首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have established that reductions in repolarizing currents occur in heart disease and can contribute to life-threatening arrhythmias in myocardium. In this study, we investigated whether the thyroid hormone analog 3, 5-diiodothyropropionic acid (DITPA) could restore repolarizing transient outward K(+) current (I(to)) density and gene expression in rat myocardium after myocardial infarction (MI). Our findings show that I(to) density was reduced after MI (14.0 +/- 1.0 vs. 10.2 +/- 0.9 pA/pF, sham vs. post-MI at +40 mV). mRNA levels of Kv4.2 and Kv4.3 genes were decreased but Kv1.4 mRNA levels were increased post-MI. Corresponding changes in Kv4.2 and Kv1.4 protein were also observed. Chronic treatment of post-MI rats with 10 mg/kg DITPA restored I(to) density (to 15.2 +/- 1.1 pA/pF at +40 mV) as well as Kv4.2 and Kv1.4 expression to levels observed in sham-operated controls. Other membrane currents (Na(+), L-type Ca(2+), sustained, and inward rectifier K(+) currents) were unaffected by DITPA treatment. Associated with the changes in I(to) expression, action potential durations (current-clamp recordings in isolated single right ventricular myocytes and monophasic action potential recordings from the right free wall in situ) were prolonged after MI and restored with DITPA treatment. Our results demonstrate that DITPA restores I(to) density in the setting of MI, which may be useful in preventing complications associated with I(to) downregulation.  相似文献   

2.
There is emerging evidence that treatment with thyroid hormone (TH) can improve postischemic cardiac function. 3,5-Diiodothyropropionic acid (DITPA), a TH analog, has been proposed to be a safer therapeutic agent than TH because of its negligible effects on cardiac metabolism and heart rate. However, conflicting results have been reported for the cardiac effects of DITPA. Importantly, recent clinical trials demonstrated no symptomatic benefit in patients with DITPA despite some improved hemodynamic and metabolic parameters. To address these issues, dose-dependent effects of DITPA were investigated in mice for baseline cardiovascular effects and postischemic myocardial function and/or salvage. Mice were treated with subcutaneous DITPA at 0.937, 1.875, 3.75, or 7.5 mg·kg(-1)·day(-1) for 7 days, and the results were compared with untreated mice for ex vivo and/or in vivo myocardial ischemia-reperfusion (I/R). DITPA had no effects on baseline body temperature, body weight, or heart rate; however, it mildly increased blood pressure. In isolated hearts, baseline contractile function was significantly impaired in DITPA-pretreated mice; however, postischemic recovery was comparable between untreated and DITPA-treated groups. In vivo baseline cardiac parameters were significantly affected by DITPA, with increased ventricular dimensions and decreased contractile function. Importantly, DITPA-treated mice demonstrated high prevalence of fatal cardiac rhythm abnormalities during in vivo ischemia and/or reperfusion. There were no improvements in myocardial infarction and postischemic fractional shortening with DITPA. Myocardial sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), phospholamban (PLB), and heat shock protein (HSP) levels remained unchanged with DITPA treatment. Thus DITPA administration impairs baseline cardiac parameters in mice and can be fatal during in vivo acute myocardial I/R.  相似文献   

3.
Peptides containing the RGD sequence are under continuous investigation given their ability to control cell adhesion and apoptosis. Since small peptides are quickly metabolized and degraded in vivo, developing analogs resistant to serum-induced degradation is a challenging task. RGD analogs developed so far are known as molecules mostly inhibiting cell adhesion; this feature may reduce cell proliferation and tumor development but may not induce regression of tumors or metastases already formed. In the current study, carried out in melanoma in vitro and in vivo models, we show that RAM, an RGD-non-peptide Analog-Molecule, strongly inhibits cells adhesion onto plastic, vitronectin, fibronectin, laminin and von Willebrand Factor while it does not inhibit cell adhesion onto collagen IV, similarly to the RGDS template peptide. It also strongly inhibits in vitro cell proliferation, migration and DNA-synthesis, increases melanoma cells apoptosis and reduces survivin expression. All such effects were observed in collagen IV seeded cells, therefore are most likely independent from the anti adhesive properties. Further, RAM is more stable than the template RGDS; in fact it maintains its anti-proliferation and anti-adhesion effects after long serum exposure while RGDS almost completely loses its effects upon serum exposure. In a mouse metastatic melanoma in vivo model, increasing doses of RAM significantly reduce up to about 80% lung metastases development, while comparable doses of RGDS are less potent. In conclusion these data show that RAM is a potent inhibitor of melanoma growth in vitro, strongly reduces melanoma metastases development in vivo and represents a novel candidate for further in vivo investigations in the cancer treatment field.  相似文献   

