首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three forms of brain acetylcholinesterase were purified from bovine caudate-nucleus tissue and determined by calibrated gel filtration to have mol.wts. of approx. 120 000 (C), 230 000 (B) and 330 000 (A). [3H]Di-isopropyl phosphorofluoridate (isopropyl moiety labelled) was purified from commercial preparations and its concentration estimated by an enzyme-titration procedure. Brain acetylcholinesterase preparations and enzyme from eel electric tissue were allowed to react with [3H]di-isopropyl phosphorofluridate in phosphate buffer until enzyme activity was inhibited by 98%. Excess of [3H]di-isopropyl phosphorofluoridate that had not reacted was separated from the labelled enzyme protein by gel filtration, or by vacuum filtration or by extensive dialysis. The specificity of active-site labelling was confirmed by use of the enzyme reactivator, pyridine 2-aldoxime. The forms of brain acetylcholinesterase were calculted to contain approximately two (C) four (B) and six (A) active sites per molecule respectively. Acetylcholinesterase (mol.wt. 250 000) from electric-eel tissue was estimated to contain two active sites per molecule. Gradient-gel electrophoresis was used to confirm the estimation of molecular weights of brain acetylcholinesterase forms made by gel filtration. Under the conditions of electrophoresis acetylcholinesterase form A was stable, but form B was converted into a species of approx. 120 000 mol. wt. Similarly, form C of the brain enzyme was converted into a 60 000-mol.wt. form during electrophoresis. These results are in general accord with the suggestion that the multiple forms of brain acetylcholinesterase may be related to the aggregation of a single low-molecular-weight species.  相似文献   

2.
The purification of DNA-dependent RNA polymerase II (EC 2.7.7.6) from plant cell cultures of Petroselinum (parsley) is described. The procedure during which enzyme I is eliminated includes initial precipitation with (NH4)2SO4, an ultracentrifugation step, gel filtration on Sepharose 4B, chromatography on DEAE-cellulose, DNA-agarose and DEAE-Sephadex. The enzyme purified almost to homogeneity exhibits maximal activity with denatured DNA, and is activated preferentially by Mn2+; alpha-amanitin acts as a strong inhibitor. Electrophoresis of the enzyme in the presence of dodecylsulphate indicates that it is composed of seven subunits with mol. wts of 200 000, 180 000, 140 000, 43 000, 26 000, 25 000 and 16 000. The results of molecular weight and molar ratio determinations suggest that Petroselinum RNA polymerase II may exist in two active forms differing only in the composition of their high molecular weight subunits.  相似文献   

3.
L M Boxer  D Korn 《Biochemistry》1979,18(21):4742-4749
We have purified the DNA polymerase from Mycoplasma orale to homogeneity. The protein structure of the enzyme was declined by sodium dodecyl sulfate gel electrophoresis, which revealed a single band of 116 000 daltons that was coincident with the polymerase activity profile in the final step of DNA--cellulose chromatography, and by two-dimensional gel analysis, which demonstrated a single protein species at pI = 6.8 that was congruent with enzyme activity and contained the same 116 000 polypeptide. although severe enzyme aggregation occurs during nondenaturing gel electrophoresis, a monomer species can be resolved with a Mr of 140 000 by the Ferguson plot analysis. Gel filtration and velocity gradient centrifugation yield a Stokes radius of 4.8 nm and a sedimentation coefficient of 5.6 S, respectively, from which Mr values of 106 000--128 000 can be computed. The different size values suggest that the polymerase molecule is asymmetric. The purified enzyme has a specific activity of approximately 6 x 10(5) units/mg of protein and in completely devoid of exodeoxyribonuclease and endodeoxyribonuclease activities, at exclusion limits of 10(-4)--10(-6%) of the polymerase activity. The mechanism of polymerization is moderately processive, with an average of 14 +/- 4 nucleotides incorporated per binding event, and the "effective template length" on activated DNA is approximately 40 nucleotides.  相似文献   

4.
The ascorbate oxidase of two squash cultivars was resolved into five molecular forms by gel electrophoresis; that of cucumber was resolved into three forms. Molecular weight estimates by Sephadex gel filtration and interconversions of these forms strongly suggest the presence of a monomeric form of MW 30 000 for the cucumber enzyme and 35 000 for that of the squashes. The other two forms in the cucumber appear to be a dimer and a tetramer, whilst a tetramer, an octamer, a dodecamer, and a polymer of MW between 670 000 and 2 000 000 are likely to be the other four forms present in the squashes. The monomer was the most abundant form in the cucumber and the tetramer in the two squashes. The peel of these fruits was higher in activity than the flesh, but the isozyme pattern was the same in peel and flesh. The tetramer of the squashes and the dimer of cucumbers were the most resistant forms to heat inactivation. The enzyme is soluble and not associated with subcellular particles.  相似文献   

