首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tinberg CE  Song WJ  Izzo V  Lippard SJ 《Biochemistry》2011,50(11):1788-1798
Phenol hydroxylase (PH) and toluene/o-xylene monooxygenase (ToMO) from Pseudomonas sp. OX1 require three or four protein components to activate dioxygen for the oxidation of aromatic substrates at a carboxylate-bridged diiron center. In this study, we investigated the influence of the hydroxylases, regulatory proteins, and electron-transfer components of these systems on substrate (phenol; NADH) consumption and product (catechol; H(2)O(2)) generation. Single-turnover experiments revealed that only complete systems containing all three or four protein components are capable of oxidizing phenol, a major substrate for both enzymes. Under ideal conditions, the hydroxylated product yield was ~50% of the diiron centers for both systems, suggesting that these enzymes operate by half-sites reactivity mechanisms. Single-turnover studies indicated that the PH and ToMO electron-transfer components exert regulatory effects on substrate oxidation processes taking place at the hydroxylase actives sites, most likely through allostery. Steady state NADH consumption assays showed that the regulatory proteins facilitate the electron-transfer step in the hydrocarbon oxidation cycle in the absence of phenol. Under these conditions, electron consumption is coupled to H(2)O(2) formation in a hydroxylase-dependent manner. Mechanistic implications of these results are discussed.  相似文献   

2.
The cytochromebc 1 complex purified fromP. denitrificans has the same electron-transfer and energy-transducing activities, is sensitive to the same electron-transfer inhibitors, and contains cytochromesb, c 1, iron-sulfur protein, and thermodynamically stable ubisemiquinone identical to the counterpart complexes from mitochondria. However, the bacterialbc 1 complex consists of only three proteins, the obligate electron-transfer proteins, while the mitochondrial complexes contain six or more supernumerary poly-peptides, which have no obvious electron-transfer function. TheP. denitrificans complex is a paradigm for thebc 1 complexes of all gram-negative bacteria. In addition, because of its simple polypeptide composition and apparently minimal damage during isolation, theP. denitrificans bc 1 complex is an ideal system in which to study structure-function relationships requisite to energy transduction linked to electron transfer.  相似文献   

3.
Development of reagentless biosensors implies the tight and functional immobilisation of biological recognition elements on transducer surfaces. Specifically, in the case of amperometric enzyme electrodes, electron-transfer pathways between the immobilised redox protein and the electrode surface have to be established allowing a fast electron transfer concomitantly avoiding free-diffusing redox species. Based on the specific nature of different redox proteins and non-manual immobilisation procedures possible biosensor designs are discussed, namely biosensors based on (i) direct electron transfer between redox proteins and electrodes modified with self-assembled monolayers; (ii) anisotropic orientation of redox proteins at monolayer-modified electrodes; (iii) electron-transfer cascades via redox hydrogels; and (iv) electron-transfer via conducting polymers.  相似文献   

4.
Stopped-flow kinetic data have been obtained for a rapid electron-transfer reaction between the component proteins of nitrogenase from Klebsiella pneumoniae, which was induced by MgATP. Up to three equivalents of the Fe-containing protein were rapidly oxidized by one equivalent of the Fe-Mo-containing protein in a unimolecular reaction, k2 = 2 x 10(2)S-1. Evidence for a tight complex between the component proteins, KD(complex) less than 0.5 muM, which was formed with a rate k1 greater than 1 x 10(7)M-1-S-1, has been obtained. MgATP bound to either the Fe-containing protein or to the two-protein complex with a rate k3 greater than 2.5 x 10(6)M-1-S-1 and with KD(MgATP) = 0.4mM, before the electron-transfer reaction.  相似文献   

