首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of C7-alkylhydroxybenzene (7-AHB) and p-hydroxyethylphenol (tyrosol), chemical analogs of microbial anabiosis autoregulators, on the viability of yeast cells under oxidative stress were investigated. The stress was caused by reactive oxygen species (ROS) produced under irradiation of cell suspensions using doses of 10–150 krad at an intensity of 194 rad/s or by singlet oxygen generated in cells photosensitized with chlorin e 6 (10 g/l). C7-AHB was found to exert a protective effect. The addition of 0.05–0.16 vol % of C7-AHB to cell suspensions 30 min before irradiation protected yeast cells from radiation (50 krad). The protective effect of C7-AHB manifested itself both in the preservation of cell viability during irradiation and in the recovery of their capacity to proliferate after irradiation. In our studies on photodynamic cell inactivation, the fact that the phenolic antioxidant C7-AHB protects cells from intracellular singlet oxygen was revealed for the first time. The analysis of difference absorption spectra of oxidized derivatives of C7-AHB demonstrated that the protective mechanism of 7-AHB involves the scavenging of ROS resulting from oxidative stress. The fact that tyrosol failed to perform a photoprotective function suggests that the antioxidant properties of microbial 7-AHB are not related to its chaperon functions. The results obtained make an important addition to the spectrum of known antioxidant and antistress effects of phenolic compounds.  相似文献   

2.
The effect of alkylhydroxybenzenes (AHBs) belonging to the class of alkylresorcinols differing in the degree of hydrophobicity—C7-AHB and more hydrophobic C12-AHB—on the resistance of Saccharomyces cerevisiae cells to heat shock and oxidative stress of lethal intensity was studied. Depending on structure and concentration, AHB added 2 h before exposure to stress had either an antistress or stress-potentiating effect on yeast cells in the mid-logarithmic growth phase. C7-AHB at concentrations 0.25–0.5 g/l caused a two-to fivefold increase in the resistance of yeast cells to hydrogen peroxide (30–150 mM), whereas C12-AHB reduced it at all concentrations. C7-AHB and C12-AHB had a similar effect on yeast subjected to heat shock (45°C, 30 min). It was found that the degree of the protective effect of C7-AHB and potentiating effect of C12-AHB depended on the nature of the stressor, being more pronounced in heat shock. The environmental significance of the antistress and stress-potentiating effects of microbial AHBs is discussed.  相似文献   

3.
The effect of alkyloxybenzenes (AHBs) belonging to the class of alkylresorcinols differing in the degree of hydrophobicity--C7-AHB and more hydrophobic Cl12-AHB--on the resistance of Saccharomyces cerevisiae cells to heat shock and oxidative stress of lethal intensity was studied. Depending on structure and concentration, AHB added 2 h before exposure to stress had either an antistress or stress-potentiating effect on yeast cells in the mid-logarithmic growth phase. C7-AHB at concentrations 0.25-0.5 g/l caused a two- to fivefold increase in the resistance of yeast cells to hydrogen peroxide (30-150 mM), whereas Cl2-AHB reduced it at all concentrations. C7-AHB and Cl2-AHB had a similar effect on yeast subjected to heat shock (45 degrees C, 30 min). It was found that the degree of the protective effect of C7-AHB and potentiating effect of Cl2-AHB depended on the nature of the stressor, being more pronounced in heat shock. The environmental significance of the antistress and stress-potentiating effects of microbial AHBs is discussed.  相似文献   

