首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
The present study was designed to observe the properties of swelling-activated chloride channel (ICl.swell) in mouse cardiac myocytes using patch clamp techniques. In whole-cell recordings, hypotonic solution activated a chloride current that exhibited outward rectification, weak voltage-dependent inactivation, and anion selectivity with permeability sequence of I- > Br- > Cl-. The current was sensitive to Cl- channel blockers tamoxifen, NPPB and DIDS. In single-channel recordings, cell swelling activated a single channel current which showed outward rectification with open probability of 0.76 +/- 0.08 and conductance of 38.1 +/- 2.5 pS at +100 mV under [Cl-] symmetrical condition. I-V relation revealed the reversal potential as expected for a Cl(-)-selective channel. These results suggested that in mouse cardiac myocytes, swelling-activated, outward rectifying chloride channel with a single channel conductance of 38.1 +/- 2.5 pS (at +100 mV under [Cl-] symmetrical condition) underlies the volume regulatory Cl- channel.  相似文献   

2.
Membrane Cl(-) channels play an important role in cell volume homeostasis and regulation of volume-sensitive cell transport and metabolism. Heterologous expression of ClC-2 channel cDNA leads to the appearance of swelling-activated Cl(-) currents, consistent with a role in cell volume regulation. Since channel properties in heterologous models are potentially modified by cellular background, we evaluated whether endogenous ClC-2 proteins are functionally important in cell volume regulation. As shown by whole cell patch clamp techniques in rat HTC hepatoma cells, cell volume increases stimulated inwardly rectifying Cl(-) currents when non-ClC-2 currents were blocked by DIDS (100 microM). A cDNA closely homologous with rat brain ClC-2 was isolated from HTC cells; identical sequence was demonstrated for ClC-2 cDNAs in primary rat hepatocytes and cholangiocytes. ClC-2 mRNA and membrane protein expression was demonstrated by in situ hybridization, immunocytochemistry, and Western blot. Intracellular delivery of antibodies to an essential regulatory domain of ClC-2 decreased ClC-2-dependent currents expressed in HEK-293 cells. In HTC cells, the same antibodies prevented activation of endogenous Cl(-) currents by cell volume increases or exposure to the purinergic receptor agonist ATP and delayed HTC cell volume recovery from swelling. These studies provide further evidence that mammalian ClC-2 channel proteins are functional and suggest that in HTC cells they contribute to physiological changes in membrane Cl(-) permeability and cell volume homeostasis.  相似文献   

3.
The molecular identities of functional chloride channels in hepatocytes are largely unknown. We examined the ClC-3 chloride channel in rat hepatocytes and found that mRNA for two different isoforms is present. A short form is identical to the previously reported sequence for rat ClC-3, and a long form contains a 176-bp insertion immediately upstream of the translation initiation site. This predicts a 58-amino acid NH(2) terminal insertion. Both long and short form mRNA was expressed in diverse tissues of the rat. Transient transfection of the long form in CHO-K1 cells resulted in currents with an I(-) > B(-) > Cl(-) selectivity sequence, outward rectification, and inactivation at positive voltages. Short form currents had identical ionic selectivity but displayed a more extreme outward rectification and showed no voltage-dependent inactivation. Immunofluorescence and immunoblots localized native ClC-3 preferentially but not exclusively to the canalicular membrane. We have therefore identified a new isoform of rat ClC-3 and shown that expression of both isoforms produces functional channels. In hepatocytes, ClC-3 is located in association with the canalicular membrane.  相似文献   

