immunofluorescence data. These new findings support previous evidence that substance P-mediated functions within the pancreas go beyond sensory signal transduction contributing to neurogenic inflammation, and they suggest that substance P plays a role in regulating pancreatic exocrine secretion via acinar NK-1 receptors. The significant increase in NK-3 receptors during pancreatic stimulation suggests that NK-3 receptors also intervene in the pathogenesis of mild acute pancreatitis in rats.  相似文献   

2.
Acute pancreatitis is an inflammatory disease characterized by pancreatic tissue edema, acinar cell necrosis, hemorrhage and inflammation of the damaged gland. It is believed that acinar cell injury is initiated by the activation of digestive zymogens inside the acinar cells, leading finally to the autodigestion of the pancreas. Previous study in our laboratory demonstrated that cerulein-induced acute pancreatitis was associated with an up-regulation of local renin-angiotensin system (RAS) in rat pancreas. Therefore, the utilization of RAS inhibitors may provide a novel and alternative treatment for acute pancreatitis. By means of a rat model of cerulein-induced acute pancreatitis, results from the present study showed that an intravenous injection of saralasin, an antagonist for angiotensin II receptors, at a dose of 40 microg/kg 30 min before the induction of acute pancreatitis significantly attenuated pancreatic edema. Results from the biochemical measurements showed that pretreatment with saralasin at a dose of 20 microg/kg markedly reduced pancreatic injury, as evidenced by the decreased activities of alpha-amylase and lipase in plasma. However, the same recipe of ramiprilat, a specific inhibitor for angiotensin-converting enzyme, at a dose of 20 microg/kg did not provide any protective effect against acute pancreatitis. On the contrary, pretreatment with ramiprilat at a dose 40 microg/kg enhanced cerulein-induced pancreatic injury. Results from histopathological analysis of these RAS inhibitors further confirmed with those results as obtained from biochemical analysis. These data indicate that administration of saralasin but not ramiprilat could be protective against acute pancreatitis and that activation of pancreatic RAS in acute pancreatitis may play a role in pancreatic tissue injury.  相似文献   

3.
Previous studies showed that a local pancreatic renin-angiotensin system (RAS) was upregulated in experimental acute pancreatitis. RAS inhibition could attenuate pancreatic inflammation and fibrosis, which casts a new light on the role of the pancreatic RAS in pancreatitis. The present study explores the prophylactic and therapeutic potentials, and possible molecular mechanism for the antagonism of angiotensin II receptors on the changes in the severity of pancreatic injury induced by acute pancreatitis. Experimental pancreatitis was induced by an intraperitoneal injection of supra-maximal dose of cerulein. The differential effects of angiotensin II receptors inhibitors losartan and PD123319 on the pancreatic injury were assessed by virtue of using the pancreatic water content, biochemical and histological analyses. Blockade of the AT(1) receptor by losartan at a dose of 200microg/kg could markedly ameliorate the pancreatic injury induced by cerulein, as evidenced by biochemical and histopathological studies. However, blockade of the AT(2) receptor by PD123319 appeared not to provide any beneficial role in cerulein-induced pancreatic injury. Both prophylactic and therapeutic treatments with losartan were effective against cerulein-induced pancreatic injury. The protective action of losartan was linked to an inhibition of NAD(P)H oxidase activity, thus consequential oxidative modification of pancreatic proteins in the pancreas. Inhibition of the AT(1) receptor, but not AT(2) receptor, may play a beneficial role in ameliorating the severity of acute pancreatitis. The differential effects of AT(1) and AT(2) inhibitors on cerulein-induced pancreatic injury might be due to the distinctive mechanism of the AT(1) and AT(2) receptors on the activation of NAD(P)H oxidase. Thus the protective role of AT(1) receptor antagonist, losartan, could be mediated by the inhibition of NAD(P)H oxidase-dependent generation of reactive oxygen species (ROS).  相似文献   