4.
This experiment was conducted to compare the luteinizing hormone (LH), progesterone (P4) and oestradiol (E2) release in response to injections of various doses of synthetic mammalian luteinizing hormone-releasing hormone (LH-RH) and of an LH-RH agonist, ICI 118630, administered to laying hens 4 to 9 hours after a mid-sequence ovulation. Plasma LH increased significantly within 10 minutes of injection of either compound whereas any increases in plasma steroid concentrations were discerned later, at approximately minutes post-injection. No dose-response relationship was found for either compound with respect to LH release, but ICI 118630 appeared more potent than LH-RH. This analog also produced a greater mean incremental rise in plasma progesterone, but not oestradiol, than LH-RH, and this was found in animals injected at a time when the largest ovarian follicle was not mature. These result suggest that ICI 118630 is a more potent releasing hormone in the hen at the level of the pituitary, and that it may have a stimulating effect on ovarian progesterone secretion.  相似文献   

5.
Thyroid hormones (THs) have critical roles in brain development and normal brain function in vertebrates. Clinical evidence suggests that some human nervous disorders involving GABA(gamma-aminobutyric acid)-ergic systems are related to thyroid dysfunction (i.e. hyperthyroidism or hypothyroidism). There is experimental evidence from in vivo and in vitro studies on rats and mice indicating that THs have effects on multiple components of the GABA system. These include effects on enzyme activities responsible for synthesis and degradation of GABA, levels of glutamate and GABA, GABA release and reuptake, and GABA(A) receptor expression and function. In developing brain, hypothyroidism generally decreases enzyme activities and GABA levels whereas in adult brain, hypothyroidism generally increases enzyme activities and GABA levels. Hyperthyroidism does not always have the opposite effect. In vitro studies on adult brain have shown that THs enhance GABA release and inhibit GABA-reuptake by rapid, extranuclear actions, suggesting that presence of THs in the synapse could prolong the action of GABA after release. There are conflicting results on effects of long term changes in TH levels on GABA reuptake. Increasing and decreasing circulating TH levels experimentally in vivo alter density of GABA(A) receptor-binding sites for GABA and benzodiazepines in brain, but results vary from study to study, which may reflect important regional differences in the brain. There is substantial evidence that THs also have an extranuclear effect to inhibit GABA-stimulated Cl(-) currents by a non-competitive mechanism in vitro. The thyroid gland exhibits GABA transport mechanisms as well as enzyme activities for GABA synthesis and degradation, all of which are sensitive to thyroidal state. In rats and humans, GABA inhibits thyroid stimulating hormone (TSH) release from the pituitary, possibly by action directly on the pituitary or on hypothalamic thyrotropin-releasing hormone neurons. In mice, GABA inhibits TSH-stimulated TH release from the thyroid gland. Taken together, these studies provide strong support for the hypothesis that there is reciprocal regulation of the thyroid and GABA systems in vertebrates.  相似文献   

6.
7.
Thyroid hormones (TH) play a key role in regulation of seasonal as well as acute changes in metabolism. Djungarian hamsters (Phodopus sungorus) adapt to winter by multiple changes in behaviour and physiology including spontaneous daily torpor, a state of hypometabolism and hypothermia. We investigated effects of systemic TH administration and ablation on the torpor behaviour in Djungarian hamsters adapted to short photoperiod. Hyperthyroidism was induced by giving T4 or T3 and hypothyroidism by giving methimazole (MMI) and sodium perchlorate via drinking water. T3 treatment increased water, food intake and body mass, whereas MMI had the opposite effect. Continuous recording of body temperature revealed that low T3 serum concentrations increased torpor incidence, lowered Tb and duration, whereas high T3 serum concentrations inhibited torpor expression. Gene expression of deiodinases (dio) and uncoupling proteins (ucp) were analysed by qPCR in hypothalamus, brown adipose tissue (BAT) and skeletal muscle. Expression of dio2, the enzyme generating T3 by deiodination of T4, and ucps, involved in thermoregulation, indicated a tissue specific response to treatment. Torpor per se decreased dio2 expression irrespective of treatment or tissue, suggesting low intracellular T3 concentrations during torpor. Down regulation of ucp1 and ucp3 during torpor might be a factor for the inhibition of BAT thermogenesis. Hypothalamic gene expression of neuropeptide Y, propopiomelanocortin and somatostatin, involved in feeding behaviour and energy balance, were not affected by treatment. Taken together our data indicate a strong effect of thyroid hormones on torpor, suggesting that lowered intracellular T3 concentrations in peripheral tissues promote torpor.  相似文献   

