首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
After DNA damage, the cell cycle is arrested to avoid propagation of mutations. Arrest in G2 phase is initiated by ATM‐/ATR‐dependent signaling that inhibits mitosis‐promoting kinases such as Plk1. At the same time, Plk1 can counteract ATR‐dependent signaling and is required for eventual resumption of the cell cycle. However, what determines when Plk1 activity can resume remains unclear. Here, we use FRET‐based reporters to show that a global spread of ATM activity on chromatin and phosphorylation of ATM targets including KAP1 control Plk1 re‐activation. These phosphorylations are rapidly counteracted by the chromatin‐bound phosphatase Wip1, allowing cell cycle restart despite persistent ATM activity present at DNA lesions. Combining experimental data and mathematical modeling, we propose a model for how the minimal duration of cell cycle arrest is controlled. Our model shows how cell cycle restart can occur before completion of DNA repair and suggests a mechanism for checkpoint adaptation in human cells.  相似文献   

2.
ABSTRACT : Unrepaired DNA double-strand breaks (DSBs) are a major cause for genomic instability. Therefore, upon detection of a DSB a rapid response must be assembled to coordinate the proper repair/signaling of the lesion or the elimination of cells with unsustainable amounts of DNA damage. Three members of the PIKK family of protein kinases -ATM, ATR and DNA-PKcs- take the lead and initiate the signaling cascade emanating from DSB sites. Whereas DNA-PKcs activity seems to be restricted to the phosphorylation of targets involved in DNA repair, ATM and ATR phosphorylate a broad spectrum of cell cycle regulators and DNA repair proteins. In the canonical model, ATM and ATR are activated by two different types of lesions and signal through two independent and alternate pathways. Specifically, ATR is activated by various forms of DNA damage, including DSBs, arising at stalled replication forks ("replication stress"), and ATM is responsible for the signaling of DSBs that are not associated with the replication machinery throughout the cell cycle. Recent evidence suggests that this model might be oversimplified and that coordinated crosstalk between ATM and ATR activation routes goes on at the core of the DNA damage response.  相似文献   

3.
The cellular response to DNA double‐strand breaks involves direct activation of ataxia telangiectasia mutated (ATM) and indirect activation of ataxia telangiectasia and Rad3 related (ATR) in an ATM/Mre11/cell‐cycle‐dependent manner. Here, we report that the crucial checkpoint signalling proteins—p53, structural maintainance of chromosomes 1 (SMC1), p53 binding protein 1 (53BP1), checkpoint kinase (Chk)1 and Chk2—are phosphorylated rapidly by ATR in an ATM/Mre11/cell‐cycle‐independent manner, albeit at low levels. We observed the sequential recruitment of replication protein A (RPA) and ATR to the sites of DNA damage in ATM‐deficient cells, which provides a mechanistic basis for the observed phosphorylations. The recruitment of ATR and consequent phosphorylations do not require Mre11 but are dependent on Exo1. We show that these low levels of phosphorylation are biologically important, as ATM‐deficient cells enforce an early G2/M checkpoint that is ATR‐dependent. ATR is also essential for the late G2 accumulation that is peculiar to irradiated ATM‐deficient cells. Interestingly, phosphorylation of KRAB associated protein 1 (KAP‐1), a protein involved in chromatin remodelling, is mediated by DNA‐dependent protein kinase catalytic subunit (DNA‐PKcs) in a spatio‐temporal manner in addition to ATM. We posit that ATM substrates involved in cell‐cycle checkpoint signalling can be minimally phosphorylated independently by ATR, while a small subset of proteins involved in chromatin remodelling are phosphorylated by DNA‐PKcs in addition to ATM.  相似文献   

4.
ATM, the gene mutated in the genetic disease ataxia telangiectasia (AT), is a well-known protein involved in the DNA double-strand break response, where it plays an important role in sensing damage and signaling to DNA repair machinery and cell cycle checkpoints. However, a number of recent papers, including ours have found that ATM also plays important roles outside of the nucleus, which may explain some of the phenotypic features seen in AT patients. Our research into mechanisms of TSC2 regulation helped uncover a pathway upstream of TSC2 that is regulated by cytoplasmic ATM in response to ROS initiated by ATM activation of LKB1 and AMPK. We found that TSC2 activation results in mTORC1 repression and subsequent induction of autophagy. Elucidation of this stress response pathway provides a molecular mechanism for ATM signaling in the cytoplasm, and lays the groundwork for further studies on how ATM activity is regulated beyond DNA damage in different cellular compartments.  相似文献   

