首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mixed microbial cultures, previously enriched on Bunker C fuel oil, grew on and degraded Bunker C fuel oil at temperatures ranging from 5 to 28 C. At 15 C, 41 to 85% of the benzene-soluble components of Bunker C disappeared after incubation for 7 days; at 5 C the values ranged from 21 to 52% after 14 days of incubation. A Nocardia sp. isolated from a culture enriched on Bunker C oil grew on Venezuelan crude oil, Bunker C, hexadecane, and a hydrocarbon mixture at temperatures of 5 and 15 C. The 10-C decrease in temperature resulted in an average 2.2-fold decrease in generation time of the bacteria. Gas-liquid chromatographic measurements of Venezuelan and Arabian crude oils which had been incubated with the Nocardia sp. showed significant degradation of the n-alkane portion and the chromatographically unresolved components of the oils. The concentration of elemental nitrogen required to bring about the disappearance of 1 mg of hexadecane by the Nocardia sp. was 0.5 mg. The results confirm suggestions that the rate of natural biodegradation of oil in marine temperate-to-polar zones is probably limited by low temperatures and phosphorus concentrations, but suggest that the concentrations of nitrogen occurring naturally are probably not rate-limiting factors.  相似文献   

2.
Evidence for in situ crude oil biodegradation after the Prestige oil spill   总被引:1,自引:0,他引:1  
In November 2002, the oil tanker Prestige sank off the Spanish coast after releasing approximately 17,000 tones of heavy fuel, coating several hundred kilometers of coastline in oil sludge. In December 2002 and February 2003, samples were collected from the shore of the Galician coast to analyse the indigenous population ability to carry out crude oil degradation in situ. Carbon isotopic ratio of the dissolved inorganic carbon (DIC) in seawater samples was used as a rapid method to directly assess activity of microbes on the oil components. 12CO2/13CO2 ratio in samples from certain locations along the coast revealed degradation of a very delta13C-negative source such as the Prestige crude oil (-30.6 per thousand). Putative biodegradation processes taking place at areas with high income of fresh seawater could not be detected with this technique. Laboratory-scale biostimulation processes carried out in samples with the highest oil biodegradation activity showed that N/P deficiency in seawater is a limiting factor for crude oil degradation. The most probable number (MPN) of crude oil component degraders was estimated for several aromatic compounds (naphthalene, anthracene, phenanthrene, pyrene) and for undecane. Our results clearly show that bacteria present in the contaminated water are readily able to transform components of the crude oil into inorganic carbon.  相似文献   

3.
Five axenic cultures and a mixed culture were examined for ability to degrade South Louisiana, Brass River Nigerian, Anaco Venezuelan, and Altamont crude oils. A wax was observed during microbial degradation of Altamont crude oil, but not during weathering of the oil. The high-boiling n-alkanes in the wax were associated with microbial degradation of the oil and appeared to be similar to components of tarballs found in the open ocean.  相似文献   

4.
The biodegradability of seven different crude oils was found to be highly dependent on their composition and on incubation temperature. At 20 C lighter oils had greater abiotic losses and were more susceptible to biodegradation than heavier oils. These light crude oils, however, possessed toxic volatile components which evaporated only slowly and inhibited microbial degradation of these oils at 10 C. No volatile toxic fraction was associated with the heavier oils tested. Rates of oil mineralization for the heavier oils were significantly lower at 20 C than for the lighter ones. Similar relative degradation rates were found with a mixed microbial community, using CO2 evolution as the measure, and with a Pseudomonas isolate from the Arctic, using O2 consumption as the measure. The paraffinic, aromatic, and asphaltic fractions were subject to biodegradation. Some preference was shown for paraffin degradation, especially at low temperatures. Branched paraffins, such as pristane, were degraded at both 10 and 20 C. At best, a 20% residue still remained after 42 days of incubation. Oil residues generally had a lower relative percentage of paraffins and higher percentage of asphaltics than fresh or weathered oil.  相似文献   

