首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the major sulfated proteins secreted by rat hepatocytes contains a low-sulfated chondroitin sulfate chain and its apparent molecular mass upon sodium dodecyl sulfate/polyacrylamide gel electrophoresis shifts from 40 to 28 kDa upon chondroitinase ABC treatment (E. M. Sj?berg and E. Fries, 1990, Biochem. J. 272, 113-118). These properties suggest that this protein is the rat homologue of the major trypsin inhibitor of human urine which was recently named bikunin. In serum, bikunin occurs mainly as a subunit of the pre-alpha-inhibitor and the inter-alpha-inhibitor; in these proteins it is covalently linked to the other polypeptides through its chondroitin sulfate chain. Bikunin has been shown to be synthesized by liver cells as a 42-kDa precursor, in which it is linked to alpha 1-microglobulin by two basic amino acids. We have isolated bikunin from rat urine and prepared antibodies against it. In rat hepatocytes pulse-labeled with [35S]methionine, these antibodies precipitated a labeled protein of 42 kDa. Upon chase, three different labeled proteins were recognized by the antibodies in the medium: one protein of 40 kDa (free bikunin), one of 125 kDa (presumably pre-alpha-inhibitor), and one greater than 240 kDa (possibly a protein related to the inter-alpha-inhibitor). Pulse-chase experiments with [35S]sulfate showed that these proteins occurred intracellularly as precursors containing alpha 1-microglobulin. These results demonstrate that the completion of the chondroitin sulfate chain and its coupling to other polypeptide chains occur before the cleavage of the alpha 1-microglobulin/bikunin precursor.  相似文献   

2.
3.
A Lindqvist  P Rouet  J P Salier  B Akerstr?m 《Gene》1999,234(2):329-336
The 129Sv mouse gene coding for the alpha1-microglobulin/bikunin precursor has been isolated and characterized. The 11kb long gene contains ten exons, including six 5'-exons coding for alpha1-microglobulin and four 3'-exons encoding bikunin. Exon 7 also codes for the tribasic tetrapeptide RARR which connects the alpha1-microglobulin and bikunin parts. The sixth intron, which separates the alpha1-microglobulin and bikunin encoding parts, was compared in the human, mouse and a fish (plaice) gene. The size of this intron varies considerably, 6.5, 3.3 and 0.1kb in man, mouse and plaice, respectively. In all three genes, this intron contains A/T-rich regions, and retroposon elements are found in the first two genes. This indicates that this sixth intron is an unstable region and a hotspot for recombinational events, supporting the concept that the alpha1-microglobulin and bikunin parts of this gene are assembled from two ancestral genes. Finally, the nonsynonymous nucleotide substitution rate of the gene was determined by comparing coding sequences from ten vertebrate species. The results indicate that the alpha1-microglobulin part of the gene has evolved faster than the bikunin part.  相似文献   

4.
A 1162 bp rat liver cDNA clone encoding the immunoregulatory plasma protein alpha 1-microglobulin was isolated and sequenced. The open reading frame encoded a 349 amino acid polyprotein, including alpha 1-microglobulin, 182 amino acids, and bikunin, the light chain of the plasma protein inter-alpha-trypsin inhibitor, 145 amino acids. The alpha 1-microglobulin/bikunin mRNA was found only in the liver when different tissues were examined. Free alpha 1-microglobulin and a polyprotein, containing both alpha 1-microglobulin and inter-alpha-trypsin inhibitor epitopes, were found in the microsomal fraction from rat liver homogenates.  相似文献   

5.
The expression pattern of the alpha(1)-microglobulin/bikunin precursor (AMBP) gene, and its two protein products were studied in mouse embryos of 8.5-15.5 days of embryonic development by in situ hybridization and immunohistochemistry. AMBP mRNA is strongly transcribed in liver parenchyma, pancreas, and intestine epithelium. Sites of weaker expression are the vessels of the umbilical cord, the developing vertebral bodies, and kidney. The alpha(1)-microglobulin and bikunin proteins are accordingly present in developing hepatocytes, pancreas, kidney, and gut. However, additional sites of protein distribution were found that do not correlate to mRNA localization: alpha(1)-microglobulin was found in myocytes and bikunin in cardiac muscle, nervous system microvasculature, and connective tissue. Both proteins were found in brain mesenchyme and meninges. Thus, a restricted expression of the AMBP mRNA in a few organs contrasts to a widespread and unique distribution of each of the two proteins.  相似文献   

6.
The occurrence of bikunin and ·1-microglobuli n was investigated in human ovary and Fallopian tubes. Bikunin and ·1-microglobulin are transcribed in the liver from a common gene. Bikunin immunoreactivity was detected in the zona pellucida. A positive reaction for bikunin was also observed in connective tissue of the oviduct. In addition, mast cells showed a more intense posi tive reaction than the surrounding connective tissue. Specific displaceable ·1-microglobulin immunoreactivity was revealed in the zona pellucida. The data suggest that bikunin and ·1- microglobulin are trapped in the zona pellucida. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