8.

Background

Several anti-diabetes drugs exert beneficial effects against metabolic syndrome by inhibiting mitochondrial function. Although much progress has been made toward understanding the role of mitochondrial function inhibitors in treating metabolic diseases, the potential effects of these inhibitors on mitochondrial respiratory chain complex III remain unclear.

Methods

We investigated the metabolic effects of azoxystrobin (AZOX), a Qo inhibitor of complex III, in a high-fat diet-fed mouse model with insulin resistance in order to elucidate the mechanism by which AZOX improves glucose and lipid metabolism at the metabolic cellular level.

Results

Acute administration of AZOX in mice increased the respiratory exchange ratio. Chronic treatment with AZOX reduced body weight and significantly improved glucose tolerance and insulin sensitivity in high-fat diet-fed mice. AZOX treatment resulted in decreased triacylglycerol accumulation and down-regulated the expression of genes involved in liver lipogenesis. AZOX increased glucose uptake in L6 myotubes and 3T3-L1 adipocytes and inhibited de novo lipogenesis in HepG2 cells. The findings indicate that AZOX-mediated alterations to lipid and glucose metabolism may depend on AMP-activated protein kinase (AMPK) signaling.

Conclusions

AZOX, a Qo inhibitor of mitochondrial respiratory complex III, exerts whole-body beneficial effects on the regulation of glucose and lipid homeostasis in high-fat diet-fed mice.

General significance

These findings provide evidence that a Qo inhibitor of mitochondrial respiratory complex III could represent a novel approach for the treatment of obesity.  相似文献   

9.
Structural remodeling of the myocardium, including myocyte hypertrophy, myocardial fibrosis, and dilatation, drives functional impairment in various forms of acquired and hereditary cardiomyopathy. Using cardiomyopathic Syrian hamsters with a genetic defect in delta-sarcoglycan, we investigated the potential involvement of hepatocyte growth factor (HGF) in the pathophysiology and therapeutics related to dilated cardiomyopathy, because HGF has previously been shown to be cytoprotective and to have benefits in acute heart injury. Late-stage TO-2 cardiomyopathic hamsters showed severe cardiac dysfunction and fibrosis, accompanied by increases in myocardial expression of transforming growth factor-beta1 (TGF-beta1), a growth factor responsible for tissue fibrosis. Conversely, HGF was downregulated in late-stage myopathic hearts. Treatment with recombinant human HGF for 3 wk suppressed cardiac fibrosis, accompanied by a decreased expression of TGF-beta1 and type I collagen. Suppression of TGF-beta1 and type I collagen by HGF was also shown in cultured cardiac myofibroblasts. Likewise, HGF suppressed myocardial hypertrophy, apoptosis in cardiomyocytes, and expression of atrial natriuretic polypeptide, a molecular marker of hypertrophy. Importantly, downregulation of the fibrogenic and hypertrophic genes by HGF treatment was associated with improved cardiac function. Thus the decrease in endogenous HGF levels may participate in the susceptibility of cardiac tissue to hypertrophy and fibrosis, and exogenous HGF led to therapeutic benefits in case of dilated cardiomyopathy in this model, even at the late-stage treatment.  相似文献   