4.
Oxidative stress in microbial cells shares many similarities with other cell types but it has its specific features which may differe in prokaryotic and eukaryotic cells. We survey here the properties and actions of primary sources of oxidative stress, the role of transition metals in oxidative stress and cell protective machinery of microbial cells, and compare them with analogous features of other cell types. Other features to be compared are the action of reactive oxygen species (ROS) on cell constituents, secondary lipid-or protein-based radicals and other stress products. Repair of oxidative injury by microorganisms and proteolytic removal of irreparable cell constituents are briefly described. Oxidative damage of aerobically growing microbial cells by endogenously formed ROS mostly does not induce changes similar to the aging of multiplying mammalian cells. Rapid growth of bacteria and yeast prevents accumulation of impaired macromolecules which are repaired, diluted or eliminated. During growth some simple fungi, such as yeast orPodospora spp., exhibit aging whose primary cause seems to be fragmentation of the nucleolus or impairment of mitochondrial DNA integrity. Yeast cell aging seems to be accelerated by endogenous oxidative stress. Unlike most growing microbial cells, stationaryphase cells gradually lose their viability because of a continuous oxidative stress, in spite of an increased synthesis of antioxidant enzymes. Unlike in most microorganisms, in plant and animal cells a severe oxidative stress induces a specific programmed death pathway-apoptosis. The scant data on the microbial death mechanisms induced by oxidative stress indicate that in bacteria cell death can result from activation of autolytic enzymes (similarly to the programmed mother-cell death at the end of bacillar sporulation). Yeast and other simple eukaryotes contain components of a proapoptotic pathway which are silent under normal conditions but can be activated by oxidative stress or by manifestation of mammalian death genes, such asbak orbax. Other aspects, such as regulation of oxidative-stress response, role of defense enzymes and their control, acquisition of stress tolerance, stress signaling and its role in stress response, as well as cross-talk between different stress factors, will be the subject of a subsequent review.  相似文献   

5.
The photocatalytic activity of titanium dioxide is widely utilized in science and technology. In the biological field, titanium dioxide is believed to be a disinfectant because it produces reactive oxygen species (ROS). However, there are multiple types of ROS such as hydroxyl radicals, superoxide anions, singlet oxygen, and hydrogen peroxide. In this study, we attempted to characterize the various mechanisms and roles of ROS in disinfection. Surprisingly, we found that titanium dioxide protected yeast cells from ultraviolet irradiation. We characterized the ROS produced under these conditions. The production of hydroxyl radicals and superoxide anions was confirmed; however, glucose in the yeast medium scavenged hydroxyl radicals. The photocatalytic activity of titanium dioxide produced oxidative products and reductive products, as oxidation and reduction occurred simultaneously. Once hydroxyl radicals are scavenged, the photocatalytic activity of titanium dioxide produces a reductive environment for fermenting yeast cells and protects them from oxidative stress by ultraviolet irradiation.  相似文献   

6.
The molecular mechanisms involved in the ability of yeast cells to adapt and respond to oxidative stress are of great interest to the pharmaceutical, medical, food, and fermentation industries. In this study, we investigated the time-dependent, cellular redox homeostasis ability to adapt to menadione-induced oxidative stress, using biochemical and proteomic approaches in Saccharomyces cerevisiae KNU5377. Time-dependent cell viability was inversely proportional to endogenous amounts of ROS measured by a fluorescence assay with 2′,7′-dichlorofluorescin diacetate (DCFHDA), and was hypersensitive when cells were exposed to the compound for 60 min. Morphological changes, protein oxidation and lipid peroxidation were also observed. To overcome the unfavorable conditions due to the presence of menadione, yeast cells activated a variety of cell rescue proteins including antioxidant enzymes, molecular chaperones, energy-generating metabolic enzymes, and antioxidant molecules such as trehalose. Thus, these results show that menadione causes ROS generation and high accumulation of cellular ROS levels, which affects cell viability and cell morphology and there is a correlation between resistance to menadione and the high induction of cell rescue proteins after cells enter into this physiological state, which provides a clue about the complex and dynamic stress response in yeast cells.  相似文献   

7.
To further elucidate the impact of fermentative stress on Saccharomyces cerevisiae wine strains, we have here evaluated markers of oxidative stress, oxidative damage and antioxidant response in four oenological strains of S. cerevisiae, relating these to membrane integrity, ethanol production and cell viability during fermentation in high-sugar-containing medium. The cells were sampled at different fermentation stages and analysed by flow cytometry to evaluate membrane integrity and accumulation of reactive oxygen species (ROS). At the same time, catalase and superoxide dismutase activities, trehalose accumulation, and protein carbonylation and degradation were measured. The results indicate that the stress conditions occurring during hypoxic fermentation in high-sugar-containing medium result in the production of ROS and trigger an antioxidant response. This involves superoxide dismutase and trehalose for the protection of cell structures from oxidative damage, and protein catabolism for the removal of damaged proteins. Cell viability, membrane integrity and ethanol production depend on the extent of oxidative damage to cellular components. This is, in turn, related to the 'fitness' of each strain, which depends on the contribution of individual cells to ROS accumulation and scavenging. These findings highlight that the differences in individual cell resistances to ROS contribute to the persistence of wine strains during growth under unfavourable culture conditions, and they provide further insights into our understanding of yeast behaviour during industrial fermentation.  相似文献   