5.
Prototheca zopfii is an achlorophyllous alga which degrades oil. It has been found to degrade 10 and 40% of a motor oil and crude oil, respectively, when tested under appropriate conditions. Degradation of the crude oil observed in this study compares well with the amount of degradation accomplished by bacteria. P. zopfii was found to degrade a greater percentage of the aromatic hydrocarbons in motor oil than of the saturated hydrocarbons and a greater percentage of saturated hydrocarbons in crude oil than of aromatic hydrocarbons. Resins and asphaltens were produced during degradation of motor oil, whereas these fractions in crude oil were degraded. P. zopfii did not demonstrate preferential utilization of lower homologues of cycloalkanes and aromatics as has been observed with bacteria.  相似文献   

6.
高效降解石油细菌的分离鉴定及降解能力的研究   总被引:2,自引:0,他引:2  
目的:为获得高效降解原油的菌株,从石油污染严重的土壤中采样,富集分离得到原油降解菌,并初步考察它们降解原油的能力。方法:通过富集培养、多次筛选分离得到三株优势菌,编号为SWH-1、SWH-2和SWH-3。通过16S rDNA序列分析和NCBI数据库的Blast比对分析,对其鉴定到种。通过差量法测定它们在室内摇瓶中对原油的降解率。结果:经鉴定,这三株菌分别为枯草芽孢杆菌(Bacillus subtillus)、多食鞘氨醇杆菌(Sphingobacterium multivorum)和嗜温鞘氨醇杆菌(Sphingobacterium thalpophi-lum)。在0.5g/L的原油培养基内培养1w,SWH-1和SWH-2的降解率较高,分别为33.89%和46.31%。将这两株菌进行混合培养降解原油,降解率高达51.73%。结论:所筛选到的枯草芽孢杆菌和多食鞘氨醇杆菌在生物修复方面具有很好的应用潜力,而且多食鞘氨醇杆菌在石油降解方面的报道尚属首次。  相似文献   

7.
Behaviour of microbial populations responsible for degrading n-alkanes, a major component of crude oil, was monitored during crude oil degradation in a sea-water microcosm by both traditional colony culturing and molecular techniques. A DNA extraction method applicable to crude oil-amended sea-water samples was developed to obtain DNA applicable to most probable number (MPN) polymerase chain reaction (PCR). The population of alkane-degrading bacteria responsible for degradation of n-alkanes in a crude oil-amended microcosm altered, so that shorter alkanes were degraded first by alkane-degrading bacteria possessing alkane hydroxylase genes from group I (Kohno et al., 2002, Microb Environ 17: 114-121) and longer ones afterwards by those possessing alkane hydroxylase genes from group II. Thus, the degradation mechanism of the n-alkanes can be clarified during crude oil degradation. Application of the method of detecting different types of alkane-catabolic genes, as shown in the present study, enabled bacterial groups preferring alkanes of either shorter or longer chain lengths to be enumerated selectively.  相似文献   