10.
In adult female Locusta migratoria, at about day 8 after eclosion, when vitellogenin (Vg) is first produced as a result of induction by juvenile hormone (JH), the intensity of hemolymph protein electrophoretic bands at about 75 kDa and 20 kDa increases sharply, suggesting that JH may induce additional proteins. A major component of the elevated protein is persistent storage protein (PSP; subunit 74 kDa). Administration of the JH analog, methoprene, to precocene-treated adult locusts was followed by a rise in hemolymph levels of PSP but not in apolipophorin III (19 kDa), identified immunochemically and electrophoretically. The synthesis of PSP in adult fat body was confirmed by incorporation of [3H]leucine. At 48 h after treatment with methoprene, Vg synthesis was induced in females (as previously observed) and synthesis of PSP in both sexes was elevated above controls, while synthesis of apolipophorin III was not stimulated. We conclude that in adult locust fat body the synthesis of several proteins responds in different ways to the JH analog: Vg (and a 21 kDa protein described elsewhere) is induced de novo solely in females; PSP (and a 19 kDa protein described elsewhere) is stimulated in both sexes but is not fully JH-dependent; apolipophorin III is not stimulated. In these experiments, methoprene was administered both by injection in mineral oil and topically in acetone. After injection of mineral oil as a vector control, incorporation into secreted proteins was stimulated at 24 h, presumably due to a wound effect; topical application of acetone avoids this effect and is a preferred route for administration of JH analog. © 1992 Wiley-Liss, Inc.  相似文献   

11.
The role of thyroid hormone in the control of cardiac and renal cell development was examined in neonatal rats made hyperthyroid by administration of triiodothyronine (T3, 0.1 mg/kg s.c. on postnatal days 1-5) or hypothyroid by administration of propylthiouracil (PTU, 20 mg/kg s.c. given to dams on gestational day 17 through postnatal day 5 and to pups on postnatal days 1-5). Indices of total cell number (total DNA per tissue), cell packing density (DNA per g tissue), and relative cell size (protein/DNA ratio) were evaluated from birth through young adulthood. PTU administration led to primary shortfalls in cell number that were of similar magnitude in both tissues, but persisted somewhat longer in the kidney than in the heart. Deficits in cell packing density and cell size in the hypothyroid animals were secondary to the effect on cell number, displaying smaller magnitudes of effect and a lag in appearance and disappearance of the deficits compared to that for total DNA; indeed, the phase in which tissues were restoring their cell numbers was accompanied by increased cell packing density, reflecting a more rapid restitution of cell numbers than tissue weight or cell size. In contrast to the relatively similar effects of PTU on developing cardiac and renal cells, the effects of T3 were selective for the heart. Although T3 caused general growth impairment, it evoked marked cardiac overgrowth that was accompanied by a striking increase in cell number and a small increase in cell size. The cardiac hyperplasia is unique to the developing animal, as post-replicative heart cells in adult animals show only hypertrophy in response to thyroid hormone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The retinol dehydrogenase Rdh10 catalyzes the rate-limiting reaction that converts retinol into retinoic acid (RA), an autacoid that regulates energy balance and reduces adiposity. Skeletal muscle contributes to preventing adiposity, by consuming nearly half the energy of a typical human. We report sexually dimorphic differences in energy metabolism and muscle function in Rdh10+/− mice. Relative to wild-type (WT) controls, Rdh10+/− males fed a high-fat diet decrease reliance on fatty-acid oxidation and experience glucose intolerance and insulin resistance. Running endurance decreases 40%. Rdh10+/− females fed this diet increase fatty acid oxidation and experience neither glucose intolerance nor insulin resistance. Running endurance increases 220%. We therefore assessed RA function in the mixed-fiber type gastrocnemius muscles (GM), which contribute to running, rather than standing, and are similar to human GM. RA levels in Rdh10+/− male GM decrease 38% relative to WT. Rdh10+/− male GM increase expression of Myog and reduce Eif6 mRNAs, which reduce and enhance running endurance, respectively. Cox5A, complex IV activity, and ATP decrease. Increased centralized nuclei reveal existence of muscle malady and/or repair in GM fibers. Comparatively, RA in Rdh10+/− female GM decreases by less than half the male decrease, from a more modest decrease in Rdh10 and an increase in the estrogen-induced retinol dehydrogenase Dhrs9. Myog mRNA decreases. Cox5A, complex IV activity, and ATP increase. Centralized GM nuclei do not increase. We conclude that Rdh10/RA affects whole body energy use and insulin resistance partially through sexual dimorphic effects on skeletal muscle gene expression, structure, and mitochondria activity.  相似文献   