8.
Oxidative stress plays an important role in neurodegenerative diseases. Reactive oxygen species (ROS)-mediated stress in microglia in vivo could result in cellular injuries and preferentially induces neuronal injury. Corilagin, a novel member of the phenolic tannin family, has been shown to possess antioxidant properties. In this study, we investigated the effects of corilagin on tert-butyl hydroperoxide (TBHP)-induced injury in cultured N9 murine microglial cells and the underlying mechanisms by a methyltetrazolium assay and oxidative damage assay. We found that exposure of N9 cells to TBHP induced cytotoxicity as demonstrated by cell shrinkage, loss of cell viability, increased lactate dehydrogenase (LDH) leakage, and increased intracellular levels of ROS. By contrast, TBHP reduced both superoxide dismutase activity and total cell anti-oxidation capacity, but glutathione was not reduced. Moreover, TBHP treatment was associated with the loss of mitochondrial membrane potential, and it induced cell apoptosis through the mitochondrial-mediated pathway involving the down-regulation of Bcl-2 expression and up-regulation of the Bax/Bcl-2 ratio. Interestingly, pre-treatment with corilagin reversed these reactions. These data collectively indicated that corilagin could attenuate TBHP-induced oxidative stress injury in microglial cells, and its protective effects may be ascribed to its antioxidant and antiapoptotic properties. Our findings suggest that corilagin should be a potential candidate for the treatment of oxidative stress-induced neurodegenerative diseases.  相似文献   

9.
Coenzyme Q10 (CoQ10) acts by scavenging reactive oxygen species to protect neuronal cells against oxidative stress in neurodegenerative diseases. The present study was designed to examine whether CoQ10 was capable of protecting astrocytes from reactive oxygen species (ROS) mediated damage. For this purpose, ultraviolet B (UVB) irradiation was used as a tool to induce ROS stress to cultured astrocytes. The cells were treated with 10 and 25 μg/ml of CoQ10 for 3 or 24 h prior to the cells being exposed to UVB irradiation and maintained for 24 h post UVB exposure. Cell viability was assessed by MTT conversion assay. Mitochondrial respiration was assessed by respirometer. While superoxide production and mitochondrial membrane potential were measured using fluorescent probes, levels of cytochrome C (cyto-c), cleaved caspase-9, and caspase-8 were detected using Western blotting and/or immunocytochemistry. The results showed that UVB irradiation decreased cell viability and this damaging effect was associated with superoxide accumulation, mitochondrial membrane potential hyperpolarization, mitochondrial respiration suppression, cyto-c release, and the activation of both caspase-9 and -8. Treatment with CoQ10 at two different concentrations started 24 h before UVB exposure significantly increased the cell viability. The protective effect of CoQ10 was associated with reduction in superoxide, normalization of mitochondrial membrane potential, improvement of mitochondrial respiration, inhibition of cyto-c release, suppression of caspase-9. Furthermore, CoQ10 enhanced mitochondrial biogenesis. It is concluded that CoQ10 may protect astrocytes through suppression of oxidative stress, prevention of mitochondrial dysfunction, blockade of mitochondria-mediated cell death pathway, and enhancement of mitochondrial biogenesis.  相似文献   

10.
This study aims at exploring the oxidative stress in keratinocytes induced by UVB irradiation and the protective effect of nutritional antioxidants. Cultured Colo-16 cells were exposed to UVB in vitro followed by measurement of reactive oxygen species (ROS), endogenous antioxidant enzyme activity, as well as cell death in the presence or absence of supplementation with vitamin C, vitamin E, or Ginsenoside Panoxatriol. Intracellular ROS content was found significantly reduced 1 h after exposure, but increased at later time points. After exposure to 150–600 J m−2 UVB, reduction of ROS content was accompanied by increased activity of catalase and CuZn-superoxide dismutase at early time points. Vitamins C and E, and Ginsenoside Panoxatriol counteracted the increase of ROS in the Colo-16 cells induced by acute UVB irradiation. At the same time, Ginsenoside Panoxatriol protected the activity of CuZn-superoxide dismutase, while vitamin E showed only a moderate protective role. Vitamins C and E, and Ginsenoside Panoxatriol in combination protected the Colo-16 cells from UVB-induced apoptosis, but not necrosis. These findings suggest that vitamins C and E as well as Ginsenoside Panoxatriol are promising protective agents against UVB-induced damage in skin cells.  相似文献   