7.
The inter-alpha-inhibitor (I alpha I) and pre-alpha-inhibitor (P alpha I) family is composed of three plasma protease inhibitors, I alpha I, P alpha I, and bikunin, whose chains are encoded by a set of three evolutionarily related heavy (H) chain genes designated H1, H2, and H3 and a fourth gene, the so-called alpha 1-microglobulin/bikunin precursor (AMBP) gene. The latter codes for a precursor that splits into: (i) alpha 1-microglobulin, which belongs to the lipocalin superfamily; and (ii) bikunin, which is made up of two tandemly arranged protease inhibitor domains and belongs to the superfamily of Kunitz-type protease inhibitors. The bikunin chain is found in I alpha I and P alpha I molecules and it is also present as a free molecule in plasma. In human, the AMBP and H2 genes have been mapped to 9q32-q34 and 10p14-p15, respectively, while the H1 and H3 genes are tandemly located at 3p21.1-p21.2. In situ hybridization mappings indicate that the mouse AMBP gene (Intin-4) is located at 4C1----C4, and the H1 (Intin-1) and H3 (Intin-3) genes are colocated at 14A2----C1. In interspecific backcrosses (C57BL/6Pas x Mus spretus) a TaqI restriction variant in (and/or near) the H2 (Intin-2) gene identified a linkage of this gene with other polymorphic loci, which assigns Intin-2 to the centromeric area of chromosome 2. All such assignments are in conserved chromosomal regions between human and mouse. Therefore the genetic events that gave rise to the four I alpha I family genes took place prior to the divergence between human and mouse.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
alpha-1-Microglobulin (A1M) and bikunin are two plasma glycoproteins encoded by an alpha-1-microglobulin/bikunin precursor (AMBP) gene. Despite their lack of any structural or functional relationship, both A1M and bikunin originate from AMBP cleavage by a furin-like protease that releases the two mature molecules. The AMBP gene maintains a tight control over its expression by a unique enhancer, which is controlled by several hepatocyte-enriched nuclear factors; however, the mechanisms of regulation of the intracellular levels of the AMBP protein are currently unknown. We report the ability of the AMBP protein to self-associate and form a dimer in a yeast environment using the yeast two-hybrid system and an in vitro dimerization assay. We also show that the A1M protein binds to its precursor protein, AMBP, whereas bikunin does not. This observation warrants further investigations for a dimerization-dependent intracellular control that AMBP may be involved in. The relevance of AMBP dimerization and its possible biological significance are postulated.  相似文献   

9.
10.
Hepatitis E virus (HEV), a plus-stranded RNA virus contains three open reading frames. Of these, ORF1 encodes the viral nonstructural polyprotein; ORF2 encodes the major capsid protein and ORF3 codes for a phosphoprotein of undefined function. Using the yeast two-hybrid system to screen a human cDNA liver library we have isolated, an N-terminal deleted protein, alpha(1) -microglobulin/bikunin precursor (AMBP) that specifically interacts with the ORF3 protein of HEV. Independently cloned, full-length AMBP was obtained and tested positive for interaction with ORF3 using a variety of in vivo and in vitro techniques. AMBP, a liver-specific precursor protein codes for two different unrelated proteins alpha(1)-microglobulin (alpha(1)m) and bikunin. alpha(1) m individually interacted with ORF3. The above findings were validated by COS-1 cell immunoprecipitation, His(6) pull-down experiments, and co-localization experiments followed by fluorescence resonance energy transfer analysis. Human liver cells showing co-localization of ORF3 with endogenously expressing alpha(1) m showed a distinct disappearance of the protein from the Golgi compartment, suggesting that ORF3 enhances the secretion of alpha(1)m out of the hepatocyte. Using drugs to block the secretory pathway, we showed that alpha m was not degraded in the presence of ORF3. Finally, (1)pulse labeling of alpha(1)m showed that its secretion was expedited out of the liver cell at faster rates in the presence of the ORF3 protein. Hence, ORF3 has a direct biological role in enhancing alpha(1)m export from the hepatocyte.  相似文献   