4.
The renin-angiotensin system (RAS) plays important roles in various pathophysiological processes. However, the role of the RAS in pancreatic fibrosis has not been established. We investigated the role of angiotensin II (ANG II)-ANG II type 1 (AT(1)) receptor pathway in the development of pancreatic fibrosis with AT(1a) receptor-deficient [AT(1a)(-/-)] mice. To induce pancreatic fibrosis, AT(1a)(-/-) and wild-type (WT) mice were submitted to three episodes of acute pancreatitis induced by six intraperitoneal injections of 50 microg/kg body wt cerulein at hourly intervals, per week, for four consecutive weeks. Pancreatic fibrosis was assessed by histology and hydroxyproline content. Pancreatic stellate cell (PSC) activation and the localization of AT(1) receptors were assessed by Western blot analysis for alpha-smooth muscle actin and immunostaining. Transforming growth factor-beta(1) (TGF-beta(1)) mRNA expression in the pancreas was assessed by RT-PCR. Six intraperitoneal injections of cerulein induced acute pancreatitis in both AT(1a)(-/-) and WT mice. There were no significant differences between two groups with regard to serum amylase and histological changes. Pancreatic fibrosis induced by repeated episodes of acute pancreatitis was significantly attenuated in AT(1a)(-/-) mice compared with that in WT mice. This finding was accompanied by a reduction of activated PSCs. Dual-immunofluorescence staining in WT mice revealed that activated PSCs express AT(1) receptors. The level of TGF-beta(1) mRNA was lower in AT(1a)(-/-) mice than in WT mice. Our results demonstrate that the ANG II-AT(1) receptor pathway is not essential for the local pancreatic injury in acute pancreatitis but plays an important role in the development of pancreatic fibrosis through PSC activation and proliferation.  相似文献   

5.
Earlier studies indicate that binding sites of type II angiotensin (AT2) receptors are detected all over the pancreas, as well as in the pancreatic exocrine cell line AR4-2J. However, lack of corresponding functional AT2 receptor responses can be detected in the exocrine pancreas. The aim of present study is to determine the protein expression of AT2 receptors in the pancreas by probing with an AT2 receptor-specific antibody, and to examine the role of AT2 receptors in the regulation of pancreatic endocrine hormone release. In Western protein analysis of adult rat tissues, expression of AT2 receptor-immunoreactive bands of 56, 68, and 78 kDa was detected in the adrenal, kidney, liver, salivary glands, and pancreas. In adult rat pancreas, strong immunoreactivity was detected on cells that were located at the outer region of Langerhans islets. Immunohistochemical studies indicated that AT2 receptors colocalized with somatostatin-producing cells in the endocrine pancreas. Consistent with the findings in adult pancreas, abundant expression of AT2 receptors was also detected in immortalized rat pancreatic endocrinal cells lines RIN-m and RIN-14B. To examine the role of AT2 receptors on somatostatin secretion in the pancreas, angiotensin-stimulated somatostatin release from pancreatic RIN-14B cells was studied by an enzyme immunoassay in the absence or presence of various subtype-selective angiotensin analogues. There was a basal release of somatostatin from RIN-14B cells at a rate of 8.72 +/- 4.21 ng/10(6) cells (n = 7). Angiotensin II (1 nM-10 microM) stimulated a biphasic somatostatin release in a dose-dependent manner with an apparent EC50 value of 49.3 +/- 25.9 nM (n = 5), and reached maximal release at 1 microM angiotensin II (982 +/- 147.34% over basal secretion; n = 5). Moreover, the AT2 receptor-selective angiotensin analogue, CGP42112, was 1000 times more potent than the AT1 receptor-selective angiotensin analogue, losartan, in inhibiting angiotensin II-stimulated somatostatin release. These results suggest that angiotensin may modulate pancreatic hormone release via regulation of somatostatin secretion.  相似文献   

6.
Acinar cell injury early in acute pancreatitis leads to a local inflammatory reaction and to the subsequent systemic inflammatory response, which may result in multiple organ dysfunction and death. Inflammatory mediators, including chemokines and substance P (SP), are known to play a crucial role in the pathogenesis of acute pancreatitis. It has been shown that pancreatic acinar cells produce the chemokine monocyte chemoattractant protein-1 (MCP-1) in response to caerulein hyperstimulation, demonstrating that acinar-derived MCP-1 is an early mediator of inflammation in acute pancreatitis. Similarly, SP levels in the pancreas and pancreatic acinar cell expression of neurokinin-1 receptor, the primary receptor for SP, are both increased during secretagogue-induced experimental pancreatitis. This study aims to examine the functional consequences of exposing mouse pancreatic acinar cells to SP and to determine whether it leads to proinflammatory signaling, such as production of chemokines. Exposure of mouse pancreatic acini to SP significantly increased synthesis of MCP-1, macrophage inflammatory protein-1alpha (MIP-1alpha), as well as MIP-2. Furthermore, SP also increased NF-kappaB activation. The stimulatory effect of SP was specific to chemokine synthesis through the NF-kappaB pathway, since the increase in chemokine production was completely attenuated when pancreatic acini were pretreated with the selective NF-kappaB inhibitor NF-kappaB essential modulator-binding domain peptide. This study shows that SP-induced chemokine synthesis in mouse pancreatic acinar cells is NF-kappaB dependent.  相似文献   