5.
Iron-sulphur ([Fe-S]) clusters are simple inorganic prosthetic groups that are contained in a variety of proteins having functions related to electron transfer, gene regulation, environmental sensing and substrate activation. In spite of their simple structures, biological [Fe-S] clusters are not formed spontaneously. Rather, a consortium of highly conserved proteins is required for both the formation of [Fe-S] clusters and their insertion into various protein partners. Among the [Fe-S] cluster biosynthetic proteins are included a pyridoxal phosphate-dependent enzyme (NifS) that is involved in the activation of sulphur from l-cysteine, and a molecular scaffold protein (NifU) upon which [Fe-S] cluster precursors are formed. The formation or transfer of [Fe-S] clusters appears to require an electron-transfer step. Another complexity is that molecular chaperones homologous to DnaJ and DnaK are involved in some aspect of the maturation of [Fe-S]-cluster-containing proteins. It appears that the basic biochemical features of [Fe-S] cluster formation are strongly conserved in Nature, since organisms from all three life Kingdoms contain the same consortium of homologous proteins required for [Fe-S] cluster formation that were discovered in the eubacteria.  相似文献   

6.
The electrochemistry of redox proteins is now well established. Conditions exist which allow electron-transfer reactions of all simple proteins to proceed rapidly and reversibly at electrodes. Coupling of the electrode reaction to enzymes, for which the redox proteins act as cofactors, allows exploitation of this good electrochemistry. This is well illustrated by the enzyme-catalysed electrochemical oxidation of p-cresol to p-hydroxybenzaldehyde, which has been shown to proceed along with coupling to the electrode via the copper protein, azurin, or the organometallic compound ferroceneboronic acid. Ferrocene derivatives, in general, show a degree of versatility, coupling the electron-transfer reactions of many enzymes. Thus derivatives of the ferricinium ion act as excellent electron-transfer reagents from the enzyme glucose oxidase. The system is capable of detecting glucose in blood. Similar procedures, in conjunction with the appropriate enzyme, have yielded assays for, among others, H2O2 and cholesterol.  相似文献   

7.
Time-resolved fluorescence study of single tryptophan-containing proteins, nuclease, ribonuclease T1, protein G, glucagon, and mastoparan, has been carried out. Three different methods were used for the analysis of fluorescence decays: the iterative reconvolution method, as reviewed and developed in our laboratory, the maximum entropy method, and the recent method that we called "energy transfer" method. All the proteins show heterogeneous fluorescence kinetics (multiexponential decay). The origin of this heterogeneity is interpreted in terms of current theories of electron transfer process, which treat the electron transfer process as a radiationless transition. The theoretical electron transfer rate was calculated assuming the peptide bond carbonyl as the acceptor site. The good agreement between experimental and theoretical electron-transfer rates leads us to suggest that the electron-transfer process is the principal quenching mechanism of Trp fluorescence in proteins, resulting in heterogeneous fluorescence kinetics. Furthermore, the origin of apparent homogeneous fluorescence kinetics (monoexponential decay) in some proteins also can be explained on the basis of electron-transfer mechanism.  相似文献   