5.
In human kidney cortex neutral alpha-glucosidases 1 and 2 are represented by two forms, soluble (cytosolic) and membrane-bound (brush border) ones. It has been shown that the soluble enzyme preexists in human kidney but does not derive from the membrane-bound form. Similar to the membrane-bound enzyme the soluble form is a glycoprotein. Both enzyme forms possess identical electrophoretic mobility, pH-optimum, heat sensibility and Km values for maltose (0.7 mM) and 4-methylumbelliferyl-alpha-D-glucopyranoside (0.57 mM), but differ by molecular weights as determined by gel filtration chromatography. The molecular weights of the soluble neutral alpha-glucosidases 1 and 2 are lower than those of the comparable brush border enzymes (470 000, 360 000, 520 000 and 440 000, correspondingly). Neutral membrane-bound alpha-glucosidase 1 is a sialylated enzyme with a pI of 4.10 +/- 0.02. The soluble enzyme contains no or only traces of neuraminic acid and has a pI 4.40 +/- 0.03. The soluble and membrane-bound neutral alpha-glucosidases are apparently independent forms of the enzyme, differing by the degree of sialylation and by the presence of an "anchor" in the membrane-bound enzyme. The synthesis of both forms is presumably coded by the same structural gene.  相似文献   

6.
Yeast nuclear RNA polymerase III was purified by batch adsorption to phosphocellulose, followed by ion-exchange chromatography on DEAE-Sephadex and affinity chromatography on DNA-Sepharose. Polyacrylamide gel electrophoresis of the purified enzyme showed a single protein band which contained polymerase activity. The molecular weight estimated by sedimentation velocity centrifugation in a glycerol gradient was 380 000. Enzyme activity was inhibited 50% at 0.1 mM 1,10-phenanthroline and 100% of 1.0 mM, but was restored when 1,10-phenanthroline was removed by dialysis. Enzyme activity was not inhibited by 7,8-benzoquinoline, a nonchelating structural analogue of 1,10-phenanthroline. These results strongly suggest that inhibition of enzyme activity occurs by the formation of a reversible enzyme-zinc-phenanthroline ternary complex. The zinc content, measured by atomic absorption spectroscopy, was 2 g-atoms per mol of enzyme. Zinc was not removed from the enzyme by gel filtration on Sephadex G-25, by passage through Chelex-100 resin, or by dialysis against buffer containing 1,10-phenanthroline. Enzyme-bound zinc was removed by dialysis after denaturation of the enzyme with heat and sodium dodecyl sulfate. Enzyme-bound zinc did not exchange with free zinc. These results establish yeast nuclear RNA polymerase III as a zinc metalloenzyme.  相似文献   

7.
RNA polymerase I was purified from chromatin isolated from auxin-treated soybean hypocotyl. Purification was achieved by using Agarose A-1.5m gel filtration, DEAE-cellulose, CM-sephadex, and phosphocellulose chromatography, and sucrose density gradient centrifugation. With denatured calf thymus DNA as template, the enzyme has a high specific activity (200-300 nmol/mg/30 min at 28 degrees C) which is comparable to other RNA polymerase I enzymes purified from animals and yeast. While the gel profiles indicate that purification to homogeneity (greater than 90%) may not have been achieved, the enzyme appears to be composed of possibly 7 subunits, several of which are similar to the subunits of yeast RNA polymerase I. The putative subunits and molar ratios are 183 000 (1), 136 000 (1), 50 000 (0.5), 46 000 (0.5), 40 000 (0.5), 33 000 (0.2), and 28 000 (2). The purified enzyme strongly prefers a completely denatured template such as poly(dC).  相似文献   

8.
Cytoplasmic catechol-O-methyltransferase activity from rat liver was resolved by gel filtration into two enzymes: a major form having an estimated molecular weight of 23,000 and a minor one of 45,500. The relative abundance of these forms in liver is about 5:1, respectively. Microsomal catechol-O-methyltransferase constituted only 2% of the total liver activity. After solubilization by sonication most of the microsomal enzyme showed a molecular weight in excess of 100,000, but some 23,000 - enzyme was also released. The bound enzyme thus may represent an aggregate form of the soluble activity. The two cytoplasmic enzymes differ in several properties, including pH optima and thermal stability. The two forms also differ in the extent of methylation of the para hydroxyl group, the larger enzyme having a meta:para methylation ratio twice that obtained with the smaller form.  相似文献   