11.
Diabetic retinopathy is a leading cause of visual loss and blindness, characterized by microvascular dysfunction. Hyperglycemia is considered the major pathogenic factor for the development of diabetic retinopathy and is associated with increased oxidative/nitrosative stress in the retina. Since heme oxygenase-1 (HO-1) is an enzyme with antioxidant and protective properties, we investigated the potential protective role of HO-1 in retinal endothelial cells exposed to high glucose and oxidative/nitrosative stress conditions. Retinal endothelial cells were exposed to elevated glucose, nitric oxide (NO) and hydrogen peroxide (H(2)O(2)). Cell viability and apoptosis were assessed by MTT assay, Hoechst staining, TUNEL assay and Annexin V labeling. The production of reactive oxygen species (ROS) was detected by the oxidation of 2',7'-dichlorodihydrofluorescein diacetate. The content of HO-1 was assessed by immunobloting and immunofluorescence. HO activity was determined by bilirubin production. Long-term exposure (7 days) of retinal endothelial cells to elevated glucose decreased cell viability and had no effect on HO-1 content. However, a short-time exposure (24 h) to elevated glucose did not alter cell viability, but increased both the levels of intracellular ROS and HO-1 content. Moreover, the inhibition of HO with SnPPIX unmasked the toxic effect of high glucose and revealed the protection conferred by HO-1. Oxidative/nitrosative stress conditions increased cell death and HO-1 protein levels. These effects of elevated glucose and HO inhibition on cell death were confirmed in primary endothelial cells (HUVECs). When cells were exposed to oxidative/nitrosative stress conditions there was also an increase in retinal endothelial cell death and HO-1 content. The inhibition of HO enhanced ROS production and the toxic effect induced by exposure to H(2)O(2) and NOC-18 (NO donor). Overexpression of HO-1 prevented the toxic effect induced by H(2)O(2) and NOC-18. In conclusion, HO-1 exerts a protective effect in retinal endothelial cells exposed to hyperglycemic and oxidative/nitrosative stress conditions.  相似文献   

12.
《Journal of Asia》2019,22(3):684-689
Royal jelly (RJ) is a well-known functional and medicinal food for human health promotion. Major royal jelly proteins (MRJPs), which are the major protein components in RJ, exhibit antimicrobial activities. However, the identities of the MRJPs of RJ responsible for its antioxidant effects have remained unclear. Here, we report that honeybee (Apis cerana) MRJP 2 (AcMRJP2) acts as an antimicrobial and antioxidant agent in RJ. Using recombinant AcMRJP2, which was produced in baculovirus-infected insect cells, we established the antimicrobial and antioxidant roles of MRJP 2. AcMRJP2 bound to the surfaces of bacteria, fungi, and yeast, which then induced structural damage in the microbial cell walls and led to a broad spectrum of antimicrobial activities. AcMRJP2 protected mammalian and insect cells via the direct shielding of the cell against oxidative stress, which led to reduced levels of caspase-3 activity and oxidative stress-induced cell apoptosis, followed by increased cell viability. Moreover, AcMRJP2 exhibited DNA protection activity against reactive oxygen species (ROS). Our data indicate that AcMRJP2 could play a crucial role as an antimicrobial agent and antioxidant in RJ, suggesting that MRJP 2 is a component responsible for the antimicrobial and antioxidant activities of RJ.  相似文献   

13.
To further elucidate the impact of fermentative stress on Saccharomyces cerevisiae wine strains, we have here evaluated markers of oxidative stress, oxidative damage and antioxidant response in four oenological strains of S. cerevisiae, relating these to membrane integrity, ethanol production and cell viability during fermentation in high-sugar-containing medium. The cells were sampled at different fermentation stages and analysed by flow cytometry to evaluate membrane integrity and accumulation of reactive oxygen species (ROS). At the same time, catalase and superoxide dismutase activities, trehalose accumulation, and protein carbonylation and degradation were measured. The results indicate that the stress conditions occurring during hypoxic fermentation in high-sugar-containing medium result in the production of ROS and trigger an antioxidant response. This involves superoxide dismutase and trehalose for the protection of cell structures from oxidative damage, and protein catabolism for the removal of damaged proteins. Cell viability, membrane integrity and ethanol production depend on the extent of oxidative damage to cellular components. This is, in turn, related to the ‘fitness’ of each strain, which depends on the contribution of individual cells to ROS accumulation and scavenging. These findings highlight that the differences in individual cell resistances to ROS contribute to the persistence of wine strains during growth under unfavourable culture conditions, and they provide further insights into our understanding of yeast behaviour during industrial fermentation.  相似文献   