4.
During stroke orhead trauma, extracellular K+concentration increases, which can cause astrocytes to swell. In vitro,such swelling causes astrocytes to release excitatory amino acids, which may contribute to excitotoxicity in vivo. Several putative swelling-activated channels have been identified through which suchanionic organic cellular osmolytes can be released. In the presentstudy, we sought to identify the swelling-activated channel(s) responsible forD-[3H]aspartaterelease from primary cultured astrocytes exposed to either KCl orhypotonic medium. KCl-inducedD-[3H]aspartaterelease was inhibited by the anion channel inhibitors 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), dideoxyforskolin, L-644711, ATP, ITP, 3'-azido-3'-deoxythymidine, DIDS, andtamoxifen but not by cAMP. The cell swelling caused by raised KCl wasnot inhibited by extracellular ATP or tamoxifen as measured by an electrical impedance method, which suggests that these anion channel inhibitors directly blocked the channel responsible for efflux. Extracellular nucleotides and DIDS, however, had no or only partial effects onD-[3H]aspartaterelease from cells swollen by hypotonic medium, but such release wasinhibited by NPPB, dideoxyforskolin, and tamoxifen. Of theswelling-activated channels so far identified, our data suggest that avolume-sensitive outwardly rectifying channel is responsible forD-[3H]aspartaterelease from primary cultured astrocytes during raised extracellularK+ and possibly during hypotonicmedium-induced release.

  相似文献   

5.
6.
Salt and water absorption and secretion across the airway epithelium are important for maintaining the thin film of liquid lining the surface of the airway epithelium. Movement of Cl across the apical membrane involves the CFTR Cl channel; however, conductive pathways for Cl movement across the basolateral membrane have been little studied. Here, we determined the regulation and single-channel properties of the Cl conductance (G(Cl)) in airway surface epithelia using epithelial cultures from human or bovine trachea and freshly isolated ciliated cells from the human nasal epithelium. In Ussing chamber studies, a swelling-activated basolateral G(Cl) was found, which was further stimulated by forskolin and blocked by N-phenylanthranilic acid (DPC) = sucrose > flufenamic acid = niflumic acid = glibenclamide > CdCl(2) = 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) = DIDS = ZnCl(2) > tamoxifen > 4,4'-dinitro-2,2'-stilbene-disulfonate disodium salt (DNDS). In whole cell patch-clamp experiments, three types of G(Cl) were identified: 1) a voltage-activated, DIDS- (but not Cd-) blockable and osmosensitive G(Cl); 2) an inwardly rectifying, hyperpolarization-activated and Cd-sensitive G(Cl); and 3) a forskolin-activated, linear G(Cl), which was insensitive to Cd and DIDS. In cell-attached patch-clamp recordings, the basolateral pole of isolated ciliated cells expressed three types of Cl channels: 1) an outwardly rectifying, swelling-activated Cl channel; 2) a strongly inwardly rectifying Cl channel; and 3) a forskolin-activated, low-conductance channel. We propose that, depending on the driving force for Cl across the apical membrane, basolateral Cl channels confine Cl(-) secretion or support transcellular Cl(-) absorption.  相似文献   

7.
Acid-activated chloride currents have been reported in several cell types and may play important roles in regulation of cell function. However, the molecular identities of the channels that mediate the currents are not defined. In this study, activation of the acid-induced chloride current and the possible candidates of the acid-activated chloride channel were investigated in human nasopharyngeal carcinoma cells (CNE-2Z). A chloride current was activated when extracellular pH was reduced to 6.6 from 7.4. However, a further decrease of extracellular pH to 5.8 inhibited the current. The current was weakly outward-rectified and was suppressed by hypertonicity-induced cell shrinkage and by the chloride channel blockers 5-nitro-2-3-phenylpropylamino benzoic acid (NPPB), tamoxifen, and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt hydrate (DIDS). The permeability sequence of the channel to anions was I(-) > Br(-) > Cl(-) > gluconate(-). Among the ClC chloride channels, ClC-3 and ClC-7 were strongly expressed in CNE-2Z cells. Knockdown of ClC-3 expression with ClC-3 small interfering (si)RNA prevented the activation of the acid-induced current, but silence of ClC-7 expression with ClC-7 siRNA did not significantly affect the current. The results suggest that the chloride channel mediating the acid-induced chloride current was volume sensitive. ClC-3 is a candidate of the channel proteins that mediate or regulate the acid-activated chloride current in nasopharyngeal carcinoma cells.  相似文献   