8.
M D Davies  S G Sligar 《Biochemistry》1992,31(46):11383-11389
Camphor is hydroxylated in Pseudomonas putida by a three-component system comprised of an oxidase, cytochrome P-450cam, and a two-protein electron-transfer chain, putidaredoxin and putidaredoxin reductase [Tyson et al. (1972) J. Biol. Chem. 274, 5777-5784]. The enzymatic removal of putidaredoxin's C-terminal tryptophan is known to cause a much reduced rate of enzymatic activity in the reconstituted camphor hydroxylase system [Sligar et al. (1974) Proc. Natl. Acad. Sci. U.S.A. 71, 3906-3910]. To further study the role of tryptophan in the association and/or electron-transfer reactions of putidaredoxin, the gene coding for the iron-sulfur protein was altered so that the tryptophan codon was either deleted or replaced by Phe, Tyr, Asp, Leu, Val, or Lys. Although the initial evaluation of these variant proteins [Davies et al. (1990) J. Am. Chem. Soc. 112, 7396-7398] showed much reduced velocities of electron transfer between P-450cam and the nonaromatic C-terminal proteins, the relative contributions of the binding specificity and intracomplex electron-transfer rates were not addressed. We report here a complete kinetic characterization of these proteins where the dependence of the rate constant on the putidaredoxin concentration was used to determine the intracomplex electron-transfer rate constants and the association energies for all the putidaredoxins in both oxidation states. The sum of forward and reverse intracomplex electron-transfer rate constants varies from 4.90 s-1 for the Lys C-terminal variant to 172 s-1 for the native protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The cDNAs encoding plantacyanin from spinach were isolated and characterized. In addition, four new cDNA sequences from Arabidopsis ESTs were identified that encode polypeptides resembling phytocyanins, plant-specific proteins constituting a distinct family of mononuclear blue copper proteins. One of them encodes plantacyanin from Arabidopsis, while three others, designated as uclacyanin 1, 2, and 3, encode protein precursors that are closely related to precursors of stellacyanins and a blue copper protein from pea pods. Comparative analyses with known phytocyanins allow further classification of these proteins into three distinct subfamilies designated as uclacyanins, stellacyanins, and plantacyanins. This specification is based on (1) their spectroscopic properties, (2) their glycosylation state, (3) the domain organization of their precursors, and (4) their copper-binding amino acids. The recombinant copper binding domain of Arabidopsis uclacyanin 1 was expressed, purified, and shown to bind a copper atom in a fashion known as "blue" or type 1. The mutant of cucumber stellacyanin in which the glutamine axial ligand was substituted by a methionine (Q99M) was purified and shown to possess spectroscopic properties similar to uclacyanin 1 rather than to plantacyanins. Its redox potential was determined by cyclic voltammetry to be +420 mV, a value that is significantly higher than that determined for the wild-type protein (+260 mV). The available structural data suggest that stellacyanins (and possibly other phytocyanins) might not be diffusible electron-transfer proteins participating in long-range electron-transfer processes. Conceivably, they are involved in redox reactions occurring during primary defense responses in plants and/or in lignin formation.  相似文献   

10.
Rate constants have been determined for the electron-transfer reactions between reduced free flavins and flavodoxin semiquinone and several blue copper proteins. Correlations between these values and redox potentials demonstrate that spinach plastocyanin, Pseudomonas aeruginosa azurin, Alcaligenes sp. azurin, and Alcaligenes sp. nitrite reductase have the same intrinsic reactivities toward free flavins, whereas stellacyanin is more reactive (3.3 times) and laccase considerably less reactive (approximately 12 times). Electrostatic interactions between the negatively charged flavin mononucleotide (FMN) and the copper proteins show that the interaction site charges for laccase and nitrite reductase are opposite in sign to the net protein charge and that the signs and magnitudes of the charges are consistent with the known three-dimensional structures for plastocyanin and the azurins and with amino acid sequence homologies for stellacyanin. The results demonstrate that the apparent interaction site charge with flavodoxin is larger than that with FMN for plastocyanin, nitrite reductase, and stellacyanin but smaller for Pseudomonas azurin. This is interpreted in terms of a larger interaction domain for the flavodoxin reaction, which allows charged groups more distant from the actual electron-transfer site to become involved. The intrinsic reactivities of plastocyanin and azurin toward flavodoxin are the same, as was the case with FMN, but both stellacyanin and nitrite reductase are considerably less reactive than expected (approximately 2 orders of magnitude). This result suggests the involvement of steric factors with these latter two proteins which discriminate against large reactants such as flavodoxin.  相似文献   

11.
Cryptochrome proteins are activated by the absorption of blue light, leading to the formation of radical pairs through electron transfer in the active site. Recent experimental studies have shown that once some of the amino acid residues in the active site of Xenopus laevis cryptochrome DASH are mutated, radical-pair formation is still observed. In this study, we computationally investigate electron-transfer pathways in the X. laevis cryptochrome DASH by extensively equilibrating a previously established homology model using molecular dynamics simulations and then mutating key amino acids involved in the electron transfer. The electron-transfer pathways are then probed by using tight-binding density-functional theory. We report the alternative electron-transfer pathways resolved at the molecular level and, through comparison of amino acid sequences for cryptochromes from different species, we demonstrate that one of these alternative electron-transfer pathways could be general for all cryptochrome DASH proteins.  相似文献   