7.
Pathobiology of experimental acute pancreatitis.   总被引:3,自引:0,他引:3  
M L Steer 《The Yale journal of biology and medicine》1992,65(5):421-30; discussion 437-40
Pancreatic duct obstruction, even in the absence of biliary obstruction and/or bile reflux into the pancreatic duct, can trigger acute hemorrhagic necrotizing pancreatitis. The earliest changes are seen within acinar cells. Early derangements in acinar cell biology include inhibition of digestive enzyme secretion and the co-localization of lysosomal hydrolases with digestive enzyme zymogens. Under appropriate conditions, this co-localization could lead to digestive enzyme activation within acinar cells.  相似文献   

8.
Chan YC  Leung PS 《Regulatory peptides》2011,166(1-3):128-134
Angiotensin II is a vasoactive peptide that controls blood pressure and homeostasis. Emerging evidence shows that locally generated angiotensin II plays a crucial role in normal physiology, as well as pathophysiological conditions such as pancreatitis. We recently reported that angiotensin II activates pancreatic NFκB in obstructive pancreatitis. However, the specific cell type responsible for this activation remains unclear. In this study, we investigated whether pancreatic acinar cells respond to angiotensin II. These cells are the most abundant pancreatic cells and the most vulnerable to pancreatitis. Pancreatic acinar AR42J cells were used as an in vitro model of pancreatic inflammation. Our results demonstrated that treatment with caerulein, a cholecystokinin receptor agonist, induced hypersecretion and NFκB activation, as demonstrated by elevated amylase secretion and degradation of inhibitor of NFκB (IκBβ). Angiotensin II, either alone or in combination with caerulein, augmented IκBβ degradation. Pre-treatment with losartan, an antagonist of the angiotensin type I (AT1) receptor, abolished NFκB activation by angiotensin II and caerulein in a dose-dependent manner. Treatment with PD123319, a blocker of the angiotensin type II (AT2) receptor, enhanced the activation of NFκB by angiotensin II and caerulein. Preliminary data further demonstrated that angiotensin II could extend caerulein-induced ERK1/2 activation in acinar cells. These results indicated that inflammation triggered by hyperstimulation of pancreatic acinar cells is enhanced by angiotensin II, via the AT1 receptor. In contrast, stimulation of the AT2 receptor protects against caerulein-induced NFκB activation. The differential roles of the AT1 and AT2 receptors might be useful in developing potential therapies for pancreatic inflammation.  相似文献   

9.
10.
The small G-protein Rab27A has been shown to regulate the intracellular trafficking of secretory granules in various cell types. However, the presence, subcellular localization and functional impact of Rab27A on digestive enzyme secretion by mouse pancreatic acinar cells are poorly understood. Ashen mice, which lack the expression of Rab27A due to a spontaneous mutation, were used to investigate the function of Rab27A in pancreatic acinar cells. Isolated pancreatic acini were prepared from wild-type or ashen mouse pancreas by collagenase digestion, and CCK- or carbachol-induced amylase secretion was measured. Secretion occurring through the major-regulated secretory pathway, which is characterized by zymogen granules secretion, was visualized by Dextran-Texas Red labeling of exocytotic granules. The minor-regulated secretory pathway, which operates through the endosomal/lysosomal pathway, was characterized by luminal cell surface labeling of lysosomal associated membrane protein 1 (LAMP1). Compared to wild-type, expression of Rab27B was slightly increased in ashen mouse acini, while Rab3D and digestive enzymes (amylase, lipase, chymotrypsin and elastase) were not affected. Localization of Rab27B, Rab3D and amylase by immunofluorescence was similar in both wild-type and ashen acinar cells. The GTP-bound states of Rab27B and Rab3D in wild-type and ashen mouse acini also remained similar in amount. In contrast, acini from ashen mice showed decreased amylase release induced by CCK- or carbachol. Rab27A deficiency reduced the apical cell surface labeling of LAMP1, but did not affect that of Dextran-Texas Red incorporation into the fusion pockets at luminal surface. These results show that Rab27A is present in mouse pancreatic acinar cells and mainly regulates secretion through the minor-regulated pathway.  相似文献   