8.
Volume-sensitive outwardly rectifying (VSOR) Cl- channels are activated during osmotic swelling and involved in the subsequent volume regulation in most animal cells. To test the hypothesis that the ClC-3 protein is the molecular entity corresponding to the VSOR Cl- channel in cardiomyocytes, the properties of VSOR Cl- currents in single ventricular myocytes isolated from ClC-3-deficient (Clcn3(-/-)) mice were compared with those of the same currents in ClC-3-expressing wild-type (Clcn3(+/+)) and heterozygous (Clcn3(+/-)) mice. Basal whole-cell currents recorded under isotonic conditions in ClC-3-deficient and -expressing cells were indistinguishable. The biophysical and pharmacological properties of whole-cell VSOR Cl- currents in ClC-3-deficient cells were identical in ClC-3-expressing cells. The VSOR Cl- current density, which is an indicator of the plasmalemmal expression of functional channels, was essentially the same in cells isolated from these 3 types of mice and C57BL/6 mice. Activation of protein kinase C (PKC) by a phorbol ester was found to upregulate VSOR Cl- currents in ClC-3-deficient and -expressing cardiomyocytes. This effect is opposite to the reported downregulatory effect of PKC activators on ClC-3-associated Cl- currents. We thus conclude that functional expression of VSOR Cl- channels in the plasma membrane of mouse cardiomyocytes is independent of the molecular expression of ClC-3.  相似文献   

9.
It has been shown that Cl-/HCO3- exchangers and Cl- channels, both of which are sensitive to stilbene derivatives, have essential roles in the mechanism of apoptosis induction. Staurosporine-induced apoptosis in neonatal mouse cardiomyocytes was prevented by a stilbene derivative, DIDS. To clarify whether Cl-/HCO3- exchangers or Cl- channels are targets of DIDS and whether ClC-3 is involved in the apoptotic process, staurosporine-induced reduction of cell viability, DNA laddering and caspase-3 activation were examined in cultured mouse ventricular myocytes derived from wild-type and ClC-3-deficient mice. Staurosporine-induced apoptosis and its DIDS sensitivity in ambient HCO3(-)-free conditions in which operation of Cl-/HCO3- exchangers is minimized were indistinguishable from when HCO3- was present. Apoptosis was also prevented by application of a non-stilbene-derivative Cl- channel blocker, NPPB, which cannot block Cl-/HCO3- exchangers. Cardiomyocytes derived from ClC-3-deficient mice similarly underwent apoptosis after exposure to staurosporine; moreover, apoptosis was prevented by application of DIDS or NPPB. Thus, we conclude that in cardiomyocytes, apoptosis is critically dependent on operation not of Cl-/HCO3- exchangers but of Cl- channels which are distinct from ClC-3.  相似文献   

10.
The almost ubiquitously expressed ClC-2 chloride channel is activated by hyperpolarization and osmotic cell swelling. Osmotic swelling also activates a different class of outwardly rectifying chloride channels, and several reports point to a link between protein tyrosine phosphorylation and activation of these channels. This study examines the possibility that transforming growth factor-alpha (TGF-alpha) modulates ClC-2 activity in human colonic epithelial (T84) cells. TGF-alpha (0.17 nM) irreversibly inhibited ClC-2 current in nystatin-perforated whole cell patch-clamp experiments, whereas a superimposed reversible activation of the current was observed at 8.3 nM TGF-alpha. Both effects required activation of the intrinsic epidermal growth factor receptor (EGFR) tyrosine kinase activity, of phosphoinositide 3-kinase, and of protein kinase C. With microspectrofluorimetry of the pH-sensitive fluorescent dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, TGF-alpha was shown to reversibly alkalinize T84 cells at 8.3 nM but not at 0.17 nM, suggesting that 8.3 nM TGF-alpha-induced alkalinization activates ClC-2 current. This study indicates that ClC-2 channels are targets for EGFR signaling in epithelial cells.  相似文献   

