首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Perilipin and ADRP, located on the surface of intracellular lipid droplets, are proposed to be involved in adipocyte lipid metabolism. The aim of the present study was to investigate the effect of PKA and PKC activities on the distribution of perilipin and ADRP in primary cultured adrenal cells, and the role of ERK in PMA- and calphostin C-induced steroidogenesis. Immunofluorescence staining indicated that in addition to p160, a capsular protein of steroidogenic lipid droplets, perilipin and ADRP were localized on the lipid droplet surface. Stimuli such as activation of PKA by db cAMP or inhibition of PKC by calphostin C, which increase corticosterone synthesis in various magnitudes, caused detachment of p160 and perilipin, but not ADRP, from the lipid droplet surface. Activation of PKC by PMA induced increase in corticosterone synthesis, however, it did not affect the distribution of perilipin, p160, or ADRP on the lipid droplet surface, suggesting the presence of mechanisms for promoting sterodiogensis other than causing detachment of lipid droplet surface proteins. We further demonstrated that ERK pathway was involved in PMA-induced steroidogenesis, since PD98059, specific inhibitor of MEK, blocked the increases in steroidogenesis and phosphorylation of ERK caused by PMA, but not by cAMP-PKA. These data indicate that p160, perilipin, and ADRP were all located on the lipid droplet surface in rat adrenal cells. On the basis of its non-responsiveness to lipolytic stimulation, ADRP may be a structural protein of the lipid droplet surface, whereas their immediate response to lipolytic stimuli suggest that perilipin and p160 are functional proteins. PKC regulates adrenal steroidogenesis through ERK cascade, whereas PKA pathway does not involve ERK.  相似文献   

2.
The aims of the present study were to examine the effect of magnolol on lipolysis in sterol ester (SE)-loaded 3T3-L1 preadipocytes and to determine the signaling mechanism involved. We demonstrate that magnolol treatment resulted in a decreased number and surface area of lipid droplets, accompanied by release of glycerol. The lipolytic effect of magnolol was not mediated by PKA based on the facts that magnolol did not induce an elevation of intracellular cAMP levels, and protein kinase A (PKA) inhibitor KT5720 did not block magnolol-induced lipolysis. Calcium/calmodulin-dependent protein kinase (CaMK) was involved in this signaling pathway, since magnolol-induced a transient rise of intracellular [Ca(2+)] and Ca(2+) influx across the plasma membrane, and CaMK inhibitor significantly abolished magnolol-induced lipolysis. Moreover, magnolol increased the relative levels of phosphorylated extracellular signal-related kinases (ERK1 and ERK2). In support of the involvement ERK, we demonstrated that magnolol-induced lipolysis was inhibited by PD98059, an inhibitor of mitogen-activated protein kinase kinase (MEK), and PD98059 reversed magnolol-induced ERK phosphorylation. Further, the relationship between CaMK and ERK was connected by the finding that CaMK inhibitor also blocked magnolol-induced ERK phosphorylation. Taken together, these findings suggest that magnolol-induced lipolysis is both CaMK- and ERK-dependent, and this lipolysis signaling pathway is distinct from the traditional PKA pathway. ERK phosphorylation is reported to enhance lipolysis by direct activation of hormone sensitive lipase (HSL), thus magnolol may likely activate HSL through ERK and increase lipolysis of adipocytes.  相似文献   

3.
This study investigated the effect of magnolol, a compound isolated from Magnolia officinalis, on lipolysis in lipid-laden RAW 264.7 macrophages. Treatment of macrophages with magnolol led to dissolution of lipid droplets. This phenomenon was accompanied by a dose-dependent release of glycerol and cholesterol and a concomitant reduction in intracellular levels of glycerol and cholesterol. Furthermore, adipose differentiation-related protein (ADRP), a lipid droplet-associated protein, was down-regulated by magnolol in a dose- and time-dependent manner by Western blot analysis. Immunofluorescence studies also showed that ADRP became detached from the surface of lipid droplets after magnolol treatment. The lipolytic effect of magnolol was not mediated through the cAMP-protein kinase A (PKA) system, an authentic lipolytic pathway for macrophages, since magnolol did not induce an increase of intracellular cAMP levels, and pretreatment with either of PKA inhibitors, PKI and KT5720, did not abrogate the lipolytic response to magnolol. We conclude that magnolol induce-lipolysis of lipid-laden macrophages by down-regulation of ADRP expression and detachment of ADRP from the lipid droplet surface by a cAMP-independent mechanism. Lipolysis of lipid-laden macrophages may occur when the amount of ADRP on the surface of lipid droplets is not enough to stabilize the lipid droplets.  相似文献   