8.
Oil degradation in soil.   总被引:9,自引:0,他引:9  
The environmental effects of adding certain selected petroleum products to field soils at widely separated geographical locations under optimum conditions for biodegradation were studied. The locations selected for study of soil biodegradation of six oils (used crankcase oil from cars, used crankcase oil from trucks, an Arabian Heavy crude oil, a Coastal Mix crude oil, a home heating oil no. 2, and a residual fuel oil no. 6) were Marcus Hook, Pennsylvania, Tulsa, Oklahoma, and Corpus Christi, Texas. The investigative process, covering a period of 1 year at each location, was conducted in 14 fields plots (1.7 by 3.0 m) to which the oils were added in a single application at a rate of 11.9 m3/4 X 10(3) m2. One-half of the plots at each location were fertilized, and the incorporation of the oils and fertilizers was accomplished with rototillers to a depth of 10 to 15 cm. Concentrations of all oils decreased significantly at all locations. The average reduction ranged from 48.5 to 90.0% depending upon the type of oil and location. Rates of degradation did not exceed 2.4 m3/4 X 10(3) m2 per month. Compositional changes in the oil with time were investigated using silica gel fractionation, gas chromatography, and ultraviolet absorbance. With the possible exception of the two fuel oils, the compositional changes were generally in the same direction for all of the oils. The silica gel fractionation and gravimetric data on residual oils show that all classes of compounds were degraded, but the more polar type degrade more slowly. Analysis of runoff water, leachate, and soils indicated that at the concentration applied no oil less was observed from these plots via water movement. No significant movement of lead compounds added to the soils in the used crankcase oils was observed. Significant increases in hydrocarbon-utilizing microorganisms were demonstrated in all treated plots using either the pure hydrocarbon, n-hexadecane, or the applied oils as the growth substrate. These increases were usually sustained throughout the year. Significant increases in hydrocarbon-utilizing fungi were not demonstrated by the plating technique used. The concentrations of residual oils or their oxidation products were of sufficient magnitude in the treated plots, 9 months after application, to cause significant inhibition of plant growth. From the data obtained, it was not possible to determine the type of compounds causing this inhibition or their long-term environmental effects.  相似文献   

9.
Exposure to water-soluble fractions (WSF) of a crude and two fuel oils altered the ascorbic acid (AsA) content of several striped mullet, Mugil cephalus , tissues. Exposure to sublethal concentrations of all three WSFs caused a depletion of AsA reserves in brain, gill, kidney and liver tissues, but not in muscle. There was a marked decline in AsA stores in kidney and gill tissues after only one day of exposure to WSFs of both crude and fuel oils. Liver AsA concentrations were significantly depleted after one week of oil exposure. Brain AsA content was only significantly depleted during chronic exposure to the highest oil concentration (20% WSF). A dose-dependent depletion of AsA reserves in the liver but not in the other tissues was observed one week after a single exposure to 2–20% WSFs of a No. 2 fuel oil. Exposure to 20% WSF of the No. 2 fuel oil caused a 47% decrease in liver AsA content one week later. Hepatic concentrations were still significantly depleted after 15 days, but had returned to control levels 20 days after the initial exposure. The data suggest that the depletion of tissue AsA reserves in fish inhabiting oil-contaminated environments could be sufficient on occasions to lead to AsA deficiency.  相似文献   

10.
从大庆原油样品中分离和初步筛选菌株   总被引:1,自引:0,他引:1  
目的:根据目标菌株的特性,应用选择培养基筛选出提高石油三次采油采收率的菌株,并对其进行相关性质的鉴定。方法:从大庆原油样品中经过富集培养,平板分离。结果:获得2株细菌,1号菌株属于假单胞菌属,2号菌株属于芽孢杆菌属。对两株细菌进行了定性分析,结果表明两株细菌均能产酸、产气、产表面活性剂。证明其具有降低原油黏度的作用。  相似文献   

11.
【背景】石油作为一类混杂有机化合物,一旦产生污染就会对人类和环境造成严重的危害。【目的】从新疆石油污染土壤中分离筛选石油降解菌,为石油污染土壤的生物修复提供数据支持及技术参考。【方法】以石油为唯一碳源,通过富集培养、筛选分离得到123株单菌,根据菌落形态挑选出30个不同形态菌株,通过16S rRNA基因序列确定其种属,构建系统发育树;通过原油降解实验筛选出高效石油降解菌,以芳香烃的标志化合物萘为唯一碳源筛选出高效降解菌株,并分别筛选可降解水杨酸、邻苯二酚的菌株。【结果】分离筛选出5株高效石油降解菌,降解率高于85%;萘、水杨酸和邻苯二酚降解菌株各获得一株,将3种菌株按照1:1:1的接种比例对萘进行降解,萘的降解率从单菌60.74%提升到89.40%,菌株间的分工协作可以提高有机物的降解效率。【结论】筛选得到的菌株丰富了石油降解微生物菌种库,不同微生物菌株之间的分工协作为石油污染物的降解提供了新思路,为进一步研究石油污染治理提供参考。  相似文献   