11.
A variety of receptors on pancreatic acinar and duct cells regulate both pancreatic exocrine secretion and intracellular processes. These receptors are potential sites of action for therapeutic agents in the treatment of pancreatitis. Cholecystokinin (CCK) receptor antagonists, which may reduce the level of metabolic "stress" on acinar cells, have been shown to mitigate the severity of acute pancreatitis in a number of models. Not all studies have shown a benefit, however, and differences may exist between different structural classes of antagonists. Because increased pancreatic stimulation due to loss of feedback inhibition of CCK has been proposed to contribute to the pain of some patients with chronic pancreatitis, CCK receptor antagonists could also be of benefit in this setting. Somatostatin and its analogs diminish pancreatic secretion of water and electrolytes and have been effective in treating pancreatic fistulas and pseudocysts. These agents are also being evaluated for their ability to reduce pain in chronic pancreatitis (perhaps by reducing ductal pressure by diminishing secretory volume) and mitigating the severity of acute pancreatitis (possibly by reducing the metabolic load on acinar cells). Recently described secretin receptor antagonists may also have therapeutic value as a means of selectively inhibiting pancreatic secretion of water and electrolytes.  相似文献   

12.
Immunocytochemical localization of elastase 1 in human pancreas   总被引:1,自引:0,他引:1  
By light and electron microscopic immunocytochemistry the distribution is described of human pancreatic elastase 1 (E1) during ontogenesis, in adults, in cases of acute and chronic panceatitis, acute pancreatic ischaemia as well as pancreatic tumours. E1-positive cells were first detected in ductal sprouts in the 14th gestational week. Complete acini expressing E1 could be found from the 17th to the 20th week of gestation onwards. Scattered distinct E1-positive epithelia could be found in the ducts of fetal and adult pancreas. By immunoelectron microscopy, E1 was localized in rough endoplasmic reticulum, condensing vacuoles, zymogen granules of acinar epithelia and in acinar lumina. E1 appeared to be distributed homogeneously in zymogen granules. As specific markers of acinar cells, both monoclonal antibodies under study identified heterotopic pancreatic acini in peribiliar glands of the liver and also helped to visualize different damage patterns in pancreatitis. The acinar epithelia surrounding acute lipolytic necroses initially reacted more intensely with the E1-antibodies than undamaged pancreatic tissue. In acute ischaemia, acinar cells which are dissociated from intercalated ducts lost their immunocytochemical reactivity for E1. Pancreatic parenchyma involved in advanced acute pancreatitis as well as in chronic inflammation was detected only weakly by both E1-antibodies. However, atrophic lobules in post-inflammatory scars were stained more intensely by the E1-antibodies than normal parenchyma. Pancreatic tumours (adenomas, adenocarcinomas, solid-cystic tumours and islet cell tumours) were not labelled by these antibodies.  相似文献   

13.
The majority of digestive enzymes in humans are produced in the pancreas where they are stored in zymogen granules before secretion into the intestine. GP2 is the major membrane protein present in zymogen granules of the exocrine pancreas. Numerous studies have shown that GP2 binds digestive enzymes such as amylase, thereby supporting a role in protein sorting to the zymogen granule. Other studies have suggested that GP2 is important in the formation of zymogen granules. A knock-out mouse was generated for GP2 to study the impact of the protein on pancreatic function. GP2-deficient mice displayed no gross signs of nutrient malab-sorption such as weight loss, growth retardation, or diarrhea. Zymogen granules in the GP2 knock-out mice appeared normal on electron microscopy and contained the normal complement of proteins excluding GP2. Primary cultures of pancreatic acini appropriately responded to secretagogue stimulation with the secretion of digestive enzymes. The course of experimentally induced pancreatitis was also examined in the knock-out mice because proteins known to associate with GP2 have been found to possess a protective role. When GP2 knock-out mice were subjected to two different models of pancreatitis, no major differences were detected. In conclusion, GP2 is not essential for pancreatic exocrine secretion or zymogen granule formation. It is unlikely that GP2 serves a major intracellular role within the pancreatic acinar cell and may be functionally active after it is secreted from the pancreas.  相似文献   