11.
Loss of function mutations of the renal chloride channel, ClC-5, have been implicated in Dent's disease, a genetic disorder characterized by low weight proteinuria, hypercalciuria, nephrolithasis and, in some cases, eventual renal failure. Recently, our laboratory used an RT-PCR/RACE cloning strategy to isolate an amphibian cDNA from the renal epithelial cell line A6 that had high homology to human ClC-5. We now report a full-length native ClC-5 clone (xClC-5, containing 5′ and 3′ untranslated regions) isolated by screening a cDNA library from A6 cells that was successfully expressed in Xenopus oocytes. In addition, we compared the properties of xClC-5 and hClC-5 using isogenic constructs of xClC-5 and hClC-5 consisting of the open reading frame subcloned into an optimized Xenopus expression vector. Expression of the full-length ``native' xClC-5 clone resulted in large, strongly rectifying, outward currents that were not significantly affected by the chloride channel blockers DIDS, DPC, and 9AC. The anion conductivity sequence was NO 3 > Cl= I > HCO 3 >> glutamate for xClC-5 and NO 3 > Cl > HCO 3 > I >> glutamate for hClC-5. Reduction of the extracellular pH (pH o ) from 7.5 to 5.7 inhibited outward ClC-5 currents by 27 ± 9% for xClC-5 and 39 ± 7% for hClC-5. The results indicate that amphibian and mammalian ClC-5 have highly similar functional properties. Unlike hClC-5 and most other ClC channels, expression of xClC-5 in oocytes does not require the removal of its untranslated 5′ and 3′ regions. Acidic solutions inhibited both amphibian and human ClC-5 currents, opposite to the stimulatory effects of low external pH on other ClC channels, suggesting a possibly distinct regulatory mechanism for ClC-5 channels. Received: 28 August 1998/Revised: 13 January 1999  相似文献   

12.
By using Western blot and RT-PCR analyses, the expression of ClC-5, a member of the ClC family of voltage-gated chloride channels, and its mRNA was detected in OK cells. The effect of chloride channel inhibitors on receptor-mediated endocytosis of albumin was examined in OK cells and compared to that of vacuolar H(+)-ATPase inhibitors. Accumulation of fluorescein-isothiocyanate (FITC)-albumin, a receptor-mediated endocytosis marker, was inhibited by 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), a chloride channel inhibitor, in a concentration-dependent fashion. In contrast, uptake of FITC-inulin, a fluid-phase endocytosis marker, was not affected by NPPB. Other chloride channel inhibitors, 4,4'-diisothiocyanatostilbene-2-2'-disulfonic acid and diphenylamine-2-carboxylic acid, also inhibited FITC-albumin uptake. NPPB, as well as a vacuolar H(+)-ATPase inhibitor bafilomycin A(1), caused a decrease in the affinity and in the maximal velocity of FITC-albumin uptake. These results suggest that chloride channel, most likely ClC-5, plays an important role in the receptor-mediated endocytosis of albumin in OK cells.  相似文献   

13.
Interstitial cells of Cajal (ICC) undergo marked morphological changes on contraction of the musculature, making it essential to understand properties of mechanosensitive ion channels. The whole cell patch-clamp technique was used to identify and to characterize volume-activated Cl- currents in ICC cultured through the explant technique. Hypotonic solutions (approximately 210 mosM) activated an outwardly rectifying current, which reversed near the equilibrium potential for Cl-. Time-dependent inactivation occurred only at pulse potentials of +80 mV, with a time constant of 478 +/- 182 ms. The degree of outward rectification was calculated using a rectification index, the ratio between the slope conductances of +65 and -55 mV, which was 13.9 +/- 1.5 at 76 mM initial extracellular Cl- concentration. The sequence of relative anion permeability of the outwardly rectifying Cl- channel was I- > Cl- > aspartate-. The chloride channel blockers, DIDS and 5-nitro-2-(3-phenlypropl-amino)benzoic acid, caused a voltage-dependent block of the outwardly rectifying Cl- current, inhibition occurring primarily at depolarized potentials. On exposure to hypotonic solution, the slope conductance significantly increased at the resting membrane potential (-70 mV) from 1.2 +/- 0.2 to 2.0 +/- 0.4 nS and at the slow-wave plateau potential (-35 mV) from 2.1 +/- 0.3 to 5.0 +/- 1.0 nS. The current was constitutively active in ICC and contributed to the resting membrane potential and excitability at the slow-wave plateau. In conclusion, swelling or volume change will depolarize ICC through activation of outwardly rectifying chloride channels, thereby increasing cell excitability.  相似文献   