4.
Chen YC  Chang MF  Chen Y  Wang SM 《FEBS letters》2005,579(20):4337-4343
This study focused on identifying the signalling mediating the effect of magnolol on corticosterone production. Magnolol-induced corticosterone production was completely inhibited by mitogen-activated protein kinase kinase (MEK)-inhibitor PD98059, tyrosine kinase (TK)-inhibitor genistein or Janus tyrosine kinase 2 (JAK2)-inhibitor AG490, suggesting that extracellular signal-regulated kinase (ERK) and JAK2 are both involved in this signaling cascade. Further, magnolol induced the transient phosphorylation of MEK, ERK, cAMP response-element binding protein (CREB) and the expression of 32 and 30 kDa steroidogenic acute regulatory protein (StAR) in a time-dependent manner. Inhibition of TK or JAK2 activities blocked magnolol-induced phosphorylation of MEK and ERK, again supporting the upstream role of JAK2. The activation of JAK2 or MEK apparently mediated the magnolol-induced phosphorylation of CREB and the upregulation of StAR. These findings demonstrate a novel pathway for magnolol to induce the expression of StAR, which regulates the rate-limiting step in sterodiogenesis.  相似文献   

5.
Magnolol, a hydroxylated biphenyl compound isolated from the Chinese herb Hou p'u of Magnolia officinalis, has been reported to have anti-cancer activity. In the present study, magnolol at very low concentrations of 3-10 microM inhibited DNA synthesis and decreased cell number in cultured human cancer cells (COLO-205 and Hep-G2) in a dose-dependent manner, but not in human untransformed cells such as keratinocytes, fibroblasts, and human umbilical vein endothelial cells (HUVEC). Magnolol was not cytotoxic at these concentrations and this indicates that it may have an inhibitory effect on cell proliferation in the subcultured cancer cell lines. [(3)H] thymidine incorporation and flow cytometry analyses revealed that magnolol treatment decreased DNA synthesis and arrested the cells at the G0/G1 phase of the cell cycle. Moreover, the magnolol-induced cell cycle arrest occurred when the cyclin-CDK system was inhibited, just as p21 protein expression was augmented. When magnolol concentration was increased to 100 microM, apoptosis was observed in COLO-205 and Hep-G2 cells, but not in cultured human fibroblasts and HUVEC. COLO-205 cells implanted subcutaneously in nude mice formed solid tumors; subsequent daily i.p.-injections of magnolol led to profound regression of these tumors of up to 85%. In these tumors, an increase in the expression of p21 protein level and the occurrence of apoptosis were observed. These findings demonstrate for the first time that magnolol can inhibit the proliferation of tumor cells in vitro and in vivo.  相似文献   

6.
Osteosarcoma is a highly invasive primary malignancy of bone. Magnolol is biologically active, which shows antitumor effects in a variety of cancer cell lines. However, it has not been elucidated magnolol's effects on human osteosarcoma cells (HOC). This study aimed to determine antitumor activity of magnolol and illustrate the molecular mechanism in HOC. Magnolol showed significant inhibition effect of growth on MG-63 and 143B cells and induced apoptosis and cell cycle arrest at G0/G1. In osteosarcoma cells, magnolol upregulated expressions of proapoptosis proteins and suppressed expressions of antiapoptosis proteins. Additionally, under the pretreatment of pifithrin-a (PFT-a, a p53 inhibitor), the magnolol-induced apoptosis was significantly reversed. The results above indicated that magnolol induces apoptosis in osteosarcoma cells may via G0/G1 phase arrest and p53-mediated mitochondrial pathway.  相似文献   