14.
Characterization of muscarinic acetylcholine receptors in acinar cells from rat pancreas and lacrimal and parotid glands was achieved by binding of the reversible muscarinic antagonist [3H]quinuclidinyl benzilate (QNB) and the specific alkylating reagent [3H]propylbenzilylcholine mustard (PrBCM) to intact acini or dispersed acinar cells. Binding studies with [3H]QNB showed that acinar cells from pancreas contain 26,400, from parotid 21,400, and from lacrimal gland 25,700 binding sites/cell. To assess molecular size of the receptor in each gland, acini were prepared by digestion with purified collagenase and singly dispersed acinar cells were prepared by a combination of digestion with crude collagenase, hyaluronidase, and alpha-chymotrypsin and divalent cation chelation using EDTA. Muscarinic receptors on acini or dispersed cells were covalently labeled with 5 nM [3H]PrBCM, solubilized directly in hot sodium dodecyl sulfate buffer, and resolved by polyacrylamide gel electrophoresis. When solubilized acini were electrophoresed, a major labeled peak was observed on gels along with a smaller peak of lower apparent molecular weight. For pancreatic acini, the apparent molecular weights of these peaks were 117,600 and 85,700; for parotid acini, 104,800 and 74,500; and for lacrimal acini, 87,200 and 63,100. Addition of muscarinic antagonists to the labeling medium abolished both peaks. When dispersed acinar cells were labeled, the larger peak was eliminated, and all radioactivity was concentrated in a single peak: 87,600 for pancreas, 78,000 for parotid gland, and 62,800 for lacrimal gland. Digestion of prelabeled acini with the mixture of enzymes used to produce dispersed acinar cells similarly shifted all radioactivity into this second peak. Limited digestion of acini or dispersed cells with 1 mg/ml of papain resulted in the disappearance of these higher molecular weight peaks and the appearance of a broad peak at Mr = 40,000. Cells of nonepithelial origin, IM-9 lymphocytes and NG108 neuroblastoma X glioma hybrids, also were labeled with [3H]PrBCM and electrophoresed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
There are a number of hypothetical explanations for the actions of ethanol on the exocrine pancreas; among them, the cholinergic hypothesis has received special attention. According to this hypothesis, chronic alcohol consumption induces alterations in the control of exocrine pancreatic function resulting in cholinergic hyperstimulation of pancreatic acinar cells and their muscarinic receptors. Our aim was to investigate the cholinergic control of pancreatic enzyme secretion and the number and affinity of muscarinic receptors in the pancreatic acinar cells of rats subjected to chronic ethanol ingestion. We also investigated whether a high-fibre diet modifies the actions of ethanol on these aspects of the exocrine pancreatic function. Four groups of rats received either a standard or a high fibre diet, and either water or 20% (v/v) ethanol. After 6 months of treatment, isolated pancreatic acini were used for the determination of carbachol-stimulated amylase secretion and for the analysis of muscarinic receptors, using 1-[N-methyl-3H]scopolamine as a radioligand. Neither chronic ethanol intake nor a high fibre diet caused any apparent alteration in pancreatic histology, neither did them modify plasmatic amylase levels. Chronic alcoholization resulted in a significant increase in the amylase released from pancreatic acini in response to carbachol stimulation, but it did not affect either the number or the affinity of pancreatic acinar muscarinic receptors. The actions of ethanol are not significantly modified by the simultaneous consumption of a high fibre diet.  相似文献   

16.
A characteristic of acute pancreatitis is the premature activation and retention of enzymes within the pancreatic acinar cell. Because ligands linked to cAMP production may prevent some forms of pancreatitis, we evaluated the effects of increased intracellular cAMP in the rat pancreatic acinar cell. Specifically, this study examined the effects of the cholinergic agonist carbachol and agents that increase cAMP [secretin and 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP)] on zymogen activation (trypsin and chymotrypsin), enzyme secretion, and cellular injury in isolated pancreatic acini. Although cAMP agonists affected the responses to physiological concentrations of carbachol (1 microM), their most prominent effects were observed with supraphysiological concentrations (1 mM). When secretin was added to 1 mM carbachol, there was a slight increase in zymogen activation, but no change in the secretion of amylase or chymotrypsin. Furthermore, coaddition of secretin increased parameters of cell injury (trypan blue exclusion, lactic dehydrogenase release, and morphological markers) compared with carbachol (1 mM) alone. Although directly increasing cellular cAMP by 8-Br-cAMP caused much greater zymogen activation than carbachol (1 mM) alone or with secretin, 8-Br-cAMP cotreatment reduced all parameters of injury to the level of unstimulated acini. Furthermore, 8-Br-cAMP dramatically enhanced the secretion of amylase and chymotrypsin from the acinar cell. This study demonstrates that increasing acinar cell cAMP can overcome the inhibition of enzyme secretion caused by high concentrations of carbachol and eliminate acinar cell injury.  相似文献   