14.
The antioxidant action of carotenoids is believed to involve quenching of singlet oxygen and scavenging of reactive oxygen radicals. However, the exact mechanism by which carotenoids protect cells against oxidative damage, particularly in the presence of other antioxidants, remains to be elucidated. This study was carried out to examine the ability of exogenous zeaxanthin alone and in combination with vitamin E or C, to protect cultured human retinal pigment epithelium cells against oxidative stress. The survival of ARPE-19 cells, subjected to merocyanine 540-mediated photodynamic action, was determined by the MTT test and the content of lipid hydroperoxides in photosensitized cells was analyzed by HPLC with electrochemical detection. We found that zeaxanthin-supplemented cells, in the presence of either alpha-tocopherol or ascorbic acid, were significantly more resistant to photoinduced oxidative stress. Cells with added antioxidants exhibited increased viability and accumulated less lipid hydroperoxides than cells without the antioxidant supplementation. Such a synergistic action of zeaxanthin and vitamin E or C indicates the importance of the antioxidant interaction in efficient protection of cell membranes against oxidative damage induced by photosensitized reactions.  相似文献   

15.
Phlorotannins have received much attention due to their ecophysiological importance and potential applications in the biotechnology and food industries. Antioxidant activity studies in seaweeds have mainly focused on in vitro assays; however, there is a paucity of data regarding the effect of brown algal phlorotannins on living cultured cells. The aim of the present study was to investigate both direct and protective effects of phlorotannin-rich extracts on cell viability and the cellular oxidative status of cultured liver cells HepG2 against oxidative stress induced by tert-butyl hydroperoxide (t-BOOH). Extracts of the Phaeophyceae Ascophyllum nodosum (Fucaceae) and Himanthalia elongata (Himanthaliaceae) were submitted to gastrointestinal digestion prior to incubation for 20 h in a HepG2 culture at physiological concentrations (0.5–50 μg mL?1). Various markers of cellular oxidative stress were then assessed, such as the generation of reactive oxygen species (ROS), antioxidant defences (concentration of reduced glutathione and activities of glutathione peroxidase, reductase and glutathione-S-transferase) and the levels of malondialdehyde as a marker for lipid peroxidation. The direct effect on cellular markers was assessed immediately after the incubation period, whereas for the protective effect, the incubation period was followed by a 3-h treatment with t-BOOH. The results indicated no effect on cell viability, and both extracts showed reduced levels of ROS and increased antioxidant defences in the direct treatment. Moreover, the extracts showed a significant protective effect against chemically induced oxidative stress in HepG2 cells by reducing ROS generation and enhancing antioxidant defences, hence supporting the utility of including brown algal extracts in functional food products.  相似文献   

16.
AIM To identify and characterize the protective effect that L-carnitine exerted against an oxidative stress in C2C12 cells.METHODS Myoblastic C2C12 cells were treated with menadione, a vitamin K analog that engenders oxidative stress, and the protective effect of L-carnitine(a nutrient involved in fatty acid metabolism and the control of the oxidative process), was assessed by monitoring various parameters related to the oxidative stress, autophagy and cell death. RESULTS Associated with its physiological function, a muscle cell metabolism is highly dependent on oxygen and may produce reactive oxygen species(ROS), especially under pathological conditions. High levels of ROS are known to induce injuries in cell structure as they interact at many levels in cell function. In C2C12 cells, a treatment with menadione induced a loss of transmembrane mitochondrial potential, an increase in mitochondrial production of ROS; it also induces autophagy and was able to provoke cell death. Pre-treatment of the cells with L-carnitine reduced ROS production, diminished autophagy and protected C2C12 cells against menadione-induced deleterious effects. CONCLUSION In conclusion, L-carnitine limits the oxidative stress in these cells and prevents cell death.  相似文献   