14.
ClC-3 is a member of the ClC family of anion channels/transporters. Recently, the closely related proteins ClC-4 and ClC-5 were shown to be Cl(-)/H(+) antiporters (39, 44). The function of ClC-3 has been controversial. We studied anion currents in HEK293T cells expressing wild-type or mutant ClC-3. The basic biophysical properties of ClC-3 currents were very similar to those of ClC-4 and ClC-5, and distinct from those of the swelling-activated anion channel. ClC-3 expression induced currents with time-dependent activation that rectified sharply in the outward direction. The reversal potential of the current shifted by -48.3 +/- 2.5 mV per 10-fold (decade) change in extracellular Cl(-) concentration, which did not conform to the behavior of an anion-selective channel based upon the Nernst equation, which predicts a -58.4 mV/decade shift at 22 degrees C. Manipulation of extracellular pH (6.35-8.2) altered reversal potential by 10.2 +/- 3.0 mV/decade, suggesting that ClC-3 currents were coupled to proton movement. Mutation of a specific glutamate residue (E224A) changed voltage dependence in a manner similar to that observed in other ClC Cl(-)/H(+) antiporters. Mutant currents exhibited Nernstian changes in reversal potential in response to altered extracellular Cl(-) concentration that averaged -60 +/- 3.4 mV/decade and were pH independent. Thus ClC-3 overexpression induced a pH-sensitive conductance in HEK293T cells that is biophysically similar to ClC-4 and ClC-5.  相似文献   

15.
Several plasma membrane chloride channels are well characterized, but much less is known about the molecular identity and function of intracellular Cl- channels. ClC-3 is thought to mediate swelling-activated plasma membrane currents, but we now show that this broadly expressed chloride channel is present in endosomal compartments and synaptic vesicles of neurons. While swelling-activated currents are unchanged in mice with disrupted ClC-3, acidification of synaptic vesicles is impaired and there is severe postnatal degeneration of the retina and the hippocampus. Electrophysiological analysis of juvenile hippocampal slices revealed no major functional abnormalities despite slightly increased amplitudes of miniature excitatory postsynaptic currents. Mice almost lacking the hippocampus survive and show several behavioral abnormalities but are still able to acquire motor skills.  相似文献   

16.
The metabolic coupling of insulin secretion by pancreatic beta cells is mediated by membrane depolarization due to increased glucose-driven ATP production and closure of K(ATP) channels. Alternative pathways may involve the activation of anion channels by cell swelling upon glucose uptake. In INS-1E insulinoma cells superfusion with an isotonic solution containing 20 mM glucose or a 30% hypotonic solution leads to the activation of a chloride conductance with biophysical and pharmacological properties of anion currents activated in many other cell types during regulatory volume decrease (RVD), i.e. outward rectification, inactivation at positive membrane potentials and block by anion channel inhibitors like NPPB, DIDS, 4-hydroxytamoxifen and extracellular ATP. The current is not inhibited by tolbutamide and remains activated for at least 10 min when reducing the extracellular glucose concentration from 20 mM to 5 mM, but inactivates back to control levels when cells are exposed to a 20% hypertonic extracellular solution containing 20 mM glucose. This chloride current can likewise be induced by 20 mM 3-Omethylglucose, which is taken up but not metabolized by the cells, suggesting that cellular sugar uptake is involved in current activation. Fluorescence resonance energy transfer (FRET) experiments show that chloride current activation by 20 mM glucose and glucose-induced cell swelling are accompanied by a significant, transient redistribution of the membrane associated fraction of ICln, a multifunctional 'connector hub' protein involved in cell volume regulation and generation of RVD currents.  相似文献   