5.
By limiting cell cycle progression following detection of DNA damage, checkpoints are critical for cell survival and genome stability. Methylated DNA damage, when combined with inhibition of PARP activity, results in an ATR-dependent S phase delay of the cell cycle. Here, we demonstrate that another checkpoint kinase, ATM, also is involved in the DNA damage response following treatment with a sub-lethal concentration of MMS combined with the PARP inhibitor 4-AN. Both ATM and PARP activities are important for moderating cellular sensitivity to MMS. Loss of ATM activity, or that of its downstream effector Chk2, limited the duration of the S phase delay. The combination of MMS and 4-AN resulted in ATM and Chk2 phosphorylation and the time course of phosphorylation for both kinases correlated with the S phase delay. Chk2 phosphorylation was reduced in the absence of ATM activity. The Chk2 phosphorylation that remained in the absence of ATM appeared to be dependent on ATR and DNA-PK. The results demonstrate that, following initiation of base excision repair and inhibition of PARP activity, ATM activation is critical for preventing the cell from progressing through S phase, and for protection against MMS-induced cytotoxicity.  相似文献   

6.
Melanomas have high levels of genomic instability that can contribute to poor disease prognosis. Here, we report a novel defect of the ATM‐dependent cell cycle checkpoint in melanoma cell lines that promotes genomic instability. In defective cells, ATM signalling to CHK2 is intact, but the cells are unable to maintain the cell cycle arrest due to elevated PLK1 driving recovery from the arrest. Reducing PLK1 activity recovered the ATM‐dependent checkpoint arrest, and over‐expressing PLK1 was sufficient to overcome the checkpoint arrest and increase genomic instability. Loss of the ATM‐dependent checkpoint did not affect sensitivity to ionizing radiation demonstrating that this defect is distinct from ATM loss of function mutations. The checkpoint defective melanoma cell lines over‐express PLK1, and a significant proportion of melanomas have high levels of PLK1 over‐expression suggesting this defect is a common feature of melanomas. The inability of ATM to impose a cell cycle arrest in response to DNA damage increases genomic instability. This work also suggests that the ATM‐dependent checkpoint arrest is likely to be defective in a higher proportion of cancers than previously expected.  相似文献   

7.
ATM kinase plays a central role in signaling DNA double-strand breaks to cell cycle checkpoints and to the DNA repair machinery. Although the exact mechanism of ATM activation remains unknown, efficient activation requires the Mre11 complex, autophosphorylation on S1981 and the involvement of protein phosphatases and acetylases. We report here the identification of several additional phosphorylation sites on ATM in response to DNA damage, including autophosphorylation on pS367 and pS1893. ATM autophosphorylates all these sites in vitro in response to DNA damage. Antibodies against phosphoserine 1893 revealed rapid and persistent phosphorylation at this site after in vivo activation of ATM kinase by ionizing radiation, paralleling that observed for S1981 phosphorylation. Phosphorylation was dependent on functional ATM and on the Mre11 complex. All three autophosphorylation sites are physiologically important parts of the DNA damage response, as phosphorylation site mutants (S367A, S1893A and S1981A) were each defective in ATM signaling in vivo and each failed to correct radiosensitivity, genome instability and cell cycle checkpoint defects in ataxia-telangiectasia cells. We conclude that there are at least three functionally important radiation-induced autophosphorylation events in ATM.  相似文献   

8.
DNA damage triggers multiple checkpoint pathways to arrest cell cycle progression. Polo-like kinase 1 (Plk1) is an important regulator of several events during mitosis. In addition to Plk1 functions in cell cycle, Plk1 is involved in DNA damage check-point in G2 phase. Normally, ataxia telangiectasia-mutated kinase (ATM) is a key enzyme involved in G2 phase cell cycle arrest following DNA damage, and inhibition of Plk1 by DNA damage during G2 occurs in a ATM/ATR-dependent manner. However, it is still unclear how Plk1 is regulated in response to DNA damage in mitosis in which Plk1 is already activated. Here, we show that treatment of mitotic cells with doxorubicin and gamma-irradiation inhibits Plk1 activity through dephosphorylation of Plk1, and cells were arrested in G2 phase. Treatments of the phosphatase inhibitors and siRNA experiments suggested that PP2A pathway might be involved in regulating mitotic Plk1 activity in mitotic DNA damage. Finally, we propose a novel pathway, which is connected between ATM/ATR/Chk and protein phosphatase-Plk1 in DNA damage response in mitosis.  相似文献   