17.
Mammalian innate immune cells produce reactive oxygen species (ROS) in the oxidative burst reaction to destroy invading microbial pathogens. Using quantitative real-time ROS assays, we show here that both yeast and filamentous forms of the opportunistic human fungal pathogen Candida albicans trigger ROS production in primary innate immune cells such as macrophages and dendritic cells. Through a reverse genetic approach, we demonstrate that coculture of macrophages or myeloid dendritic cells with C. albicans cells lacking the superoxide dismutase (SOD) Sod5 leads to massive extracellular ROS accumulation in vitro . ROS accumulation was further increased in coculture with fungal cells devoid of both Sod4 and Sod5. Survival experiments show that C. albicans mutants lacking Sod5 and Sod4 exhibit a severe loss of viability in the presence of macrophages in vitro . The reduced viability of sod5 Δ/Δ and sod4 Δ/Δ sod5 Δ/Δ mutants relative to wild type is not evident with macrophages from gp91phox −/ − mice defective in the oxidative burst activity, demonstrating a ROS-dependent killing activity of macrophages targeting fungal pathogens. These data show a physiological role for cell surface SODs in detoxifying ROS, and suggest a mechanism whereby C. albicans , and perhaps many other microbial pathogens, can evade host immune surveillance in vivo .  相似文献   

18.
Esculetin is an antioxidant and anti-inflammatory compound derived from coumarin. Oxidative stress can cause overproduction of reactive oxygen species (ROS), which can lead to the development of chronic kidney failure. In this study, human embryonic kidney 293 (HEK293) cells were treated with tert-butyl hydroperoxide (t-BHP) to determine the antioxidant effects of esculetin. HEK293 cells were treated with t-BHP to validate changes in cell viability, ROS production, and apoptosis, and then treated with esculetin to evaluate the changes. Changes in mRNA and protein levels were analyzed using a proteome kit, PCR, and Western blotting. Esculetin improved HEK293 cell viability and reduced apoptosis caused by t-BHP-induced oxidative stress. At the mRNA and protein levels, esculetin decreased pro-apoptotic factor expression as well as increased anti-apoptotic factor expression. The antioxidant efficacy of esculetin was validated when it inhibited the apoptosis caused by t-BHP-induced oxidative stress in HEK293 cells.  相似文献   

19.
Singlet oxygen is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules and it also promotes deleterious processes such as cell death. The protective role of antioxidant enzymes against singlet oxygen-induced oxidative damage in HL-60 cells was investigated in control and cells pre-treated with diethyldithiocarbamic acid, aminotriazole and oxlalomalate, specific inhibitors of superoxide dismutase, catalase and NADP+-dependent isocitrate dehydrogenase, respectively. Upon exposure to rose bengal (20 μM)/light (15 min), which generates singlet oxygen, to HL-60 cells, the viability was lower and the lipid peroxidation and oxidative DNA damage were higher in inhibitor-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species as well as the significant decrease in the intracellular GSH level in inhibitor-treated HL-60 cells exposed to singlet oxygen. Upon exposure to rose bengal (3 μM)/light (15 min), which induced apoptotic cell death, a clear inverse relationship was observed between the control and inhibitor-treated HL-60 cells in their susceptibility to apoptosis. These results suggest that antioxidant enzymes play an important role in cellular defense against singlet oxygen-induced cell death including necrosis and apoptosis.  相似文献   

20.
Kim SY  Lee SM  Park JW 《Free radical research》2006,40(11):1190-1197
Singlet oxygen is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules and it also promotes deleterious processes such as cell death. The protective role of antioxidant enzymes against singlet oxygen-induced oxidative damage in HL-60 cells was investigated in control and cells pre-treated with diethyldithiocarbamic acid, aminotriazole and oxlalomalate, specific inhibitors of superoxide dismutase, catalase and NADP+-dependent isocitrate dehydrogenase, respectively. Upon exposure to rose bengal (20 μM)/light (15 min), which generates singlet oxygen, to HL-60 cells, the viability was lower and the lipid peroxidation and oxidative DNA damage were higher in inhibitor-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species as well as the significant decrease in the intracellular GSH level in inhibitor-treated HL-60 cells exposed to singlet oxygen. Upon exposure to rose bengal (3 μM)/light (15 min), which induced apoptotic cell death, a clear inverse relationship was observed between the control and inhibitor-treated HL-60 cells in their susceptibility to apoptosis. These results suggest that antioxidant enzymes play an important role in cellular defense against singlet oxygen-induced cell death including necrosis and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号