17.
Supramaximal stimulation of the rat pancreas with CCK, or its analog caerulein, triggers acute pancreatitis and a number of pancreatitis-associated acinar cell changes including intracellular activation of digestive enzyme zymogens and acinar cell injury. It is generally believed that some of these various acinar cell responses to supramaximal secretagogue stimulation are interrelated and interdependent. In a recent report, Lu et al. showed that secretin, by causing generation of cAMP and activation of PKA, sensitizes acinar cells to secretagogue-induced zymogen activation, and, as a result, submaximally stimulating concentrations of caerulein can, in the presence of secretin, trigger intracellular zymogen activation. We found that secretin also sensitizes acinar cells to secretagogue-induced cell injury and to subapical F-actin redistribution but that it did not alter the caerulein concentration dependence of other pancreatitis-associated changes such as the induction of a peak plateau intracellular [Ca(2+)] rise, inhibition of secretion, activation of ERK1/2, and activation of NF-kappaB. The finding that secretin sensitizes acinar cells to both intracellular zymogen activation and cell injury is consistent with the concept that these two early events in pancreatitis are closely interrelated and, possibly, interdependent. On the other hand, the finding that, in the presence of secretin, caerulein can trigger subapical F-actin redistribution without inhibiting secretion challenges the concept that disruption of the subapical F-actin web is causally related to high-dose secretagogue-induced inhibition of secretion in pancreatic acinar cells.  相似文献   

18.
Pancreatic acinar cells depend on the integrity of the cytoskeleton for regulated secretion. Stimulation of isolated rat pancreatic acini with the secretagogue CCK serves as a model for human acute edematous pancreatitis. It induces the breakdown of the actin filament system (F-actin) with the consecutive inhibition of secretion and premature activation of digestive enzymes. However, the mechanisms that regulate F-actin breakdown are largely unknown. Plectin is a versatile cytolinker protein regulating F-actin dynamics in fibroblasts. It was recently demonstrated that plectin is a substrate of caspase 8. In pancreatic acinar cells, plectin strongly colocalizes with apical and basolateral F-actin. Supramaximal secretory stimulation of acini with CCK leads to a rapid redistribution and activation of caspase 8, followed by degradation of plectin that in turn precedes the F-actin breakdown. Inhibition of caspase 8 before CCK hyperstimulation prevents plectin cleavage, stabilizes F-actin morphology, and reverses the inhibition of secretion. Thus we propose that the caspase 8-mediated degradation of plectin represents a critical biochemical event during CCK-induced secretory blockade and cell injury.  相似文献   

19.
"Proteinase-activated" receptor-2 (PAR-2) is a G protein-coupled transmembrane receptor with seven transmembrane domains activated by trypsin. It has been shown in the pancreatic tissue that PAR-2 is involved in duct/acinary cells secretion, arterial tonus regulation and capillary liquid content turnover under physiological conditions. These above mentioned structures play an important role during the development of acute pancreatitis and are profoundly influenced by a high concentration of trypsin enzyme after its secretion into the interstitial tissue from the basolateral aspect of acinar cells. Among the other factors, it is the increase of interstitial trypsin concentration followed rapidly by PAR-2 action on pancreatic vascular smooth muscle cells that initiates ischemic changes in pancreatic parenchyma and that finally leads to necrosis of the pancreas. Consequent reperfusion perpetuates changes leading to the acute pancreatitis development. On the contrary, PAR-2 action on both exocrine and duct structures seems to play locally a protective role during acute pancreatitis development. Moreover, PAR-2 action is not confined to the pancreas but it contributes to the systemic vascular endothelium and immune cell activation that triggers the systemic inflammatory response syndrome (SIRS) contributing to an early high mortality rate in severe disease.  相似文献   

20.
Pancreatic acinar cells produce and secrete digestive enzymes. These cells are organized as a cluster which forms and shares a joint lumen. This work demonstrates how the secretory capacity of these cells can be assessed by culture of isolated acini. The setup is advantageous since isolated acini, which retain many characteristics of the intact exocrine pancreas can be manipulated and monitored more readily than in the whole animal. Proper isolation of pancreatic acini is a key requirement so that the ex vivo culture will represent the in vivo nature of the acini. The protocol demonstrates how to isolate intact acini from the mouse pancreas. Subsequently, two complementary methods for evaluating pancreatic secretion are presented. The amylase secretion assay serves as a global measure, while direct imaging of pancreatic secretion allows the characterization of secretion at a sub-cellular resolution. Collectively, the techniques presented here enable a broad spectrum of experiments to study exocrine secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号