11.
Tyagi S  Surjit M  Lal SK 《Journal of virology》2005,79(18):12081-12087
Hepatitis E virus (HEV), a human plus-stranded RNA virus, contains three open reading frames (ORF). Of these, ORF1 encodes the viral nonstructural polyprotein, ORF2 encodes the major capsid protein, and ORF3 codes for a phosphoprotein of undefined function. Recently, using the yeast two-hybrid system to screen a human cDNA liver library, we have isolated and characterized AMBP (alpha1-microglobulin/bikunin precursor), which specifically interacts with the ORF3 protein of HEV. The ORF3 protein expedites the processing and secretion of alpha1-microglobulin. When checked individually for interaction, the second processed protein from AMBP, bikunin, strongly interacted with the full-length ORF3 protein. This protein-protein interaction has been validated by immunoprecipitation in both COS-1 and Huh7 cells and by His6 pull-down assays. In dual-labeling immunofluorescent staining, followed by fluorescence microscopy of transfected human liver cells, ORF3 colocalized with endogenously expressed bikunin. Finally, a 41-amino-acid C-terminal region of ORF3 has been found to be responsible for interacting with bikunin. The importance of this virus-host protein-protein interaction, with reference to the viral life cycle, has been discussed.  相似文献   

12.
Alpha-1-microglobulin and bikunin are two plasma glycoproteins encoded by an alpha-1-microglobulin/bikunin precursor (AMBP) gene. The strict liver-specific expression of the AMBP gene is controlled by a potent enhancer made of six clustered boxes numbered 1-6 that have been reported to be proven or potential binding sites for the hepatocyte-enriched nuclear factors HNF-1, -4, -3, -1, -3, -4, respectively. In the present study, electromobility shift assays of wild-type or mutated probes demonstrated that the boxes 1-5 have a binding capacity for their cognate HNF protein. Box 5 is also a target for another, as yet unidentified, factor. A functional analysis of the wild-type or mutated enhancer, driving its homologous promoter and a reporter CAT gene in the HepG2 hepatoma cell line, demonstrated that all six boxes participate in the enhancer activity, with the primary influence of box 4 (HNF-1) and box 2 (HNF-4). A similar analysis in the HNF-free CHO cell line co-transfected with one or several HNF factors further demonstrated various interplays between boxes: box 3 (HNF-3 alpha and beta) has a negative influence over the major HNF-4 box 2 as well as a positive influence over the major HNF-1 box 4.  相似文献   

13.
alpha(1)-Microglobulin: a yellow-brown lipocalin   总被引:2,自引:0,他引:2  
alpha(1)-Microglobulin, also called protein HC, is a lipocalin with immunosuppressive properties. The protein has been found in a number of vertebrate species including frogs and fish. This review summarizes the present knowledge of its structure, biosynthesis, tissue distribution and immunoregulatory properties. alpha(1)-Microglobulin has a yellow-brown color and is size and charge heterogeneous. This is caused by an array of small chromophore prosthetic groups, attached to amino acid residues at the entrance of the lipocalin pocket. A gene in the lipocalin cluster encodes alpha(1)-microglobulin together with a Kunitz-type proteinase inhibitor, bikunin. The gene is translated into the alpha(1)-microglobulin-bikunin precursor, which is subsequently cleaved and the two proteins secreted to the blood separately. alpha(1)-Microglobulin is found in blood and in connective tissue in most organs. It is most abundant at interfaces between the cells of the body and the environment, such as in lungs, intestine, kidneys and placenta. alpha(1)-Microglobulin inhibits immunological functions of white blood cells in vitro, and its distribution is consistent with an anti-inflammatory and protective role in vivo.  相似文献   

14.
Bikunin--not just a plasma proteinase inhibitor   总被引:9,自引:0,他引:9  
Bikunin is a plasma proteinase inhibitor that has received little attention in the past, probably because its activity towards various proteinases was found to be relatively weak in early work. It was recently discovered, however, that bikunin effectively inhibits a proteinase that seems to be involved in the metastasis of tumour cells--cell surface plasmin--and that a fragment of bikunin inhibits two proteinases of the coagulation pathway--factor Xa and kallikrein. Furthermore, it has been found that bikunin has other properties, such as the ability to modulate cell growth and to block cellular calcium uptake. Most of the bikunin in the blood occurs as a covalently linked subunit of the proteins pre- and inter-alpha-inhibitor. In this form bikunin lacks some of its known activities, and there is evidence that its release by partial proteolytic degradation may function as a regulatory mechanism. Although the physiological function of bikunin still remains to be established, current data suggest that this protein plays a role in inflammation. Further studies could therefore lead to results of therapeutical value.  相似文献   

15.
Analysis of complementary DNA for porcine alpha 1-microglobulin and bikunin indicates that both proteins result from proteolytic processing of a common precursor similar to that found in man. Complete primary structures of these proteins are deduced from the nucleic acid sequence and partially confirmed by peptide sequencing.  相似文献   