12.
In this post-genome era, a sensitive quantitative method is required for differential profiling analyses of clinical proteomes to understand the disease progress. Here, we adopt the FD-LC-MS/MS method, consisting of fluorogenic derivatization (FD), separation by liquid chromatography (LC), and identification by LC-tandem mass spectrometry (MS/MS), to reveal disease-related proteins in livers of hepatocarcinogenesis in transgenic (Tg) and non-transgenic (NTg) mice at three developmental stages. After 6 months, the expression of apoptosis-related proteins is suppressed. After 12 months, proteins related to respiration, the electron-transfer system, and anti-oxidation are significantly up-regulated. After 16 months, proteins related to defense, beta-oxidation, and apoptosis are significantly suppressed. This fluctuating expression of proteins could explain the progression of hepatocarcinogenesis. The method would be useful for clinical proteomics analysis because of its high resolution, sensitivity, and reproducibility.  相似文献   

13.
Manipulating redox systems: application to nanotechnology   总被引:3,自引:0,他引:3  
Redox proteins and enzymes are attractive targets for nanobiotechnology. The theoretical framework of biological electron transfer is increasingly well-understood, and several properties make redox centres good systems for exploitation: many can be detected both electrochemically and optically; they can perform specific reactions; they are capable of self-assembly; and their dimensions are in the nanoscale. Great progress has been made with the two main approaches of protein engineering: rational design and combinatorial synthesis. Rational design has put our understanding of the structure-function relationship to the test, whereas combinatorial synthesis has generated new molecules of interest. This article provides selected examples of novel approaches where redox proteins are "wired up" in efficient electron-transfer chains, are "assembled" in artificial multidomain structures (molecular Lego), are "linked" to surfaces in nanodevices for biosensing and nanobiotechnological applications.  相似文献   

14.
Cytochrome b??? (Cyt b???), β-carotene (Car), and chlorophyll (Chl) cofactors participate in the secondary electron-transfer pathways in photosystem II (PSII), which are believed to protect PSII from photodamage under conditions in which the primary electron-donation pathway leading to water oxidation is inhibited. Among these cofactors, Cyt b??? is preferentially photooxidized under conditions in which the primary electron-donation pathway is blocked. When Cyt b??? is preoxidized, the photooxidation of several of the 11 Car and 35 Chl molecules present per PSII is observed. In this review, the discovery of the secondary electron donors, their structures and electron-transfer properties, and progress in the characterization of the secondary electron-transfer pathways are discussed. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

15.
Respiratory heme-copper oxidases are integral membrane proteins that catalyze the reduction of molecular oxygen to water using electrons donated by either quinol (quinol oxidases) or cytochrome c (cytochrome c oxidases, CcOs). Even though the X-ray crystal structures of several heme-copper oxidases and results from functional studies have provided significant insights into the mechanisms of O2 -reduction and, electron and proton transfer, the design of the proton-pumping machinery is not known. Here, we summarize the current knowledge on the identity of the structural elements involved in proton transfer in CcO. Furthermore, we discuss the order and timing of electron-transfer reactions in CcO during O2 reduction and how these reactions might be energetically coupled to proton pumping across the membrane.  相似文献   

16.
The electron-transfer reaction between spinach wild-type plastocyanin (Pc(WT)) two site-directed mutants, Pc(Thr79His) and Pc(Lys81His), and spinach Photosystem 1 particles, has been studied as a function of protein concentration, ionic strength and pH by using laser-flash absorption spectroscopy. The kinetic data are interpreted using the simplest possible three-step model, involving a rate-limiting conformational change preceding intracomplex electron transfer. The three proteins show similar concentration, pH and ionic strength dependencies. The effects of ionic strength and pH on the reaction indicate a strong influence of complementary charges on complex formation and stabilization. Studies with apoprotein support the opinion that the hydrophobic patch is critical for an productive interaction with the reaction center of Photosystem 1. Together with earlier site-directed mutagenesis studies, the absence of a detectable Photosystem 1 reaction in the presence of reduced azurin, stellacyanin, cytochrome c and cytochrome c551, demonstrates the existence of a high level of specificity in the protein-protein interface in the formation of an efficient electron-transfer complex.  相似文献   