7.
Although neutral lipid storage droplets are ubiquitous in eukaryotic cells, very little is known about how their synthesis and turnover are controlled. Adipocyte differentiation-related protein (ADRP; also known as adipophilin) is found on the surface of lipid droplets in most mammalian cell types. To learn how ADRP affects lipid storage, we stably expressed the protein in human embryonic kidney 293 (HEK 293) cells, which express little endogenous ADRP. As expected, ADRP was targeted to the surface of lipid droplets and caused an increase in triacylglycerol (TAG) mass under both basal and oleate-supplemented conditions. At least part of the increased mass resulted from a 50% decrease in the rate of TAG hydrolysis in ADRP-expressing cells. Furthermore, ADRP expression increased the fraction of total cellular TAG that was stored in lipid droplets. ADRP expression induced a striking decrease in the association of adipose triglyceride lipase (ATGL) and mannose-6-phosphate receptor tail-interacting protein of 47 kDa with lipid droplets and also decreased the lipid droplet association of several other unknown proteins. Transient expression of ADRP in two other cell lines also reduced the lipid droplet association of catalytically inactive ATGL. We conclude that the reduced lipid droplet association of ATGL and/or other lipases may explain the decrease in TAG turnover observed in ADRP-expressing HEK 293 cells.  相似文献   

8.
Magnolol, a substance purified from the bark of Magnolia officialis, inhibits cell proliferation and induces apoptosis in a variety of cancer cells. The aim of this study was to study the effects of magnolol on CGTH W-2 thyroid carcinoma cells. After 24 h treatment with 80 microM magnolol in serum-containing medium, about 50% of the cells exhibited apoptotic features and 20% necrotic features. Cytochrome-c staining was diffused in the cytoplasm of the apoptotic cells, but restricted to the mitochondria in control cells. Western blot analyses showed an increase in levels of activated caspases (caspase-3 and -7) and of cleaved poly (ADP-ribose) polymerase (PARP) by magnolol. Concomitantly, immunostaining for apoptosis inducing factor (AIF) showed a time-dependent translocation from the mitochondria to the nucleus. Inhibition of either PARP or caspase activity blocked magnolol-induced apoptosis, supporting the involvement of the caspases and PARP. In addition, magnolol activated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and inactivated Akt by decreasing levels of phosphorylated PTEN and phosphorylated Akt. These data suggest that magnolol promoted apoptosis probably by alleviating the inhibitory effect of Akt on caspase 9. Furthermore, inhibition of PARP activity, but not of caspase activity, completely prevented magnolol-induced necrosis, suggesting the notion that it might be caused by depletion of intracellular ATP levels due to PARP activation. These results show that magnolol initiates apoptosis via the cytochrome-c/caspase 3/PARP/AIF and PTEN/Akt/caspase 9/PARP pathways and necrosis via PARP activation.  相似文献   

9.
In a previously published report (Kurland, J. F., Kodym, R., Story, M. D., Spurgers, K. B., McDonnell, T. J., and Meyn, R. E. (2001) J. Biol. Chem. 276, 45380-45386), we described the NF kappa B status for two murine B-cell lymphoma cell lines, LY-as (apoptosis-sensitive) and LY-ar (apoptosis-refractory) and provided evidence that NF kappa B1 (p50) homodimers contribute to the expression of Bcl-2 in the LY-ar line. In the present study, we investigated the upstream signals leading to p50 homodimer activation and Bcl-2 expression. We found that in LY-ar cells, ERK1 and ERK2 were constitutively phosphorylated, whereas LY-as cells had no detectable ERK1 or ERK2 phosphorylation. Treatment of LY-ar cells with the MEK inhibitors PD 98059, U0126, and PD 184352 led to a loss of phosphorylated ERK1 and ERK2, a reversal of nuclear p50 homodimer DNA binding, and a decrease in Bcl-2 protein expression. Similarly, activation of the MEK/ERK pathway in LY-as cells by phorbol ester led to Bcl-2 expression that could be blocked by PD 98059. Furthermore, treatment of LY-ar cells with tumor necrosis factor-alpha, an I kappa B kinase activator, did not alter the suppressive effect of PD 98059 on p50 homodimer activity, suggesting an I kappa B kinase-independent pathway for p50 homodimer activation. Lastly, all three MEK inhibitors sensitized LY-ar cells to radiation-induced apoptosis. We conclude that the MEK/ERK pathway acts upstream of p50 homodimer activity and Bcl-2 expression in this B-cell lymphoma cell system and suggest that the use of MEK inhibitors could be useful clinically in combination with ionizing radiation to treat lymphoid malignancies.  相似文献   