9.
10.
Cleavage and Inactivation of ATM during Apoptosis   总被引:10,自引:0,他引:10       下载免费PDF全文
The activation of the cysteine proteases with aspartate specificity, termed caspases, is of fundamental importance for the execution of programmed cell death. These proteases are highly specific in their action and activate or inhibit a variety of key protein molecules in the cell. Here, we study the effect of apoptosis on the integrity of two proteins that have critical roles in DNA damage signalling, cell cycle checkpoint controls, and genome maintenance-the product of the gene defective in ataxia telangiectasia, ATM, and the related protein ATR. We find that ATM but not ATR is specifically cleaved in cells induced to undergo apoptosis by a variety of stimuli. We establish that ATM cleavage in vivo is dependent on caspases, reveal that ATM is an efficient substrate for caspase 3 but not caspase 6 in vitro, and show that the in vitro caspase 3 cleavage pattern mirrors that in cells undergoing apoptosis. Strikingly, apoptotic cleavage of ATM in vivo abrogates its protein kinase activity against p53 but has no apparent effect on the DNA binding properties of ATM. These data suggest that the cleavage of ATM during apoptosis generates a kinase-inactive protein that acts, through its DNA binding ability, in a trans-dominant-negative fashion to prevent DNA repair and DNA damage signalling.  相似文献   

11.
Cells of metazoan organisms respond to DNA damage by arresting their cell cycle to repair DNA, or they undergo apoptosis. Two protein kinases, ataxia-telangiectasia mutated (ATM) and ATM and Rad-3 related (ATR), are sensors for DNA damage. In humans, ATM is mutated in patients with ataxia-telangiectasia (A-T), resulting in hypersensitivity to ionizing radiation (IR) and increased cancer susceptibility. Cells from A-T patients exhibit chromosome aberrations and excessive spontaneous apoptosis. We used Drosophila as a model system to study ATM function. Previous studies suggest that mei-41 corresponds to ATM in Drosophila; however, it appears that mei-41 is probably the ATR ortholog. Unlike mei-41 mutants, flies deficient for the true ATM ortholog, dATM, die as pupae or eclose with eye and wing abnormalities. Developing larval discs exhibit substantially increased spontaneous chromosomal telomere fusions and p53-dependent apoptosis. These developmental phenotypes are unique to dATM, and both dATM and mei-41 have temporally distinct roles in G2 arrest after IR. Thus, ATM and ATR orthologs are required for different functions in Drosophila; the developmental defects resulting from absence of dATM suggest an important role in mediating a protective checkpoint against DNA damage arising during normal cell proliferation and differentiation.  相似文献   

12.
Ionizing radiation (IR) induces DNA breakage to activate cell cycle checkpoints, DNA repair, premature senescence or cell death. A master regulator of cellular responses to IR is the ATM kinase, which phosphorylates a number of downstream effectors, including p53, to inhibit cell cycle progression or to induce apoptosis. ATM phosphorylates p53 directly at Ser15 (Ser18 of mouse p53) and indirectly through other kinases. In this study, we examined the role of ATM and p53 Ser18 phosphorylation in IR-induced retinal apoptosis of neonatal mice. Whole-body irradiation with 2 Gy IR induces apoptosis of postmitotic and proliferating cells in the neonatal retinas. This apoptotic response requires ATM, exhibits p53-haploid insufficiency and is defective in mice with the p53S18A allele. At a higher dose of 14 Gy, retinal apoptosis still requires ATM and p53 but can proceed without Ser18 phosphorylation. These results suggest that ATM activates the apoptotic function of p53 in vivo through alternative pathways depending on IR dose.  相似文献   

13.
ATM、ATR和DNA损伤介导的细胞周期阻滞   总被引:9,自引:0,他引:9  
朱虹  缪泽鸿  丁健 《生命科学》2007,19(2):139-148
ATM和ATR属于PIKK家族,是DNA损伤检查点的主要成员。它们被不同类型的DNA损伤所激活,通过磷酸化相应的下游蛋白Chk1和Chk2等,调节细胞周期各个检查点,引起细胞周期阻滞,使DNA损伤得以修复。ATM和ATR在维持基因组的稳定性中起到至关重要的作用。本文着重综述有关ATM和ATR在DNA损伤介导的细胞周期阻滞中发挥的作用以及相互关系的最新研究进展。  相似文献   

14.
15.
ATM is a master regulator of the cellular response to DNA damage. The classical mechanism of ATM activation involves its monomerization in response to DNA double-strand breaks, resulting in ATM-dependent phosphorylation of more than a thousand substrates required for cell cycle progression, DNA repair, and apoptosis. Here, new experimental evidence for non-canonical mechanisms of ATM activation in response to stimuli distinct from DNA double-strand breaks is discussed. It includes cytoskeletal changes, chromatin modifications, RNA–DNA hybrids, and DNA single-strand breaks. Noncanonical ATM activation may be important for the pathology of the multisystemic disease Ataxia Telangiectasia.  相似文献   