17.
Craft JL  Ludden PW  Brunold TC 《Biochemistry》2002,41(5):1681-1688
Carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum utilizes three types of Fe-S clusters to catalyze the reversible oxidation of CO to CO(2): a novel [Ni4Fe5S] active site (C cluster) and two distinct [4Fe4S] electron-transfer sites (B and D clusters). While recent X-ray data show the geometric arrangement of the five metal centers at the C cluster, electronic structures of the various [Ni4Fe5S] oxidation states remain ambiguous. These studies report magnetic circular dichroism (MCD), variable temperature, variable field MCD (VTVH MCD), and resonance Raman (rR) spectroscopic properties of the Fe-S clusters contained in Ni-deficient CODH. Essentially homogeneous sample preparations aided in the resolution of the reduced [4Fe4S](1+) (S = (1)/(2)) B cluster and the reduced Ni-deficient C cluster (denoted C, S > (1)/(2)) by MCD. The three Fe atoms derived from the [Ni3Fe4S] cubane component appear to dominate the reduced C cluster MCD spectrum, while the presence of a fourth Fe center can be inferred from the ground state spin. The same underlying MCD features present in Ni-deficient CODH spectra are also observed for Ni-containing CODH, suggesting that both proteins contain the same C cluster Fe-S component. Overlooked in all spectroscopic studies to date, the D cluster was confirmed by rR to be a typical [4Fe4S] site with cysteinyl coordination. Together, MCD and rR data show that the D cluster remains in the oxidized [4Fe4S](2+) (S = 0) state at potentials > or = -530 mV (versus SHE), thus exhibiting an unusually low redox potential for a standard [4Fe4S](2+/1+) electron-transfer site.  相似文献   

18.
Electron transfer processes are vital elements of energy transduction pathways in living cells. More than a half century of research has produced a remarkably detailed understanding of the factors that regulate these 'currents of life'. We review investigations of Ru-modified proteins that have delineated the distance- and driving-force dependences of intra-protein electron-transfer rates. We also discuss electron transfer across protein-protein interfaces that has been probed both in solution and in structurally characterized crystals. It is now clear that electrons tunnel between sites in biological redox chains, and that protein structures tune thermodynamic properties and electronic coupling interactions to facilitate these reactions. Our work has produced an experimentally validated timetable for electron tunneling across specified distances in proteins. Many electron tunneling rates in cytochrome c oxidase and photosynthetic reaction centers agree well with timetable predictions, indicating that the natural reactions are highly optimized, both in terms of thermodynamics and electronic coupling. The rates of some reactions, however, significantly exceed timetable predictions: it is likely that multistep tunneling is responsible for these anomalously rapid charge transfer events.  相似文献   

19.
The reduction of nitrate to nitrogen gas via nitrite, nitric oxide and nitrous oxide is the metabolic pathway usually known as denitrification, a key step in the nitrogen cycle. As observed for other elemental cycles, a battery of enzymes are utilized, namely the reductases for nitrate, nitrite, nitric oxide and nitrous oxide, as well as multiple electron donors that interact with these enzymes, in order to carry out the stepwise reactions that involve key intermediates. Because of the importance of this pathway (of parallel importance to the nitrogen-fixation pathway), efforts are underway to understand the structures of the participating enzymes and to uncover mechanistic aspects. Three-dimensional structures have been solved for the majority of these enzymes in the past few years, revealing the architecture of the active metal sites as well as global structural aspects, and possible mechanistic aspects. In addition, the recognition of specific electron-transfer partners raises important questions regarding specific electron-transfer pathways, partner recognition and control of metabolism.  相似文献   

20.
Long-range electronic interactions between electron donors and acceptors in proteins depend on the structure of the intervening polypeptide. Several methods have been developed for calculating these weak couplings. New challenges in protein electron-transfer research include identifying the role of protein dynamics, and characterizing multistep tunneling over very long distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号