13.
Hexadecanol was employed as a fatty acid analog in an attempt to elucidate the role of the carboxyl group in free fatty acid uptake. Large quantities of albumin-bound [1-(14)C]hexadecanol were taken up by Ehrlich ascites cells during in vitro incubation. More than 90% of the (14)C that was taken up remained as hexadecanol even after 1 hr of incubation at 37 degrees C. Addition of unlabeled hexadecanol did not appreciably alter the rate of [U-(14)C]glucose oxidation or incorporation into total lipids, suggesting that the slow rate of hexadecanol metabolism was not due to a toxic effect of this analog. However, more of the labeled glucose was incorporated into phospholipids and less into glycerides, indicating that hexadecanol did exert some metabolic effect on the cells. Uptake was temperature dependent but relatively unresponsive to the presence of glucose or fluoride and cyanide. Hexadecanol was incorporated into exchangeable and nonexchangeable cellular pools as determined by its availability for release to a medium containing albumin. These results indicate that a mammalian cell can rapidly take up large amounts of a long-chain hydrocarbon derivative that does not contain a carboxyl group. Furthermore, the data are compatible with the hypothesis that free fatty acids are taken up by a nonenzymatic process such as diffusion into the lipid phase of the cell membrane.  相似文献   

14.
Mitochondrial dysfunction and oxidative damage are highly involved in the pathogenesis of Parkinson's disease (PD). Some mitochondrial antioxidants/nutrients that can improve mitochondrial function and/or attenuate oxidative damage have been implicated in PD therapy. However, few studies have evaluated the preventative effects of a combination of mitochondrial antioxidants/nutrients against PD, and even fewer have sought to optimize the doses of the combined agents. The present study examined the preventative effects of two mitochondrial antioxidant/nutrients, R-α–lipoic acid (LA) and acetyl-L-carnitine (ALC), in a chronic rotenone-induced cellular model of PD. We demonstrated that 4-week pretreatment with LA and/or ALC effectively protected SK-N-MC human neuroblastoma cells against rotenone-induced mitochondrial dysfunction, oxidative damage and accumulation of α-synuclein and ubiquitin. Most notably, we found that when combined, LA and ALC worked at 100–1000-fold lower concentrations than they did individually. We also found that pretreatment with combined LA and ALC increased mitochondrial biogenesis and decreased production of reactive oxygen species through the up-regulation of the peroxisome proliferator-activated receptor-γ coactivator 1α as a possible underlying mechanism. This study provides important evidence that combining mitochondrial antioxidant/nutrients at optimal doses might be an effective and safe prevention strategy for PD.  相似文献   

15.
Microbial spoilage of food causes losses of up to 40% of all food grown for human consumption worldwide. Yeast growth is a major factor in the spoilage of foods and beverages that are characterized by a high sugar content, low pH, and low water activity, and it is a significant economic problem. While growth of spoilage yeasts such as Zygosaccharomyces bailii and Saccharomyces cerevisiae can usually be retarded by weak organic acid preservatives, the inhibition often requires levels of preservative that are near or greater than the legal limits. We identified a novel synergistic effect of the chemical preservative benzoic acid and nitrogen starvation: while exposure of S. cerevisiae to either benzoic acid or nitrogen starvation is cytostatic under our conditions, the combination of the two treatments is cytocidal and can therefore be used beneficially in food preservation. In yeast, as in all eukaryotic organisms, survival under nitrogen starvation conditions requires a cellular response called macroautophagy. During macroautophagy, cytosolic material is sequestered by intracellular membranes. This material is then targeted for lysosomal degradation and recycled into molecular building blocks, such as amino acids and nucleotides. Macroautophagy is thought to allow cellular physiology to continue in the absence of external resources. Our analyses of the effects of benzoic acid on intracellular membrane trafficking revealed that there was specific inhibition of macroautophagy. The data suggest that the synergism between nitrogen starvation and benzoic acid is the result of inhibition of macroautophagy by benzoic acid and that a mechanistic understanding of this inhibition should be beneficial in the development of novel food preservation technologies.  相似文献   