9.
10.
A poliovirus-specific RNA-dependent RNA polymerase was isolated from a cytoplasmic extract of infected HeLa cells and was shown to copurify with a single virus-specific protein. The polymerase was isolated from cells labeled with [35S]-methionine and was fractionated from other soluble cytoplasmic proteins by ammonium sulfate precipitation, phosphocellulose chromatography, gel filtration on Sephacryl S-200, and chromatography on hydroxylapatite. The activity of the enzyme was measured by using either polyadenylic acid or poliovirion RNA as a template in the presence of an oligouridylic acid primer. A single virus-specific protein that had an apparent molecular weight of 63,000 (p63) was found to copurify with this activity. Host-coded proteins were present in reduced molar amounts relative to p63. Noncapsid viral protein 2 (NCVP2) and other viral proteins were clearly separated from p63 by gel filtration on Sephacryl S-200. Polymerase activity coeluted from the column precisely with p63. NCVP2 was totally inactive as an RNA polymerase and did not stimulate the polymerase activity of p63. The purified enzyme sedimented at about 4S on a glycerol gradient and thus appeared to be a monomer of p63. Two-dimensional gel electrophoresis of the polymerase protein indicated that it had an isoelectric point of about 7.5. Thus, the viral polypeptide, p63, as defined by the above physical parameters, is an RNA-dependent RNA polymerase that can copy poliovirion RNA when oligouridylic acid is used as a primer.  相似文献   

11.
12.
HeLa S3 cells contained two activities (form I and II) that degrade (ADP-ribose)n exo-glycosidically. Form I was extracted from nuclei only by sonication in high ionic strength, while form II was soluble in cytosol. The two active forms differed in chromatographic behaviors, in their Km values for (ADP-ribose)n, and in their pH and salt requirements for optimal activity, although both forms exhibited properties characteristic of (ADP-ribose)n glycohydrolase such as requirement of sulfhydryl compounds and sensitivity of ADP-ribose and cAMP. Form I and II had apparent molecular weights of 72,000 and 53,000, respectively, as determined by gel filtration on Sepharose CL-6B.  相似文献   

13.
14.
Nucleoplasmic RNA polymerase II (nucleosidetriphosphate:RNA nucleotidyltransferase, EC 2.7.7.6) from calfthymus is phosphorylated by homologous cyclic AMP-independent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37). Polyacrylamide gel electrophoresis of the 32P-labeled RNA polymerase II under non-denaturing conditions revealed that both forms of the enzyme were phosphorylated. Polyacrylamide gel electrophoresis of the 32P-labeled RNA polymerase II under denaturing conditions showed that the 25 000 dalton subunit was the phosphate acceptor subunit. Partial acid hydrolysis of the 32P-labeled RNA polymerase II followed by ion-exchange chromatography revealed serine and threonine as the [32P]phosphate acceptor amino acids. Phosphorylation of the RNA polymerase II was accompanied by a stimulation of enzymatic activity and was dependent upon the presence of ATP.  相似文献   

15.
The visna viral RNA-dependent DNA polymerase has been resolved into two forms by affinity chromatography. Glycerine gradient centrifugation of the two forms showed that one form sedimented at 6.9 S corresponding to an apparent molecular weight of 135 000 and the other at 6.3 S corresponding to 118 000. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of the two forms indicated that the 6.9 S enzyme is composed of 2 molecules of 68 000 mol. wt. chain and the 6.3 S is a single chain enzyme. The latter form has been identified as a glycoprotein. The 6.9 S form can be completely inactivated in 20 min at 45 degrees C, prefers poly(rC) over poly(rA) as template and has high efficiency in utilizing visna 70 S RNA as template. The 6.3 S form is stable at 45 degrees C, active with 70 S viral RNA as template, prefers poly(rA) over poly(rC), and requires higher concentration of Mn2+ (0.4 mM) for maximum activity than the 6.9 S form does (0.1 mM) with synthetic homopolymers as templates. However, both 6.9 S and 6.3 S forms prefer Mg2+ over Mn2+ regardless of the nature of the templates.  相似文献   