12.
Biodeterioration of crude oil and oil derived products: a review   总被引:2,自引:0,他引:2  
Biodeterioration of crude oil and oil fuels is a serious economic and an environmental problem all over the world. It is impossible to prevent penetration of microorganisms in oil and fuels both stored in tanks or in oilfields after drilling. Both aerobic and anaerobic microorganisms tend to colonise oil pipelines and oil and fuel storage installations. Complex microbial communities consisting of both hydrocarbon oxidizing microorganisms and bacteria using the metabolites of the former form an ecological niche where they thrive. The accumulation of water at the bottom of storage tanks and in oil pipelines is a primary prerequisite for development of microorganisms in fuels and oil and their subsequent biological fouling. Ability of microorganisms to grow both in a water phase and on inter-phase of water/hydrocarbon as well as the generation of products of their metabolism worsen the physical and chemical properties of oils and fuels. This activity also increases the amount of suspended solids, leads to the formation of slimes and creates a variety of operational problems. Nowadays various test-systems are utilized for microbial monitoring in crude oils and fuels; thus allowing an express determination of both the species and the quantities of microorganisms present. To suppress microbial growth in oils and fuels, both physico-mechanical and chemical methods are applied. Among chemical methods, the preference is given to substances such as biocides, additives, the anti-freezing agents etc that do not deteriorate the quality of oil and fuels and are environmentally friendly. This review is devoted to the analysis of the present knowledge in the field of microbial fouling of crude oils and oil products. The methods utilized for monitoring of microbial contamination and prevention of their undesirable activities are also evaluated. The special focus is given to Russian scientific literature devoted to crude oil and oil products biodeterioration.  相似文献   

13.
Summary The degradation of crude oil in continuous culture of a mixed bacteria population has been studied. The degradation percentage reaches 83 % with a 0.05 h-1 dilution rate and a 6 g 1-1 crude oil concentration. The different crude oil compounds : saturated, aromatic, polar hydrocarbons and asphaltenes are degraded at 97 %, 81 %, 52 % and 74 % respectively.  相似文献   

14.
Using enrichment culture technique, two isolates that brought a significant degradation and dispersion of crude oil were obtained from contaminated sediments of the Bohai Bay, China. 16S rRNA gene sequencing and phylogenetic analysis indicated that the two bacterial strains affiliated with the genera Vibrio and Acinetobacter. Subsequently, the bacterial cells were immobilized on the surface of cotton fibers. Cotton fibers were used as crude oil sorbent as well as a biocarrier for bacteria immobilization. Among the two isolates, the marine bacteria Acinetobacter sp. HC8-3S showed a strong binding to the cotton fibers, possibly enhanced through extracellular dispersant excreted by Acinetobacter sp. HC8-3S. Both planktonic and immobilized bacteria showed relatively high biodegradation (>60%) of saturated hydrocarbons fraction of crude oil, in the pH range of 5.6–8.6. The degradation activities of planktonic and immobilized bacteria were not affected significantly when the NaCl concentration reached 70 g/L. The immobilized bacterial cells exhibited an enhanced biodegradation of crude oil. The efficiency of saturated hydrocarbons degradation by the immobilized bacterial cells increased about 30% compared to the planktonic bacterial cells.  相似文献   

15.
Light-induced alkalinization of the extracellular medium was found to be a common feature of the primary photosynthetic process of several marine microalgae. The light-induce PH increase of suspensions of whole cells was immediately and severely inhibited by a single dose of water-soluble components from crude and fuel oils. Differential effects on the rates of microalgal photosynthetic O2 evolution and cell suspension pH increase suggest different toxicity mechanisms of the water-soluble components of no. 2 fuel oil as compared with Southern Louisiana and Jay Crude oils. These short-term studies on the nature of sublethal petroleum toxicity to microalgae indicate that the primary effect may be through direct action on the energy-yielding electron transport systems.  相似文献   