16.
17.
Bikunin is a chondroitin sulfate-containing plasma protein synthesized in the liver. In vitro, it has been shown to inhibit proteases and to have additional activities, but its biological function is still unclear. Here we have studied the dynamics of plasma bikunin in rats and mice. A half-life of 7 ± 2 min was obtained from the time course of the decrease of the plasma level of bikunin following hepatectomy. Clearance experiments with intravenously injected radiolabeled bikunin with or without the chondroitin sulfate chain showed that the polysaccharide had little influence on the elimination rate of the protein. The uptake of bikunin by different tissues was studied using bikunin labeled with the residualizing agent 125I-tyramine cellobiose; 60 min after intravenous injection, 49% of the radioactivity was recovered in the kidneys and 6–11% in the liver, bones, skin, intestine and skeletal muscle. The uptake in the liver was analyzed by intravenous injection of radiolabeled bikunin followed by collagenase perfusion and dispersion of the liver cells. These experiments indicated that bikunin is first trapped extracellularly within the liver before being internalized by the cells. (Mol Cell Biochem 271: 61–67, 2005)  相似文献   

18.
The inter-alpha-trypsin inhibitor (ITI) family is a group of plasma proteins built up from heavy (HC1, HC2, HC3) and light (bikunin) chains synthesized in the liver. In this study we determined the distribution of ITI constitutive chains in normal and cancerous lung tissues using polyclonal antibodies. In normal lung tissue, H2, H3, and bikunin chains were found in polymorphonuclear cells, whereas H1 and bikunin proteins were found in mast cells. Bikunin was further observed in bronchoepithelial mucous cells. In lung carcinoma, similar findings were obtained on infiltrating polymorphonuclear and mast cells surrounding the tumor islets. Highly differentiated cancerous cells displayed strong intracytoplasmic staining with H1 and bikunin antiserum in both adenocarcinoma and squamous cell carcinoma. Moreover, weak but frequent H2 expression was observed in adenocarcinoma cells, whereas no H3-related protein could be detected in cancer cells. Local lung ITI expression was confirmed by RT-PCR. Although the respective role of inflammatory and tumor cells in ITI chain synthesis cannot be presently clarified, these results show that heavy chains as well as bikunin are involved in malignant transformation of lung tissue.(J Histochem Cytochem 47:1625-1632, 1999)  相似文献   

19.
Pre-alpha-inhibitor is a serum protein consisting of two polypeptides, the heavy chain and bikunin, covalently linked through an ester bond between the chondroitin sulfate chain of bikunin and the alpha-carboxyl group of the carboxyl-terminal residue of the heavy chain. The heavy chain is synthesized with a carboxyl-terminal extension, which is cleaved off just before the link to bikunin is formed. Our earlier studies indicate that this extension mediates the cleavage, and we have now found that a short segment on the amino-terminal side of the cleavage site is also required for the reaction. Furthermore, we previously showed that coexpression of the heavy chain precursor and bikunin in COS-1 cells leads to linkage, and we have now used this system to identify a His residue in the carboxyl-terminal extension that is specifically required for the intracellular coupling of the two proteins. In addition, we have shown that another chondroitin sulfate-containing protein, decorin, will also form a complex with the heavy chain, as will free chondroitin sulfate chains. These results suggest that in vivo there might be other, as yet unknown, chondroitin sulfate-containing polypeptides linked to the heavy chain.  相似文献   

20.
A cDNA coding for plaice (Pleuronectes platessa) alpha1-microglobulin (Leaver et al., 1994, Comp. Biochem. Physiol. 108B, 275-281) was expressed and purified from baculovirus-infected insect cells. Specific monoclonal antibodies were then prepared and used to isolate the protein from plaice liver and serum. Mature 28.5 kDa alpha1-microglobulin was found in both liver and serum. The protein consisted of an 184 amino acid peptide with a complex N-glycan in position Asn123, one intrachain disulfide bridge and a yellow-brown chromophore. Physicochemical characterization indicated a globular shape with a frictional ratio of 1.37, electrophoretic charge-heterogeneity and antiparallel beta-sheet structure. A smaller, incompletely glycosylated, yellow-brown alpha1-microglobulin as well as a 45 kDa precursor protein were also found in liver. The chromophore was found to be linked to alpha1-microglobulin intracellularly. Recombinant plaice alpha1-microglobulin isolated from insect cells had the same N-terminal sequence, globular shape and yellow-brown color as mature alpha1-microglobulin, but carried a smaller, fucosylated, non-sialylated N-glycan in the Asn123 position. The concentration of alpha1-microglobulin in plaice serum was 20 mg/l and it was found both as a 28.5 kDa component and as high molecular weight components. Thus, the size, shape, charge and color of plaice alpha1-microglobulin were similar to mammalian alpha1-microglobulin, indicating a high degree of structural conservation between fish and human alpha1-microglobulin. The monoclonal antibodies against plaice alpha1-microglobulin cross-reacted with human alpha1-microglobulin, emphasizing the structural similarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号