16.
In preparation for the isolation and biochemical characterization of putative RNA polymerase mutants, DNA-dependent RNA polymerases of Drosophila melanogaster adults were isolated and partially characterized. Approximately 70% of the female adult RNA polymerase is located in ovaries. Multiple forms of ovarian RNA polymerases I and II are separable by DEAE-Sephadex chromatography. The two forms of RNA polymerase II differ in ammonium sulfate optima. RNA polymerase IIA is more active with double-stranded DNA as template, whereas RNA polymerase IIB transcribes single-stranded DNA most efficiently. Rechromatography of RNA polymerase IIA on DEAE-Sephadex results in the loss of ability of this form to transcribed double-stranded DNA most efficiently. Ovariectomized carcasses have two forms of RNA polymerase I and one form of RNA polymerase II and each transcribes single-stranded DNA most efficiently. As judged by gel filtration chromatography, female adult extracts have forms of RNA polymerase II that differ in molecular weight and template preference.Supported by Grants GM23456 from the NIH and 11259 from the City University Research Foundation.  相似文献   

17.
There is great interest in the histologic localization of the Na, K-pump in various tissues: histochemical methods in this case work poorly, so a specific antibody against a purified soluble Na, K-ATPase is necessary. We approached this problem with a two-step ionic detergent treatment; the separation of the solubilized enzyme was attempted by gel filtration and ion-exchange chromatography. The gel filtration purified form was active and nearly pure, while the ion-exchange on was purer but inactive. PAGE analyses of the various enzyme forms are presented.  相似文献   

18.
2-Deoxyglucoside-2-sulphamate sulphohydrolase was purified about 10 000-fold from the soluble extract of human placenta by using as substrate [N-sulpho-35S]heparin. Differently charged enzyme forms were observed on chromatography on DEAE-cellulose, all of which had an apparent mol.wt. of 110 000 as determined by gel filtration. By using immobilized heparan sulphate as affinity matrix the sulphamate sulphohydrolase could be separated into two forms, a minor one with low and a major one with high affinity for the adsorbent. When tested with [N-sulpho-35S]heparan sulphate the low-affinity form had a Km of 0.2 mM, and the high-affinity form a Km of 0.03 mM. Both forms exhibited the same Km of 10 microM towards [N-sulpho-35S]heparin and were equally well adsorbed to immobilized heparin. The two forms could be distinguished by their pH-optima and by the influence of KCl on heparan sulphate sulphohydrolase activity.  相似文献   

19.
FlgM is an anti-sigma factor of the flagellar-specific sigma (sigma) subunit of RNA polymerase in Bacillus subtilis, and it is responsible of the coupling of late flagellar gene expression to the completion of the hook-basal body structure. We have overproduced the protein in soluble form and characterized it. FlgM forms dimers as shown by gel exclusion chromatography and native polyacrylamide gel electrophoresis and interacts in vitro with the cognate sigmaD factor. The FlgM.sigmaD complex is a stable heterodimer as demonstrated by gel exclusion chromatography, chemical cross-linking, native polyacrylamide gel electrophoresis, and isoelectric focusing. sigmaD belongs to the group of sigma factors able to bind to the promoter sequence even in the absence of core RNA polymerase. The FlgM.sigmaD complex gave a shift in a DNA mobility shift assay with a probe containing a sigmaD-dependent promoter sequence. Limited proteolysis studies indicate the presence of two structural motifs, corresponding to the N- and C-terminal regions, respectively.  相似文献   

20.
The solubilization of 80% of the acetylcholinesterase activity of mouse brain was performed by repeated 2h incubations of homogenates at 37 degrees C in an aqueous medium. Analysis of the soluble extract by gel filtration on Sephadex G-200 showed that up to 80% of the enzyme activity was eluted in a peak which was estimated to consist of molecules of about 74000mol.wt. This peak was called the monomer form of the enzyme. After 3 days at 4 degrees C, the soluble extract was re-analysed and was eluted from the column in four peaks of about 74000, 155000, 360000 and 720000 mol.wt. Since the total activity of the enzyme in these peaks was the same as that in the predominantly monomer elution profile of fresh enzyme, we concluded that the monomer had aggregated, possibly into dimers, tetramers and octomers. Extracts of the enzyme were analysed by polyacrylamide-gel electrophoresis and the resulting multiple bands of enzyme activity on gels were shown to separate according to their molecular sizes, that is by molecular sieving. All these forms had similar susceptibilities to the inhibitors eserine, tetra-isopropyl pyrophosphoramide and compound BW 284c51 [1,5-bis-(4-allyldimethylammoniumphenyl)pentan-3-one dibromide]. Thus the forms of the enzyme in mouse brain which can be detected by gel filtration and polyacrylamide-gel electrophoresis may all be related to a single low-molecular-weight form which aggregates during storage. This supports similar suggestions made for the enzyme in other locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号