16.
HEMA (2-hydroxyethyl methacrylate), a methacrylate commonly used in dentistry, was reported to induce genotoxic effects, but their mechanism is not fully understood. HEMA may be degraded by the oral cavity esterases or through mechanical stress following the chewing process. Methacrylic acid (MAA) is the primary product of HEMA degradation. In the present work we compared cytotoxic and genotoxic effects induced by HEMA and MAA in human gingival fibroblasts (HGFs). A 6-h exposure to HEMA or MAA induced a weak decrease in the viability of HGFs. Neither HEMA nor MAA induced strand breaks in the isolated plasmid DNA, but both compounds evoked DNA damage in HGFs, as evaluated by the alkaline comet assay. Oxidative modifications to the DNA bases were monitored by the DNA repair enzymes Endo III and Fpg. DNA damage induced by HEMA and MAA was not persistent and was removed during a 120 min repair incubation. Results from the neutral comet assay indicated that both compounds induced DNA double strand breaks (DSBs) and they were confirmed by the γ-H2AX assay. Both compounds induced apoptosis and perturbed the cell cycle. Therefore, methacrylic acid, a product of HEMA degradation, may be involved in its cytotoxic and genotoxic action.  相似文献   

17.
The present study was undertaken to determine the effects of AT1 receptor blockade which occurred in response to losartan, on the extracellular matrix (ECM) degradation process in the Bio 14.6 (n = 12) and Bio 53.58 (n = 12) strains which are referred as models of hypertrophic and dilated cardiomyopathy, respectively. The administration of losartan (30 mg/kg/day) in hamsters from 10–20 weeks of age reduced the accumulation of the left ventricular collagen matrix in both of the Bio 14.6 and the Bio 53.58 strains. According to the RTPCR, the levels of mRNA for matrix metalloproteinase (MMP) and the tissue inhibitor of MMP (TIMP) were examined. MMP1, 2, 3, and 9 were more enhanced in both myopathic strains than in the control F1 strains. With losartan, the levels of MMP1, 2, 9, TIMP1 and 2 decreased in the both strains but those for MMP3 did not in Bio 14.6 strains. TIMP3 and 4 mRNA levels did not change in any of the experimental hamsters, whether treated or untreated with losartan. The Western blots also showed similar observations in the both strains as seen in mRNA expressions although MMP2 in the Bio 53.58 strains did not differ between treated and untreated with losartan. Although losartan has an inhibitory effect on collagen accumulation in the development of cardiomyopathy, MMPs (1, 2, 9) and TIMPs (1, 2) seem to be susceptible to responding to losartan in Bio cardiomyopathic hamsters.  相似文献   

18.
19.
Experiments were conducted to partially characterize and to examine the regulation of unoccupied testicular follicle-stimulating hormone (FSH) binding sites in adult golden hamsters. Testicular FSH binding sites were measured in the 1800 X gav fraction of whole testicular homogenates using iodinated bovine FSH. Binding of FSH was highly specific for FSH, located primarily in the testes, was time- and temperature-dependent, initially reversible, saturable, and consistent with a model consisting of a single class of high-affinity binding sites (range of equilibrium association constants (Ka) 2-12 X 10(10) M-1). Exposure of hamsters to a short photoperiod consisting of 5L:19D was associated with an increase in concentration (fmol/mg protein), but a reduction in total content (fmol/testes) of testicular FSH binding sites. There was no appreciable 5L:19D-associated alteration in receptor affinity (average Ka = 7.83 X 10(10) M-1). Injections of ovine prolactin (oPRL), ovine luteinizing hormone (oLH), or ovine FSH (oFSH) for 3 days into hamsters housed in 5L:19D for 12 wk had no effect on photoperiod-induced changes in testicular FSH binding sites. On Days 5 and 6 post hypophysectomy, a dramatic increase in FSH binding site concentration occurred, with but marginal effects on binding site affinity. Injections of 5 micrograms oFSH on Days 2, 3, and 4 after hypophysectomy prevented the increase in binding site concentrations measured on Day 5. Injection of a combination of 5 micrograms oFSH, 50 micrograms oPRL, and 25 micrograms oLH also reduced testicular FSH binding site concentrations in hypophysectomized hamsters, but oPRL or oLH by themselves were ineffective. The data indicate a homologous down-regulation of testicular FSH binding sites, but do not exclude the involvement of other hormones.  相似文献   

20.
Healthy male volunteers injected subcutaneously with 200 mg L-GABOB showed no significant changes in plasma GH, prolactin and cortisol levels. On the other hand, an intrathecal injection of 300 mg D, L-GABOB to cerebrovascular patients caused significant increases in plasma GH, prolactin and cortisol levels at 60 min after injection. These results indicate that GABOB may elicit the secretion of GH, prolactin and ACTH via the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号