10.
This study aimed to investigate the relationship between newly formed lipid droplets and lipid droplet surface proteins, including perilipin, adipose differentiation related protein (ADRP), and p200 kDa protein (p200) in 3T3-L1 preadipocytes, during lipogenesis. Sterol ester was used to induce nascent lipid droplets in 3T3-L1 preadipocytes and the sequence of lipids and lipid droplet surface proteins was studied using a combination of immunohistochemistry and Nile red staining/Oil red O. We demonstrated that, although most growing lipid droplets appeared to have a lipid core surrounded by a fluorescent rim of ADRP, perilipin, and p200, tiny protein aggregates of ADRP, perilipin, or p200 could also be found to occur in the absence of lipid accumulation. In addition, ADRP associated with nascent lipid droplets prior to that of perilipin or p200. We provide evidence that lipid droplet surface proteins, especially ADRP and perilipin, are important in serving as a nucleation center for the assembly of lipid to form nascent lipid droplets.  相似文献   

11.
The experiments presented here were designed to examine the contribution of the extracellular signal-regulated mitogen-activated protein kinases (ERKs) to the tyrosine phosphorylation of the focal adhesion proteins p125(Fak), p130(Cas), and paxillin induced by G protein-coupled receptors (GPCRs) and tyrosine kinase receptors in Swiss 3T3 cells. Stimulation of these cells with bombesin, lysophosphatidic acid (LPA), endothelin, and platelet-derived growth factor (PDGF) led to a marked increase in the tyrosine phosphorylation of these focal adhesion proteins and in ERK activation. Exposure of the cells to two structurally unrelated mitogen-activated protein kinase or ERK kinase (MEK) inhibitors, PD98059 and U0126, completely abrogated ERK activation but did not prevent tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin. Furthermore, different dose-response relationships were obtained for tyrosine phosphorylation of focal adhesion proteins and for ERK activation in response to PDGF. Putative upstream events in the activation of focal adhesion proteins including actin cytoskeletal reorganization and myosin light chain (MLC) phosphorylation were also not prevented by inhibition of ERK activation. Thus, our results demonstrate that the activation of the ERK pathway is not necessary for the increase of the tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin induced by either GPCRs or tyrosine kinase receptors in Swiss 3T3 cells.  相似文献   