16.
This review covers the topic of cytometric assessment of activation of Ataxia telangiectasia mutated (ATM) protein kinase and histone H2AX phosphorylation on Ser139 in response to DNA damage, particularly the damage that involves formation of DNA double-strand breaks. Briefly described are molecular mechanisms associated with activation of ATM and the downstream events that lead to recruitment of DNA repair machinery, engagement of cell cycle checkpoints, and activation of apoptotic pathway. Examples of multiparameter analysis of ATM activation and H2AX phosphorylation vis-a-vis cell cycle phase position and induction of apoptosis that employ flow- and laser scanning-cytometry are provided. They include cells treated with a variety of exogenous genotoxic agents, such as ionizing and UV radiation, DNA topoisomerase I (topotecan) and II (mitoxantrone, etoposide) inhibitors, nitric oxide-releasing aspirin, DNA replication inhibitors (aphidicolin, hydroxyurea, thymidine), and complex environmental carcinogens such as present in tobacco smoke. Also presented is an approach to identify DNA replicating (BrdU incorporating) cells based on selective photolysis of DNA that triggers H2AX phosphorylation. Listed are strategies to distinguish ATM activation and H2AX phosphorylation induced by primary DNA damage by genotoxic agents from those effects triggered by DNA fragmentation that takes place during apoptosis. While we review most published data, recent new findings also are included. Examples of multivariate analysis of ATM activation and H2AX phosphorylation presented in this review illustrate the advantages of cytometric flow- and image-analysis of these events in terms of offering a sensitive and valuable tool in studies of factors that induce DNA damage and/or affect DNA repair and allow one to explore the linkage between DNA damage, cell cycle checkpoints and initiation of apoptosis.  相似文献   

17.
A new approach to cancer and new methods in examining rare human chromosome breakage syndromes have brought to light complex interactions between different pathways involved in damage response, cell cycle checkpoint control and DNA repair. The genes affected in these different syndromes are involved in networks of processes that respond to DNA damage and prevent chromosomal aberrations during the cell cycle. The genes involved include the ATM, ATR, FA-associated genes, NBS1 and the cancer susceptibility genes BRCA1 and BRCA2. Chromosomal instability is a common feature of many human cancers and most of the instability syndromes, characterized by sensitivity to different types of DNA damage, also show increased cancer susceptibility. Better understanding of these syndromes and their links with familial cancer provide new insight into associations between defects in DNA damage response, cell cycle control, DNA repair and cancer. Understanding the damage response repair networks that these studies are revealing will have important implications for the development of cancer management and treatment.  相似文献   

18.
Löbrich M  Jeggo PA 《DNA Repair》2005,4(7):749-759
Ataxia telangiestasia mutated protein (ATM) is the major kinase that initiates the DNA damage signal transduction response following exposure to ionising radiation (IR) in mammalian cells. DNA non-homologous end-joining (NHEJ) is the most significant double strand break (DSB) repair pathway in mammalian cells. ATM-defective cell lines display cell cycle checkpoint defects and show pronounced radiosensitivity. ATM signalling was previously thought to be dispensable for NHEJ. This review discusses recent findings that ATM activates an end-processing mechanism dependent upon Artemis, a nuclease that also functions to cleave the hairpin intermediate generated during V(D)J recombination. ATM/Artemis-dependent end-processing is required for the repair of a sub-fraction (approximately 10%) of DSBs induced by IR and makes a significant contribution to survival following exposure to ionising radiation. This result represents a new role for ATM and demonstrates a novel cross communication between the DNA repair and signal transduction machinery.  相似文献   

19.
Ataxia–telangiectasia mutated (ATM) and RAD3-related (ATR) are widely known as being central players in the mitotic DNA damage response (DDR), mounting responses to DNA double-strand breaks (DSBs) and single-stranded DNA (ssDNA) respectively. The DDR signalling cascade couples cell cycle control to damage-sensing and repair processes in order to prevent untimely cell cycle progression while damage still persists [1]. Both ATM/ATR are, however, also emerging as essential factors in the process of meiosis; a specialised cell cycle programme responsible for the formation of haploid gametes via two sequential nuclear divisions. Central to achieving accurate meiotic chromosome segregation is the introduction of numerous DSBs spread across the genome by the evolutionarily conserved enzyme, Spo11. This review seeks to explore and address how cells utilise ATM/ATR pathways to regulate Spo11-DSB formation, establish DSB homeostasis and ensure meiosis is completed unperturbed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号