16.
Light-induced alkalinization of the extracellular medium was found to be a common feature of the primary photosynthetic process of several marine microalgae. The light-induce PH increase of suspensions of whole cells was immediately and severely inhibited by a single dose of water-soluble components from crude and fuel oils. Differential effects on the rates of microalgal photosynthetic O2 evolution and cell suspension pH increase suggest different toxicity mechanisms of the water-soluble components of no. 2 fuel oil as compared with Southern Louisiana and Jay Crude oils. These short-term studies on the nature of sublethal petroleum toxicity to microalgae indicate that the primary effect may be through direct action on the energy-yielding electron transport systems.  相似文献   

17.
Of 150 cultures capable of degrading petroleum at +6°C, 40 strains growing in a liquid mineral nutrient medium containing petroleum (2%) as the sole source of carbon were selected. Of them, 13 cultures displaying a petroleum degradation rate exceeding 25% were selected. Abilities of these cultures and their associations to utilize fuel oil and its components—oils and benzene resins—were studied. A culture exhibiting degradation rates of fuel oil, its oils, benzene resins, and petroleum amounting to 17, 26, 10, and 51%, respectively, was selected. This culture can be used for cleanup of petroleum pollution under cold climatic conditions.  相似文献   

18.
The abundance dynamics and composition of indigenous soil microbial communities were studied in soils polluted with naphthalene, dioctyl phthalate, diesel fuel, and crude oil. DGGE analysis of the 16S rRNA genes amplified from the total soil DNA revealed that the bacterial community of uncontaminated soil was more diverse and included no dominant species. In the soil samples polluted with the crude oil, diesel fuel, or dioctyl phthalate, Pseudomonas became the dominant bacteria since the third day of the experiment. In the soil polluted with naphthalene, two genera of bacteria (Pseudomonas and Paenibacillus) were dominant in population on the third day of the experiment, while on the 21th day of the experiment Arthrobacter became dominant. During the experiment, the average number of indigenous bacterial degraders increased approximately by two orders of magnitude. While the key genes of naphthalene catabolism, nahAc and nahH, were not detected in the pristine soil, they were found in a significant amount on the third day after naphthalene addition. Three degrader strains harboring the plasmids of naphthalene biodegradation (IncP-9 group) were isolated on the third day from the soil polluted with naphthalene. Two of these plasmids, although isolated from various degraders, were shown to be identical.  相似文献   

19.
A series of microbial associations capable of degrading various petroleum oils, emulsols, and crude oil were obtained by selection during periodic or continuous cultivation. The formation of these associations and oil-product degradation occurred most efficiently during aerobic flow cultivation. Under these conditions, oils were degraded by 92% on average. The microbial degradation of a petroleum oil depended on its brand, concentration, emulsification, and aeration.  相似文献   

20.
The effects of inorganic commercial fertiliser (N:P:K = 8:8:1) and oil palm empty fruit bunch (EFB) as nutrient amendments for crude oil degradation and microbial population shift by a microbial consortium [Pseudomonas sp. (UKMP-14T), Acinetobacter sp. (UKMP-12T), Trichoderma sp. (TriUKMP-1M and TriUKMP-2M)] were assessed. The bacterial populations present during crude oil degradation were analysed by spread plate method and 16S rRNA sequences, whereas the presence of fungi was assessed by growth on potato dextrose agar. Crude oil degradation analysed using gas chromatography-flame ionisation detection showed total petroleum hydrocarbon reduced between 70 and 100%, depending on the type of amendments compared to control (≈55%) after 30 days of incubation. Nutrient amendments using NPK fertiliser or EFB were found to influence the domination of different bacterial species, which in turn preferentially utilised different hydrocarbons. This study suggested different nutrient amendments could be used to preferentially select bacteria to degrade different components of crude oil, particularly pertaining to the recalcitrant phytane. This information is very useful for application of in situ bioremediation of soil hydrocarbon contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号