12.
Arachidonic acid (AA)‐induced apoptotic death of K562 cells (human chronic myeloid leukemic cells) was characteristic of reactive oxygen species (ROS) generation and mitochondrial depolarization. N‐Acetylcysteine pretreatment rescued viability of AA‐treated cells and abolished mitochondrial depolarization. In contrast to no significant changes in phospho‐JNK and phospho‐ERK levels, AA evoked notable activation of p38 MAPK. Unlike that of JNK and p38 MAPK, ERK suppression further reduced the viability of AA‐treated cells. Increases in Fas/FasL protein expression, caspase‐8 activation, the production of tBid and the loss of mitochondrial membrane potential were noted with K562 cells that were treated with a combination of U0126 and AA. Down‐regulation of FADD attenuated U0126‐evoked degradation of procaspase‐8 and Bid. Abolition of p38 MAPK activation abrogated U0126‐elicited Fas/FasL up‐regulation in AA‐treated cells. U0126 pretreatment suppressed c‐Fos phosphorylation but increased p38 MAPK‐mediated c‐Jun phosphorylation. Knock‐down of c‐Fos and c‐Jun protein expression by siRNA suggested that c‐Fos counteracted the effect of c‐Jun on Fas/FasL up‐regulation. Taken together, our data indicate that AA induces the ROS/mitochondria‐dependent death pathway and blocks the ERK pathway which enhances the cytotoxicity of AA through additionally evoking an autocrine Fas‐mediated apoptotic mechanism in K562 cells. J. Cell. Physiol. 222: 625–634, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
We have examined the ability of epidermal growth factor (EGF)-stimulated ERK activation to regulate Grb2-associated binder-1 (Gab1)/phosphatidylinositol 3-kinase (PI3K) interactions. Inhibiting ERK activation with the MEK inhibitor U0126 increased the EGF-stimulated association of Gab1 with either full-length glutathione S-transferase-p85 or the p85 C-terminal Src homology 2 (SH2) domain, a result reproduced by co-immunoprecipitation of the native proteins from intact cells. This increased association of Gab1 and the PI3K correlates with an increase in PI3K activity and greater phosphorylation of Akt. This result is in direct contrast to what we have previously reported following HGF stimulation where MEK inhibition decreased the HGF-stimulated association of Gab1 and p85. In support of this divergent effect of ERK on Gab1/PI3K association following HGF and EGF stimulation, U0126 decreased the HGF-stimulated association of p85 and the Gab1 c-Met binding domain but did not alter the EGF-stimulated association of p85 and the c-Met binding domain. An examination of the mechanism of this effect revealed that the treatment of cells with EGF + U0126 increased the tyrosine phosphorylation of Gab1 as well as its association with another SH2-containing protein, SHP2. Furthermore, overexpression of a catalytically inactive form of SHP2 or pretreatment with pervanadate markedly increased EGF-stimulated Gab1 tyrosine phosphorylation. These experiments demonstrate that EGF and HGF-mediated ERK activation result in divergent effects on Gab1/PI3K signaling. HGF-stimulated ERK activation increases the Gab1/PI3K association, whereas EGF-stimulated ERK activation results in a decrease in the tyrosine phosphorylation of Gab1 and a decreased association with the PI3K. SHP2 is shown to associate with and dephosphorylate Gab1, suggesting that EGF-stimulated ERK might act through the regulation of SHP2.  相似文献   

14.
15.
It has been reported that inhibition of extracellular signal-regulated protein kinases (ERKs) attenuates the toxicity cisplatin (cis-platinum (II)-diammine dichloride) in some cell types. This response was here investigated using human myeloid leukemia cells. Cisplatin stimulated ERK1/2 phosphorylation and caused apoptosis in U-937 promonocytic cells, an effect which was attenuated by the MEK/ERK inhibitors PD98059 and U0126. While ERK1/2 activation was a general phenomenon, irrespective of the used cell type or antitumour drug, the MEK/ERK inhibitors only reduced cisplatin toxicity in human myeloid cells (THP-1, HL-60 and NB-4), but not in RAW 264.7 mouse macrophages and NRK-52E rat renal tubular cells; and failed to reduce the toxicity etoposide, camptothecin, melphalan and arsenic trioxide, in U-937 cells. U0126 attenuated cisplatin-DNA binding and intracellular peroxide accumulation, which are important regulators of cisplatin toxicity. Although cisplatin decreased the intracellular glutathione (GSH) content, which was restored by U0126, treatments with GSH-ethyl ester and dl-buthionine-(S,R)-sulfoximine revealed that GSH does not regulate cisplatin toxicity in the present experimental conditions. In spite of it, PD98059 and U0126 reduced the intracellular accumulation of cisplatin. These results suggest that GSH-independent modulation of drug transport is a major mechanism explaining the anti-apoptotic action of MEK/ERK inhibitors in cisplatin-treated myeloid cells.  相似文献   

16.