17.
18.
Volume regulation is essential for cell function, but it is unknown which channels are involved in a regulatory volume decrease (RVD) in human gastric epithelial cells. Exposure to a hypotonic solution caused the increase in AGS cell volume, followed by the activation of a current. The reversal potential of the swelling-induced current suggested that Cl- was the primary charge carrier. The selectivity sequence for different anions was I- > Br- > Cl- > F- > gluconate. This current was inhibited by flufenamate, DIDS, tamoxifen, and 5-nitro-2-(3-phenylpropylamino)benzoate. Intracellular dialysis of three different anti-ClC-3 antibodies abolished or attenuated the Cl- current and disrupted RVD, whereas the current and RVD was unaltered by anti-ClC-2 antibody. Immunoblot studies demonstrated the presence of ClC-3 protein in Hela and AGS cells. RT-PCR analysis detected expression of ClC-3, MDR-1, and pICln mRNA in AGS cells. These results suggest a fundamental role of endogenous ClC-3 in the swelling-activated Cl- channels function and cell volume regulation in human gastric epithelial cells.  相似文献   

19.
In this study, the activation mechanisms of the background chloride current and the role of the current in maintaining of basal cell volume were investigated in human nasopharyngeal carcinoma CNE-2Z cells. Under isotonic conditions, a background chloride current was recorded by the patch clamp technique. The current presented the properties similar to those of the volume-activated chloride current in the same cell line and was inhibited by chloride channel blockers or by cell shrinkage induced by hypertonic challenges. Extracellular applications of reactive blue 2, a purinergic receptor antagonist, suppressed the background chloride current in a concentration-dependent manner under isotonic conditions. Depletion of extracellular ATP with apyrase or inhibition of ATP release from cells by gadolinium chloride decreased the background current. Extracellular applications of micromolar concentrations of ATP activated a chloride current which was inhibited by chloride channel blockers and hypertonic solutions. Extracellular ATP could also reverse the action of gadolinium chloride. Transfection of CNE-2Z cells with ClC-3 siRNA knocked down expression of ClC-3 proteins, attenuated the background chloride current and prevented activation of the ATP-induced current. Furthermore, knockdown of ClC-3 expression or exposures of cells to ATP (10 mM), the chloride channel blockers 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and tamoxifen, or reactive blue 2 increased cell volume under isotonic conditions. The results suggest that ClC-3 protein may be a main component of background chloride channels which can be activated under isotonic conditions by autocrine/paracrine ATP through purinergic receptor pathways; the background current is involved in maintenance of basal cell volume.  相似文献   

20.
Volume-sensitive outwardly rectifying (VSOR) Cl- channels have been electrophysiologically identified in human and mouse mesangial cells, but the functional role of VSOR Cl- channels in mesangial cell apoptosis is not clear. The aim of the present study was to demonstrate the role of VSOR Cl- channels in oxidative stress-induced mesangial cell apoptosis. H2O2-induced Cl- currents showed phenotypic properties of VSOR Cl- channels, including outward rectification, voltage-dependent inactivation at more positive potentials, sensitivity to hyperosmolarity, and inhibition by VSOR Cl- channel blockers. Moreover, blockage of VSOR Cl- channels by DIDS (100 microM), NPPB (10 microM) or niflumic acid (10 microM) rescued mesangial cell apoptosis induced by H2O2. Treatment with 150 microM H2O2 for 2h resulted in significant reduction of cell volume, in contrast, nuclear condensation and/or fragmentation were not observed and the caspase-3 activity was also not increased. The early-phase alterations in cell volume were markedly abolished by pretreatment with VSOR Cl- channel blockers. We conclude that VSOR Cl- channels are involved in H2O2-induced apoptosis in cultured mesangial cells and its mechanism is associated with apoptotic volume decrease processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号