Background

This study investigated whether lipopolysaccharide (LPS) increase protease-activated receptor-2 (PAR-2) expression and enhance the association between PAR-2 expression and chemokine production in human vascular endothelial cells (ECs).

Methods

The morphology of ECs was observed through microphotography in cultured human umbilical vein ECs (EA. hy926 cells) treated with various LPS concentrations (0, 0.25, 0.5, 1, and 2 μg/mL) for 24 h, and cell viability was assessed using the MTT assay. Intracellular calcium imaging was performed to assess agonist (trypsin)-induced PAR-2 activity. Western blotting was used to explore the LPS-mediated signal transduction pathway and the expression of PAR-2 and adhesion molecule monocyte chemoattractant protein-1 (MCP-1) in ECs.

Results

Trypsin stimulation increased intracellular calcium release in ECs. The calcium influx was augmented in cells pretreated with a high LPS concentration (1 μg/mL). After 24 h treatment of LPS, no changes in ECs viability or morphology were observed. Western blotting revealed that LPS increased PAR-2 expression and enhanced trypsin-induced extracellular signal-regulated kinase (ERK)/p38 phosphorylation and MCP-1 secretion. However, pretreatment with selective ERK (PD98059), p38 mitogen-activated protein kinase (MAPK) (SB203580) inhibitors, and the selective PAR-2 antagonist (FSLLRY-NH2) blocked the effects of LPS-activated PAR-2 on MCP-1 secretion.

Conclusions

Our findings provide the first evidence that the bacterial endotoxin LPS potentiates calcium mobilization and ERK/p38 MAPK pathway activation and leads to the secretion of the pro-inflammatory chemokine MCP-1 by inducing PAR-2 expression and its associated activity in vascular ECs. Therefore, PAR-2 exerts vascular inflammatory effects and plays an important role in bacterial infection-induced pathological responses.
  相似文献   

17.
Despite the critical role lipid droplets play in maintaining energy reserves and lipid stores for the cell, little is known about the regulation of the lipid or protein components within the lipid droplet. Although immunofluorescence of intact cells as well as Western analysis of isolated lipid droplets revealed that sterol carrier protein-2 (SCP-2) was not associated with lipid droplets, SCP-2 expression significantly altered the structure of the lipid droplet. First, the targeting of fatty acid and cholesterol to the lipid droplets was significantly decreased. Second, the content of several proteins important for lipid droplet function was differentially increased (perilipin A), reduced severalfold (adipose differentiation-related protein (ADRP), vimentin), or almost completely eliminated (hormone-sensitive lipase and proteins >93 kDa) in the isolated lipid droplet. Third, the distribution of lipids within the lipid droplets was significantly altered. Double labeling of cells with 12-(N-methyl)-N-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-octadecanoic acid (NBD-stearic acid) and antisera to ADRP showed that 70, 24, and 13% of lipid droplets contained ADRP, NBD-stearic acid, or both, respectively. SCP-2 expression decreased the level of ADRP in the lipid droplet but increased the proportion wherein ADRP and NBD-stearic acid colocalized by 3-fold. SCP-2 expression also decreased the lipid droplet fatty acid and cholesterol mass (nmol/mg protein) by 5.2- and 6.6-fold, respectively. Finally, SCP-2 expression selectively altered the pattern of esterified fatty acids in favor of polyunsaturated fatty acids within the lipid droplet. Displacement studies showed differential binding affinity of ADRP for cholesterol and fatty acids. These data suggested that SCP-2 and ADRP play a significant role in regulating fatty acid and cholesterol targeting to lipid droplets as well as in determining their lipid and protein components.  相似文献   

18.
Osteoclasts are multinucleated cells that differentiate from hematopoietic cells and possess characteristics responsible for bone resorption. To study the involvement of mitogen-activated protein kinases (MAPKs) in osteoclastogenesis of the murine monocytic cell line RAW264.7, which can differentiate into osteoclast-like cells in the presence of the receptor activator of nuclear factor kappa B ligand (RANKL), we treated the cells with specific inhibitors of p38 MAPK, PD169316 and SB203580, and specific inhibitors of MAPK extracellular signaling-regulated kinase (ERK) kinase (MEK), U0126 and PD98059. Each inhibitor blocked differentiation into osteoclast-like cells when the cells were plated at the standard cell density (2000-4000 cells per well (96-well)). However, the effect of MEK inhibitors on osteoclastogenesis varied according to the initial cell density during culture, because cell growth was clearly inhibited by them. When the cells were plated at more than 8000 cells per well, marked enhancement and acceleration of the differentiation were observed. In addition, immunoblot analysis revealed that phosphorylation of ERK was increased by treatment with the p38 inhibitors, whereas the MEK inhibitors increased phosphorylation of p38, which implies a seesaw-like balance between ERK and p38 phosphorylation. We suggest that osteoclastogenesis is regulated under a balance between ERK and p38 pathways and that the MEK/ERK pathway negatively regulates osteoclastogenesis while the p38 pathway does so positively. This is the first report that an inhibitor of signal transduction enhanced osteoclastogenesis.  相似文献   

19.
In response to DNA damage, ataxia-telangiectasia mutant and ataxia-telangiectasia and Rad-3 activate p53, resulting in either cell cycle arrest or apoptosis. We report here that DNA damage stimuli, including etoposide (ETOP), adriamycin (ADR), ionizing irradiation (IR), and ultraviolet irradiation (UV) activate ERK1/2 (ERK) mitogen-activated protein kinase in primary (MEF and IMR90), immortalized (NIH3T3) and transformed (MCF-7) cells. ERK activation in response to ETOP was abolished in ATM-/- fibroblasts (GM05823) and was independent of p53. The MEK1 inhibitor PD98059 prevented ERK activation but not p53 stabilization. Maximal ERK activation in response to DNA damage was not attenuated in MEF(p53-/-). However, ERK activation contributes to either cell cycle arrest or apoptosis in response to low or high intensity DNA insults, respectively. Inhibition of ERK activation by PD98059 or U0126 attenuated p21(CIP1) induction, resulting in partial release of the G(2)/M cell cycle arrest induced by ETOP. Furthermore, PD98059 or U0126 also strongly attenuated apoptosis induced by high dose ETOP, ADR, or UV. Conversely, enforced activation of ERK by overexpression of MEK-1/Q56P sensitized cells to DNA damage-induced apoptosis. Taken together, these results indicate that DNA damage activates parallel ERK and p53 pathways in an ATM-dependent manner. These pathways might function cooperatively in cell cycle arrest and apoptosis.  相似文献   

20.
In mature adipocytes, triglyceride is stored within lipid droplets, which are coated with the protein perilipin, which functions to regulate lipolysis by controlling lipase access to the droplet in a hormone-regulatable fashion. Adipocyte differentiation-related protein (ADRP) is a widely expressed lipid droplet binding protein that is coexpressed with perilipin in differentiating fat cells but is minimally present in fully differentiated cultured adipocytes. We find that fibroblasts ectopically expressing C/EBPalpha (NIH-C/EBPalpha cells) differentiate into mature adipocytes that simultaneously express perilipin and ADRP. In response to isoproterenol, perilipin is hyperphosphorylated, lipolysis is enhanced, and subsequently, ADRP expression increases coincident with it surrounding intracellular lipid droplets. In the absence of lipolytic stimulation, inhibition of proteasomal activity with MG-132 increased ADRP levels to those of cells treated with 10 mum isoproterenol, but ADRP does not surround the lipid droplet in the absence of lipolytic stimulation. We overexpressed a perilipin A construct in NIH-C/EBPalpha cells where the six serine residues known to be phosphorylated by protein kinase A were changed to alanine (Peri A Delta1-6). These cells show no increase in ADRP expression in response to isoproterenol. We propose that ADRP can replace perilipin on existing lipid droplets or those newly formed as a result of fatty acid reesterification, under dynamic conditions of hormonally stimulated lipolysis, thus preserving lipid droplet morphology/structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号